1
|
Darbinian N, Merabova N, Tatevosian G, Morrison M, Darbinyan A, Zhao H, Goetzl L, Selzer ME. Biomarkers of Affective Dysregulation Associated with In Utero Exposure to EtOH. Cells 2023; 13:2. [PMID: 38201206 PMCID: PMC10778368 DOI: 10.3390/cells13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Children with fetal alcohol spectrum disorders (FASD) exhibit behavioral and affective dysregulation, including hyperactivity and depression. The mechanisms are not known, but they could conceivably be due to postnatal social or environmental factors. However, we postulate that, more likely, the affective dysregulation is associated with the effects of EtOH exposure on the development of fetal serotonergic (5-HT) and/or dopaminergic (DA) pathways, i.e., pathways that in postnatal life are believed to regulate mood. Many women who use alcohol (ethanol, EtOH) during pregnancy suffer from depression and take selective serotonin reuptake inhibitors (SSRIs), which might influence these monoaminergic pathways in the fetus. Alternatively, monoaminergic pathway abnormalities might reflect a direct effect of EtOH on the fetal brain. To distinguish between these possibilities, we measured their expressions in fetal brains and in fetal brain-derived exosomes (FB-Es) isolated from the mothers' blood. We hypothesized that maternal use of EtOH and/or SSRIs during pregnancy would be associated with impaired fetal neural development, detectable as abnormal levels of monoaminergic and apoptotic biomarkers in FB-Es. METHODS Fetal brain tissues and maternal blood were collected at 9-23 weeks of pregnancy. EtOH groups were compared with unexposed controls matched for gestational age (GA). The expression of 84 genes associated with the DA and 5-HT pathways was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) on microarrays. FB-Es also were assayed for serotonin transporter protein (SERT) and brain-derived neurotrophic factor (BDNF) by enzyme-linked immunosorbent assay (ELISA). RESULTS Six EtOH-exposed human fetal brain samples were compared to SSRI- or polydrug-exposed samples and to unexposed controls. EtOH exposure was associated with significant upregulation of DA receptor D3 and 5-HT receptor HTR2C, while HTR3A was downregulated. Monoamine oxidase A (MAOA), MAOB, the serine/threonine kinase AKT3, and caspase-3 were upregulated, while mitogen-activated protein kinase 1 (MAPK1) and AKT2 were downregulated. ETOH was associated with significant upregulation of the DA transporter gene, while SERT was downregulated. There were significant correlations between EtOH exposure and (a) caspase-3 activation, (b) reduced SERT protein levels, and (c) reduced BDNF levels. SSRI exposure independently increased caspase-3 activity and downregulated SERT and BDNF. Early exposure to EtOH and SSRI together was associated synergistically with a significant upregulation of caspase-3 and a significant downregulation of SERT and BDNF. Reduced SERT and BDNF levels were strongly correlated with a reduction in eye diameter, a somatic manifestation of FASD. CONCLUSIONS Maternal use of EtOH and SSRI during pregnancy each was associated with changes in fetal brain monoamine pathways, consistent with potential mechanisms for the affective dysregulation associated with FASD.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
| | - Mary Morrison
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Psychiatry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA;
| | - Michael Edgar Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
2
|
Systematic Analysis of Environmental Chemicals That Dysregulate Critical Period Plasticity-Related Gene Expression Reveals Common Pathways That Mimic Immune Response to Pathogen. Neural Plast 2020; 2020:1673897. [PMID: 32454811 PMCID: PMC7222500 DOI: 10.1155/2020/1673897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 02/04/2020] [Indexed: 11/22/2022] Open
Abstract
The tens of thousands of industrial and synthetic chemicals released into the environment have an unknown but potentially significant capacity to interfere with neurodevelopment. Consequently, there is an urgent need for systematic approaches that can identify disruptive chemicals. Little is known about the impact of environmental chemicals on critical periods of developmental neuroplasticity, in large part, due to the challenge of screening thousands of chemicals. Using an integrative bioinformatics approach, we systematically scanned 2001 environmental chemicals and identified 50 chemicals that consistently dysregulate two transcriptional signatures of critical period plasticity. These chemicals included pesticides (e.g., pyridaben), antimicrobials (e.g., bacitracin), metals (e.g., mercury), anesthetics (e.g., halothane), and other chemicals and mixtures (e.g., vehicle emissions). Application of a chemogenomic enrichment analysis and hierarchical clustering across these diverse chemicals identified two clusters of chemicals with one that mimicked an immune response to pathogen, implicating inflammatory pathways and microglia as a common chemically induced neuropathological process. Thus, we established an integrative bioinformatics approach to systematically scan thousands of environmental chemicals for their ability to dysregulate molecular signatures relevant to critical periods of development.
