1
|
Nestin-Expressing Cells in the Lung: The Bad and the Good Parts. Cells 2021; 10:cells10123413. [PMID: 34943921 PMCID: PMC8700449 DOI: 10.3390/cells10123413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/27/2022] Open
Abstract
Nestin is a member of the intermediate filament family, which is expressed in a variety of stem or progenitor cells as well as in several types of malignancies. Nestin might be involved in tissue homeostasis or repair, but its expression has also been associated with processes that lead to a poor prognosis in various types of cancer. In this article, we review the literature related to the effect of nestin expression in the lung. According to most of the reports in the literature, nestin expression in lung cancer leads to an aggressive phenotype and resistance to chemotherapy as well as radiation treatments due to the upregulation of phenomena such as cell proliferation, angiogenesis, and metastasis. Furthermore, nestin may be involved in the pathogenesis of some non-cancer-related lung diseases. On the other hand, evidence also indicates that nestin-positive cells may have a role in lung homeostasis and be capable of generating various types of lung tissues. More research is necessary to establish the true value of nestin expression as a prognostic factor and therapeutic target in lung cancer in addition to its usefulness in therapeutic approaches for pulmonary diseases.
Collapse
|
2
|
Abstract
Interleukin 17A (IL-17A)-producing T helper 17 (Th17) cells were identified as a subset of T helper cells that play a critical role in host defense against bacterial and fungal pathogens. Th17 cells differentiate from Th0 naïve T-cells in response to transforming growth factor β1 (TGF-β1) and IL-6, the cytokines which also drive development of liver fibrosis, require activation of transcription factor retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt). IL-17A signals through the ubiquitously expressed receptor IL-17RA. Expression of IL-17RA is upregulated in patients with hepatitis B virus/hepatitis C virus (HBV/HCV) infections, nonalcoholic steatohepatitis (NASH), alcohol-associated liver disease (AALD), hepatocellular carcinoma (HCC), and experimental models of chronic toxic liver injury. The role of IL-17 signaling in the pathogenesis of NASH- and AALD-induced metabolic liver injury and HCC will be the focus of this review. The role of IL-17A-IL-17RA axis in mediation of the cross-talk between metabolically injured hepatic macrophages, hepatocytes, and fibrogenic myofibroblasts will be discussed.
Collapse
Affiliation(s)
- Na Li
- Shanghai University of Medicine & Health Sciences, Shanghai, P.R. China.,Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Gen Yamamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Hiroaki Fuji
- Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA
| |
Collapse
|
3
|
He Y, Hwang S, Ahmed YA, Feng D, Li N, Ribeiro M, Lafdil F, Kisseleva T, Szabo G, Gao B. Immunopathobiology and therapeutic targets related to cytokines in liver diseases. Cell Mol Immunol 2021; 18:18-37. [PMID: 33203939 PMCID: PMC7853124 DOI: 10.1038/s41423-020-00580-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver injury with any etiology can progress to fibrosis and the end-stage diseases cirrhosis and hepatocellular carcinoma. The progression of liver disease is controlled by a variety of factors, including liver injury, inflammatory cells, inflammatory mediators, cytokines, and the gut microbiome. In the current review, we discuss recent data on a large number of cytokines that play important roles in regulating liver injury, inflammation, fibrosis, and regeneration, with a focus on interferons and T helper (Th) 1, Th2, Th9, Th17, interleukin (IL)-1 family, IL-6 family, and IL-20 family cytokines. Hepatocytes can also produce certain cytokines (such as IL-7, IL-11, and IL-33), and the functions of these cytokines in the liver are briefly summarized. Several cytokines have great therapeutic potential, and some are currently being tested as therapeutic targets in clinical trials for the treatment of liver diseases, which are also described.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Na Li
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Marcelle Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
- INSERM, U955, F-94000, Créteil, France
- Institut Universitaire de France (IUF), Paris, F-75231, Cedex 05, France
| | - Tatiana Kisseleva
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Sasai N, Toriyama M, Kondo T. Hedgehog Signal and Genetic Disorders. Front Genet 2019; 10:1103. [PMID: 31781166 PMCID: PMC6856222 DOI: 10.3389/fgene.2019.01103] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