Collapse
|
3
|
Smith MR, Yevoo P, Sadahiro M, Austin C, Amarasiriwardena C, Awawda M, Arora M, Dudley JT, Morishita H. Integrative bioinformatics identifies postnatal lead (Pb) exposure disrupts developmental cortical plasticity. Sci Rep 2018; 8:16388. [PMID: 30401819 PMCID: PMC6219596 DOI: 10.1038/s41598-018-34592-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/22/2018] [Indexed: 11/23/2022] Open
Abstract
Given that thousands of chemicals released into the environment have the potential capacity to harm neurodevelopment, there is an urgent need to systematically evaluate their toxicity. Neurodevelopment is marked by critical periods of plasticity wherein neural circuits are refined by the environment to optimize behavior and function. If chemicals perturb these critical periods, neurodevelopment can be permanently altered. Focusing on 214 human neurotoxicants, we applied an integrative bioinformatics approach using publically available data to identify dozens of neurotoxicant signatures that disrupt a transcriptional signature of a critical period for brain plasticity. This identified lead (Pb) as a critical period neurotoxicant and we confirmed in vivo that Pb partially suppresses critical period plasticity at a time point analogous to exposure associated with autism. This work demonstrates the utility of a novel informatics approach to systematically identify neurotoxicants that disrupt childhood neurodevelopment and can be extended to assess other environmental chemicals.
Collapse
Affiliation(s)
- Milo R Smith
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Departmnt of Ophthalmology, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
| | - Priscilla Yevoo
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Departmnt of Ophthalmology, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
| | - Masato Sadahiro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Departmnt of Ophthalmology, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
| | - Christine Austin
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
| | - Mahmoud Awawda
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
| | - Manish Arora
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
- Department of Dentistry, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
| | - Hirofumi Morishita
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
- Departmnt of Ophthalmology, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Wong EL, Lutz NM, Hogan VA, Lamantia CE, McMurray HR, Myers JR, Ashton JM, Majewska AK. Developmental alcohol exposure impairs synaptic plasticity without overtly altering microglial function in mouse visual cortex. Brain Behav Immun 2018; 67:257-278. [PMID: 28918081 PMCID: PMC5696045 DOI: 10.1016/j.bbi.2017.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 12/26/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD), caused by gestational ethanol (EtOH) exposure, is one of the most common causes of non-heritable and life-long mental disability worldwide, with no standard treatment or therapy available. While EtOH exposure can alter the function of both neurons and glia, it is still unclear how EtOH influences brain development to cause deficits in sensory and cognitive processing later in life. Microglia play an important role in shaping synaptic function and plasticity during neural circuit development and have been shown to mount an acute immunological response to EtOH exposure in certain brain regions. Therefore, we hypothesized that microglial roles in the healthy brain could be permanently altered by early EtOH exposure leading to deficits in experience-dependent plasticity. We used a mouse model of human third trimester high binge EtOH exposure, administering EtOH twice daily by subcutaneous injections from postnatal day 4 through postnatal day 9 (P4-:P9). Using a monocular deprivation model to assess ocular dominance plasticity, we found an EtOH-induced deficit in this type of visually driven experience-dependent plasticity. However, using a combination of immunohistochemistry, confocal microscopy, and in vivo two-photon microscopy to assay microglial morphology and dynamics, as well as fluorescence activated cell sorting (FACS) and RNA-seq to examine the microglial transcriptome, we found no evidence of microglial dysfunction in early adolescence. We also found no evidence of microglial activation in visual cortex acutely after early ethanol exposure, possibly because we also did not observe EtOH-induced neuronal cell death in this brain region. We conclude that early EtOH exposure caused a deficit in experience-dependent synaptic plasticity in the visual cortex that was independent of changes in microglial phenotype or function. This demonstrates that neural plasticity can remain impaired by developmental ethanol exposure even in a brain region where microglia do not acutely assume nor maintain an activated phenotype.