The hedgehog (Hh) family comprises sonic hedgehog (Shh), Indian hedgehog (Ihh), and desert hedgehog (Dhh), which are versatile signaling molecules involved in a wide spectrum of biological events including cell differentiation, proliferation, and survival; establishment of the vertebrate body plan; and aging. These molecules play critical roles from embryogenesis to adult stages; therefore, alterations such as abnormal expression or mutations of the genes involved and their downstream factors cause a variety of genetic disorders at different stages. The Hh family involves many signaling mediators and functions through complex mechanisms, and achieving a comprehensive understanding of the entire signaling system is challenging. This review discusses the signaling mediators of the Hh pathway and their functions at the cellular and organismal levels. We first focus on the roles of Hh signaling mediators in signal transduction at the cellular level and the networks formed by these factors. Then, we analyze the spatiotemporal pattern of expression of Hh pathway molecules in tissues and organs, and describe the phenotypes of mutant mice. Finally, we discuss the genetic disorders caused by malfunction of Hh signaling-related molecules in humans.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Michinori Toriyama
- Systems Neurobiology and Medicine, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Yu H, Fischer G, Jia G, Reiser J, Park F, Hogan QH. Lentiviral gene transfer into the dorsal root ganglion of adult rats. Mol Pain 2011; 7:63. [PMID: 21861915 PMCID: PMC3179738 DOI: 10.1186/1744-8069-7-63] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 08/23/2011] [Indexed: 12/20/2022] Open
Abstract
Background Lentivector-mediated gene delivery into the dorsal root ganglion (DRG) is a promising method for exploring pain pathophysiology and for genetic treatment of chronic neuropathic pain. In this study, a series of modified lentivector particles with different cellular promoters, envelope glycoproteins, and viral accessory proteins were generated to evaluate the requirements for efficient transduction into neuronal cells in vitro and adult rat DRG in vivo. Results In vitro, lentivectors expressing enhanced green fluorescent protein (EGFP) under control of the human elongation factor 1α (EF1α) promoter and pseudotyped with the conventional vesicular stomatitis virus G protein (VSV-G) envelope exhibited the best performance in the transfer of EGFP into an immortalized DRG sensory neuron cell line at low multiplicities of infection (MOIs), and into primary cultured DRG neurons at higher MOIs. In vivo, injection of either first or second-generation EF1α-EGFP lentivectors directly into adult rat DRGs led to transduction rates of 19 ± 9% and 20 ± 8% EGFP-positive DRG neurons, respectively, detected at 4 weeks post injection. Transduced cells included a full range of neuronal phenotypes, including myelinated neurons as well as both non-peptidergic and peptidergic nociceptive unmyelinated neurons. Conclusion VSV-G pseudotyped lentivectors containing the human elongation factor 1α (EF1α)-EGFP expression cassette demonstrated relatively efficient transduction to sensory neurons following direct injection into the DRG. These results clearly show the potential of lentivectors as a viable system for delivering target genes into DRGs to explore basic mechanisms of neuropathic pain, with the potential for future clinical use in treating chronic pain.
Collapse
Affiliation(s)
- Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, 8100 Watertown Plank Rd, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive, multiple congenital malformation and intellectual disability syndrome, with clinical characteristics that encompass a wide spectrum and great variability. Elucidation of the biochemical and genetic basis for SLOS, specifically understanding SLOS as a cholesterol deficiency syndrome caused by mutation in DHCR7, opened up enormous possibilities for therapeutic intervention. When cholesterol was discovered to be the activator of sonic hedgehog, cholesterol deficiency with inactivation of this developmental patterning gene was thought to be the cause of SLOS malformations, yet this explanation is overly simplistic. Despite these important research breakthroughs, there is no proven treatment for SLOS. Better animal models are needed to allow potential treatment testing and the study of disease pathophysiology, which is incompletely understood. Creation of human cellular models, especially models of brain cells, would be useful, and in vivo human studies are also essential. Biomarker development will be crucial in facilitating clinical trials in this rare condition, because the clinical phenotype can change over many years. Additional research in these and other areas is critical if we are to make headway towards ameliorating the effects of this devastating condition.
Collapse
|
7
|
Horvat S, Mcwhir J, Rozman D. Defects in cholesterol synthesis genes in mouse and in humans: lessons for drug development and safer treatments. Drug Metab Rev 2011; 43:69-90. [DOI: 10.3109/03602532.2010.540580] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Sigurdsson MI, Jamshidi N, Steingrimsson E, Thiele I, Palsson BØ. A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1. BMC SYSTEMS BIOLOGY 2010; 4:140. [PMID: 20959003 PMCID: PMC2978158 DOI: 10.1186/1752-0509-4-140] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 10/19/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND Well-curated and validated network reconstructions are extremely valuable tools in systems biology. Detailed metabolic reconstructions of mammals have recently emerged, including human reconstructions. They raise the question if the various successful applications of microbial reconstructions can be replicated in complex organisms. RESULTS We mapped the published, detailed reconstruction of human metabolism (Recon 1) to other mammals. By searching for genes homologous to Recon 1 genes within mammalian genomes, we were able to create draft metabolic reconstructions of five mammals, including the mouse. Each draft reconstruction was created in compartmentalized and non-compartmentalized version via two different approaches. Using gap-filling algorithms, we were able to produce all cellular components with three out of four versions of the mouse metabolic reconstruction. We finalized a functional model by iterative testing until it passed a predefined set of 260 validation tests. The reconstruction is the largest, most comprehensive mouse reconstruction to-date, accounting for 1,415 genes coding for 2,212 gene-associated reactions and 1,514 non-gene-associated reactions.We tested the mouse model for phenotype prediction capabilities. The majority of predicted essential genes were also essential in vivo. However, our non-tissue specific model was unable to predict gene essentiality for many of the metabolic genes shown to be essential in vivo. Our knockout simulation of the lipoprotein lipase gene correlated well with experimental results, suggesting that softer phenotypes can also be simulated. CONCLUSIONS We have created a high-quality mouse genome-scale metabolic reconstruction, iMM1415 (Mus Musculus, 1415 genes). We demonstrate that the mouse model can be used to perform phenotype simulations, similar to models of microbe metabolism. Since the mouse is an important experimental organism, this model should become an essential tool for studying metabolic phenotypes in mice, including outcomes from drug screening.
Collapse
Affiliation(s)
- Martin I Sigurdsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | | | | |
Collapse
|
9
|
Nanostructure-initiator mass spectrometry (NIMS) imaging of brain cholesterol metabolites in Smith-Lemli-Opitz syndrome. Neuroscience 2010; 170:858-64. [PMID: 20670678 DOI: 10.1016/j.neuroscience.2010.07.038] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/13/2010] [Accepted: 07/18/2010] [Indexed: 11/23/2022]
Abstract
Cholesterol is an essential component of cellular membranes that is required for normal lipid organization and cell signaling. While the mechanisms associated with maintaining cholesterol homeostasis in the plasma and peripheral tissues have been well studied, the role and regulation of cholesterol biosynthesis in normal brain function and development have proven much more challenging to investigate. Smith-Lemli-Opitz syndrome (SLOS) is a disorder of cholesterol synthesis characterized by mutations of 7-dehydrocholesterol reductase (DHCR7) that impair the reduction of 7-dehydrocholesterol (7DHC) to cholesterol and lead to neurocognitive deficits, including cerebellar hypoplasia and austism behaviors. Here we have used a novel mass spectrometry-based imaging technique called cation-enhanced nanostructure-initiator mass spectrometry (NIMS) for the in situ detection of intact cholesterol molecules from biological tissues. We provide the first images of brain sterol localization in a mouse model for SLOS (Dhcr7(-/-)). In SLOS mice, there is a striking localization of both 7DHC and residual cholesterol in the abnormally developing cerebellum and brainstem. In contrast, the distribution of cholesterol in 1-day old healthy pups was diffuse throughout the cerebrum and comparable to that of adult mice. This study represents the first application of NIMS to localize perturbations in metabolism within pathological tissues and demonstrates that abnormal cholesterol biosynthesis may be particularly important for the development of these brain regions.