Collapse
Affiliation(s)
- Elissa L. Wong
- Dept. of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nina M. Lutz
- Dept. of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Victoria A. Hogan
- Dept. of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Cassandra E. Lamantia
- Dept. of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Helene R. McMurray
- Dept. of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY14642, USA,Inst. For Innovative Education, Miner Libraries, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jason R. Myers
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA,Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John M. Ashton
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA,Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ania K. Majewska
- Dept. of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA,Corresponding author: Ania K. Majewska:
| |
Collapse
|
5
|
Wong EL, Stowell RD, Majewska AK. What the Spectrum of Microglial Functions Can Teach us About Fetal Alcohol Spectrum Disorder. Front Synaptic Neurosci 2017; 9:11. [PMID: 28674490 PMCID: PMC5474469 DOI: 10.3389/fnsyn.2017.00011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
Alcohol exposure during gestation can lead to severe defects in brain development and lifelong physical, behavioral and learning deficits that are classified under the umbrella term fetal alcohol spectrum disorder (FASD). Sadly, FASD is diagnosed at an alarmingly high rate, affecting 2%-5% of live births in the United States, making it the most common non-heritable cause of mental disability. Currently, no standard therapies exist that are effective at battling FASD symptoms, highlighting a pressing need to better understand the underlying mechanisms by which alcohol affects the developing brain. While it is clear that sensory and cognitive deficits are driven by inappropriate development and remodeling of the neural circuits that mediate these processes, alcohol's actions acutely and long-term on the brain milieu are diverse and complex. Microglia, the brain's immune cells, have been thought to be a target for alcohol during development because of their exquisite ability to rapidly detect and respond to perturbations affecting the brain. Additionally, our view of these immune cells is rapidly changing, and recent studies have revealed a myriad of microglial physiological functions critical for normal brain development and long-term function. A clear and complete understanding of how microglial roles on this end of the spectrum may be altered in FASD is currently lacking. Such information could provide important insights toward novel therapeutic targets for FASD treatment. Here we review the literature that links microglia to neural circuit remodeling and provide a discussion of the current understanding of how developmental alcohol exposure affects microglial behavior in the context of developing brain circuits.