Collapse
|
10
|
Cunningham D, Spychala K, McLarren KW, Garza LA, Boerkoel CF, Herman GE. Developmental expression pattern of the cholesterogenic enzyme NSDHL and negative selection of NSDHL-deficient cells in the heterozygous Bpa(1H)/+ mouse. Mol Genet Metab 2009; 98:356-66. [PMID: 19631568 PMCID: PMC2783206 DOI: 10.1016/j.ymgme.2009.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 12/22/2022]
Abstract
NSDHL (NAD(P)H sterol dehydrogenase-like), is a 3beta-hydroxysterol dehydrogenase thought to function in the demethylation of sterol precursors in one of the later steps of cholesterol biosynthesis. Mutations in the X-linked NSDHL gene cause CHILD syndrome in humans, and the male-lethal bare patches (Bpa) phenotype in mice. The relative level of NSDHL expression among different mouse tissues at several stages of embryogenesis and postnatal development was analyzed by immunohistochemistry. In wild type (WT) embryos, the highest levels of expression were seen in the liver, dorsal root ganglia, central nervous system, retina, adrenal gland and testis. Heterozygous Bpa(1H) females are mosaic for NSDHL expression due to normal random X-inactivation. NSDHL-deficient cells were detected in the developing cerebral cortex and retina of Bpa(1H) female embryos. In postnatal WT and Bpa(1H) animals, we compared the expression pattern of NSDHL in skin, an affected tissue; liver, a main site of cholesterol synthesis; and brain, a tissue dependent on endogenous synthesis of cholesterol due to lack of transport across the blood-brain barrier. Clonal populations of mutant cells were visible in the brain, skin and liver of Bpa(1H) pups. In the liver, the proportion of NSDHL negative cells dropped from approximately 50% at postnatal day 6 to approximately 20% at one year of age. In the brain, which showed the highest expression in cerebral cortical and hippocampal neurons, the proportion of NSDHL negative cells also dropped dramatically over the first year of life. Our results suggest that while NSDHL-deficient cells in the mosaic Bpa(1H) female are able to survive and differentiate during embryonic development, they are subject to negative selection over the life of the animal.
Collapse
Affiliation(s)
- David Cunningham
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The development of a single-celled fertilized egg, through the blastocyst stage of a ball of cells and the embryonic stage when almost all organ systems begin to develop, and finally to the fetal stage where growth and physiological maturation occurs, is a complex and multifaceted process. A change in metabolism during gestation, especially when organogenesis occurs, can lead to abnormal development and congenital defects. Although many studies have described the roles of specific proteins in development, the roles of specific lipids, such as sterols, have not been studied as intensely. Sterol's functions in development range from being a structural component of membranes to regulating the patterning of the forebrain through sonic hedgehog to regulating expression of key proteins involved in metabolic processes. This review focuses on the roles of sterols in embryonic and fetal development and metabolism. Potential sources of cholesterol for the fetus and embryo are also discussed.
Collapse
Affiliation(s)
- Laura A Woollett
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| |
Collapse
|
12
|
Abstract
Autism is a neurodevelopmental syndrome with markedly high heritability. The diagnostic indicators of autism are core behavioral symptoms, rather than definitive neuropathological markers. Etiology is thought to involve complex, multigenic interactions and possible environmental contributions. In this review, we focus on genetic pathways with multiple members represented in autism candidate gene lists. Many of these pathways can also be impinged upon by environmental risk factors associated with the disorder. The mouse model system provides a method to experimentally manipulate candidate genes for autism susceptibility, and to use environmental challenges to drive aberrant gene expression and cell pathology early in development. Mouse models for fragile X syndrome, Rett syndrome and other disorders associated with autistic-like behavior have elucidated neuropathology that might underlie the autism phenotype, including abnormalities in synaptic plasticity. Mouse models have also been used to investigate the effects of alterations in signaling pathways on neuronal migration, neurotransmission and brain anatomy, relevant to findings in autistic populations. Advances have included the evaluation of mouse models with behavioral assays designed to reflect disease symptoms, including impaired social interaction, communication deficits and repetitive behaviors, and the symptom onset during the neonatal period. Research focusing on the effect of gene-by-gene interactions or genetic susceptibility to detrimental environmental challenges may further understanding of the complex etiology for autism.