Collapse
Affiliation(s)
- Elissa L. Wong
- Department of Environmental Medicine, University of Rochester Medical CenterRochester, NY, United States
| | - Rianne D. Stowell
- Department of Neuroscience, University of Rochester Medical CenterRochester, NY, United States
| | - Ania K. Majewska
- Department of Neuroscience, University of Rochester Medical CenterRochester, NY, United States
| |
Collapse
|
6
|
Foxworthy WA, Medina AE. Overexpression of Serum Response Factor in Neurons Restores Ocular Dominance Plasticity in a Model of Fetal Alcohol Spectrum Disorders. Alcohol Clin Exp Res 2015; 39:1951-6. [PMID: 26342644 DOI: 10.1111/acer.12844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/14/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Deficits in neuronal plasticity underlie many neurobehavioral and cognitive problems presented in fetal alcohol spectrum disorder (FASD). Our laboratory has developed a ferret model showing that early alcohol exposure leads to a persistent disruption in ocular dominance plasticity (ODP). For instance, a few days of monocular deprivation results in a robust reduction of visual cortex neurons' responsiveness to stimulation of the deprived eye in normal animals, but not in ferrets with early alcohol exposure. Previously our laboratory demonstrated that overexpression of serum response factor (SRF) exclusively in astrocytes can improve neuronal plasticity in FASD. Here, we test whether neuronal overexpression of SRF can achieve similar effects. METHODS Ferrets received 3.5 g/kg alcohol intraperitoneally (25% in saline) or saline as control every other day between postnatal day 10 to 30, which is roughly equivalent to the third trimester of human gestation. Animals were given intracortical injections of a Herpes Simplex Virus-based vector to express either green fluorescent protein or a constitutively active form of SRF in infected neurons. They were then monocularly deprived by eyelid suture for 4 to 5 days after which single-unit recordings were conducted to determine whether changes in ocular dominance had occurred. RESULTS Overexpression of a constitutively active form of SRF by neurons restored ODP in alcohol-treated animals. This effect was observed only in areas near the site of viral infection. CONCLUSIONS Overexpression of SRF in neurons can restore plasticity in the ferret model of FASD, but only in areas near the site of infection. This contrasts with SRF overexpression in astrocytes which restored plasticity throughout the visual cortex.
Collapse
Affiliation(s)
- W Alex Foxworthy
- Department of Pediatrics (WAF, AEM), University of Maryland, Baltimore, Maryland
| | - Alexandre E Medina
- Department of Pediatrics (WAF, AEM), University of Maryland, Baltimore, Maryland
| |
Collapse
|
7
|
Selective reduction of cerebral cortex GABA neurons in a late gestation model of fetal alcohol spectrum disorder. Alcohol 2015; 49:571-80. [PMID: 26252988 DOI: 10.1016/j.alcohol.2015.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 11/21/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are associated with cognitive and behavioral deficits, and decreased volume of the whole brain and cerebral cortex. Rodent models have shown that early postnatal treatments, which mimic ethanol toxicity in the third trimester of human pregnancy, acutely induce widespread apoptotic neuronal degeneration and permanent behavioral deficits. However, the lasting cellular and anatomical effects of early ethanol treatments are still incompletely understood. This study examined changes in neocortex volume, thickness, and cellular organization that persist in adult mice after postnatal day 7 (P7) ethanol treatment. Post mortem brain volumes, measured by both MRI within the skull and by fluid displacement of isolated brains, were reduced 10-13% by ethanol treatment. The cerebral cortex showed a similar reduction (12%) caused mainly by lower surface area (9%). In spite of these large changes, several features of cortical organization showed little evidence of change, including cortical thickness, overall neuron size, and laminar organization. Estimates of total neuron number showed a trend level reduction of about 8%, due mainly to reduced cortical volume but unchanged neuron density. However, counts of calretinin (CR) and parvalbumin (PV) subtypes of GABAergic neurons showed a striking >30% reduction of neuron number. Similar ethanol effects were found in male and female mice, and in C57BL/6By and BALB/cJ mouse strains. Our findings indicate that the cortex has substantial capacity to develop normal cytoarchitectonic organization after early postnatal ethanol toxicity, but there is a selective and persistent reduction of GABA cells that may contribute to the lasting cognitive and behavioral deficits in FASD.