Collapse
Affiliation(s)
- S S Moy
- Neurodevelopmental Disorders Research Center, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
13
|
Solcà C, Pandit B, Yu H, Tint GS, Patel SB. Loss of apolipoprotein E exacerbates the neonatal lethality of the Smith-Lemli-Opitz syndrome mouse. Mol Genet Metab 2007; 91:7-14. [PMID: 17197219 PMCID: PMC1852500 DOI: 10.1016/j.ymgme.2006.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 11/17/2006] [Indexed: 11/19/2022]
Abstract
The Smith-Lemli-Opitz syndrome (SLOS) is caused by a genetic defect in cholesterol biosynthesis; mutations in the enzyme 3ss-hydroxysterol Delta7 reductase (Dhcr7) lead to a failure of cholesterol (and desmosterol) synthesis, with an accumulation of precursor sterols, such as 7-dehydrocholesterol. Extensive genotype-phenotype analyses have indicated that there is considerable variation in the severity of the disease, much of which is not explained by defects in the Dhcr7 gene alone. Factors ranging from variations in maternal-fetal cholesterol transfer during pregnancy, to other genetic factors have been proposed to account for this variability. Variations at the APOE locus affect plasma cholesterol levels in humans and this polymorphic gene has been found to be associated with cardiovascular as well as neurological disorders. This locus has recently been implicated in accounting for some of the variations in SLOS. To address whether maternal hypercholesterolemia can affect fetal outcome, we tested the ability of maternal hypercholesterolemia to rescue the neonatal lethality in a mouse model of SLOS. Maternal hypercholesterolemia, induced by ApoE or Ldl-r deficiency not only failed to ameliorate the postnatal lethality, it increased the prenatal mortality of Dhcr7 deficient pups. Thus the murine data suggest that maternal loss of ApoE or Ldl-r function further exacerbates the neonatal lethality, suggesting they may play a role in maternal transfer of cholesterol to the embryo.
Collapse
Affiliation(s)
- Curzio Solcà
- Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
14
|
Yu H, Li M, Tint GS, Chen J, Xu G, Patel SB. Selective reconstitution of liver cholesterol biosynthesis promotes lung maturation but does not prevent neonatal lethality in Dhcr7 null mice. BMC DEVELOPMENTAL BIOLOGY 2007; 7:27. [PMID: 17408495 PMCID: PMC1855921 DOI: 10.1186/1471-213x-7-27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 04/04/2007] [Indexed: 11/10/2022]
Abstract
Background Targeted disruption of the murine 3β-hydroxysterol-Δ7-reductase gene (Dhcr7), an animal model of Smith-Lemli-Opitz syndrome, leads to loss of cholesterol synthesis and neonatal death that can be partially rescued by transgenic replacement of DHCR7 expression in brain during embryogenesis. To gain further insight into the role of non-brain tissue cholesterol deficiency in the pathophysiology, we tested whether the lethal phenotype could be abrogated by selective transgenic complementation with DHCR7 expression in the liver. Results We generated mice that carried a liver-specific human DHCR7 transgene whose expression was driven by the human apolipoprotein E (ApoE) promoter and its associated liver-specific enhancer. These mice were then crossed with Dhcr7+/- mutants to generate Dhcr7-/- mice bearing a human DHCR7 transgene. Robust hepatic transgene expression resulted in significant improvement of cholesterol homeostasis with cholesterol concentrations increasing to 80~90 % of normal levels in liver and lung. Significantly, cholesterol deficiency in brain was not altered. Although late gestational lung sacculation defect reported previously was significantly improved, there was no parallel increase in postnatal survival in the transgenic mutant mice. Conclusion The reconstitution of DHCR7 function selectively in liver induced a significant improvement of cholesterol homeostasis in non-brain tissues, but failed to rescue the neonatal lethality of Dhcr7 null mice. These results provided further evidence that CNS defects caused by Dhcr7 null likely play a major role in the lethal pathogenesis of Dhcr7-/- mice, with the peripheral organs contributing the morbidity.
Collapse
Affiliation(s)
- Hongwei Yu
- Division of Endocrinology, Metabolism and Nutrition, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Man Li
- Division of Endocrinology, Metabolism and Nutrition, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Qilu Hospital of Shandong University, 44 West Wenhua Road Jinan, 250012, P. R. China
| | - G Stephen Tint
- Research Service, Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ 07018, USA
- Department of Medicine, UMDNJ-New Jersey Medical School, Newark, NJ 07103-2714, USA
| | - Jianliang Chen
- Division of Endocrinology, Metabolism and Nutrition, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guorong Xu
- Research Service, Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ 07018, USA
- Department of Medicine, UMDNJ-New Jersey Medical School, Newark, NJ 07103-2714, USA
| | - Shailendra B Patel
- Division of Endocrinology, Metabolism and Nutrition, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Veterans Affairs, Clement J. Zablocki Medical Center, Milwaukee, WI 53295, USA
| |
Collapse
|
15
|
Moy SS, Nadler JJ, Magnuson TR, Crawley JN. Mouse models of autism spectrum disorders: The challenge for behavioral genetics. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2006; 142C:40-51. [PMID: 16419099 DOI: 10.1002/ajmg.c.30081] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autism is a severe neurodevelopmental disorder, which typically emerges early in childhood. The core symptoms of autism include deficits in social interaction, impaired communication, and aberrant repetitive behavior, including self-injury. Despite the strong genetic component for the disease, most cases of autism have not been linked to mutations in a specific gene, and the etiology of the disorder has yet to be established. At the present time, there is no generally accepted therapeutic strategy to treat the core symptoms of autism, and there remains a critical need for appropriate animal models and relevant behavioral assays to promote the understanding and treatment of the clinical syndrome. Challenges for the development of valid mouse models include complex genetic interactions underlying the high heritability of the disease in humans, diagnosis based on deficits in social interaction and communication, and the lack of confirmatory neuropathological markers to provide validation for genetic models of the disorder. Research focusing on genes that mediate social behavior in mice may help identify neural circuitry essential for normal social interaction, and lead to novel genetic animal models of the autism behavioral phenotype.
Collapse
Affiliation(s)
- Sheryl S Moy
- Neurodevelopmental Disorders Research Center, CB #7146, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
Recent insights into the Smith-Lemli-Opitz syndrome. The Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive multiple congenital anomaly/mental retardation disorder caused by an inborn error of post-squalene cholesterol biosynthesis. Deficient cholesterol synthesis in SLOS is caused by inherited mutations of 3beta-hydroxysterol-Delta7 reductase gene (DHCR7). DHCR7 deficiency impairs both cholesterol and desmosterol production, resulting in elevated 7DHC/8DHC levels, typically decreased cholesterol levels and, importantly, developmental dysmorphology. The discovery of SLOS has led to new questions regarding the role of the cholesterol biosynthesis pathway in human development. To date, a total of 121 different mutations have been identified in over 250 patients with SLOS who represent a continuum of clinical severity. Two genetic mouse models have been generated which recapitulate some of the developmental abnormalities of SLOS and have been useful in elucidating the pathogenesis. This mini review summarizes the recent insights into SLOS genetics, pathophysiology and potential therapeutic approaches for the treatment of SLOS.
Collapse
Affiliation(s)
- H Yu
- Corresponding authors: Hongwei Yu, Shailesh Patel, Division of Endocrinology, Metabolism and Nutrition, Medical College of Wisconsin, 9200 West, Wisconsin Avenue, Milwaukee, WI 53226, USA, Tel.: +1 414 456 6801; fax: +1 414 456 6210; e-mail: ,
| | - SB Patel
- Corresponding authors: Hongwei Yu, Shailesh Patel, Division of Endocrinology, Metabolism and Nutrition, Medical College of Wisconsin, 9200 West, Wisconsin Avenue, Milwaukee, WI 53226, USA, Tel.: +1 414 456 6801; fax: +1 414 456 6210; e-mail: ,
| |
Collapse
|