Collapse
|
8
|
Prenatal ethanol exposure disrupts intraneocortical circuitry, cortical gene expression, and behavior in a mouse model of FASD. J Neurosci 2014; 33:18893-905. [PMID: 24285895 DOI: 10.1523/jneurosci.3721-13.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In utero ethanol exposure from a mother's consumption of alcoholic beverages impacts brain and cognitive development, creating a range of deficits in the child (Levitt, 1998; Lebel et al., 2012). Children diagnosed with fetal alcohol spectrum disorders (FASD) are often born with facial dysmorphology and may exhibit cognitive, behavioral, and motor deficits from ethanol-related neurobiological damage in early development. Prenatal ethanol exposure (PrEE) is the number one cause of preventable mental and intellectual dysfunction globally, therefore the neurobiological underpinnings warrant systematic research. We document novel anatomical and gene expression abnormalities in the neocortex of newborn mice exposed to ethanol in utero. This is the first study to demonstrate large-scale changes in intraneocortical connections and disruption of normal patterns of neocortical gene expression in any prenatal ethanol exposure animal model. Neuroanatomical defects and abnormal neocortical RZRβ, Id2, and Cadherin8 expression patterns are observed in PrEE newborns, and abnormal behavior is present in 20-d-old PrEE mice. The vast network of neocortical connections is responsible for high-level sensory and motor processing as well as complex cognitive thought and behavior in humans. Disruptions to this network from PrEE-related changes in gene expression may underlie some of the cognitive-behavioral phenotypes observed in children with FASD.
Collapse
|
9
|
Overexpression of serum response factor in astrocytes improves neuronal plasticity in a model of early alcohol exposure. Neuroscience 2012; 221:193-202. [PMID: 22742904 DOI: 10.1016/j.neuroscience.2012.06.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/12/2012] [Accepted: 06/19/2012] [Indexed: 12/25/2022]
Abstract
Neuronal plasticity deficits underlie many of the cognitive problems seen in fetal alcohol spectrum disorders (FASD). We have developed a ferret model showing that early alcohol exposure leads to a persistent disruption in ocular dominance (OD) plasticity. Recently, we showed that this deficit could be reversed by overexpression of serum response factor (SRF) in the primary visual cortex during the period of monocular deprivation (MD). Surprisingly, this restoration was observed throughout the extent of visual cortex and most of the cells transfected by the virus were positive for the astrocytic marker GFAP rather than the neuronal marker NeuN. Here we test whether overexpression of SRF exclusively in astrocytes is sufficient to restore OD plasticity in alcohol-exposed ferrets. To accomplish that, first we exposed cultured astrocytes to Sindbis viruses carrying either a constitutively active form of SRF (SRF+), a dominant negative (SRF-) or control Green Fluorescent Protein (GFP). After 24h, these astrocytes were implanted in the visual cortex of alcohol-exposed animals or saline controls one day before MD. Optical imaging of intrinsic signals showed that alcohol-exposed animals that were implanted with astrocytes expressing SRF, but not SRF- or GFP, showed robust restoration of OD plasticity in all visual cortex. These findings suggest that overexpression of SRF exclusively in astrocytes can improve neuronal plasticity in FASD.
Collapse
|
10
|
Lantz CL, Wang W, Medina AE. Early alcohol exposure disrupts visual cortex plasticity in mice. Int J Dev Neurosci 2012; 30:351-7. [PMID: 22617459 DOI: 10.1016/j.ijdevneu.2012.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/20/2012] [Accepted: 05/05/2012] [Indexed: 12/30/2022] Open
Abstract
There is growing evidence that deficits in neuronal plasticity underlie the cognitive problems seen in fetal alcohol spectrum disorders (FASD). However, the mechanisms behind these deficits are not clear. Here we test the effects of early alcohol exposure on ocular dominance plasticity (ODP) in mice and the reversibility of these effects by phosphodiesterase (PDE) inhibitors. Mouse pups were exposed to 5 g/kg of 25% ethanol i.p. on postnatal days (P) 5, 7 and 9. This type of alcohol exposure mimics binge drinking during the third trimester equivalent of human gestation. To assess ocular dominance plasticity animals were monocularly deprived at P21 for 10 days, and tested using optical imaging of intrinsic signals. During the period of monocular deprivation animals were treated with vinpocetine (20mg/kg; PDE1 inhibitor), rolipram (1.25mg/kg; PDE4 inhibitor), vardenafil (3mg/kg; PDE5 inhibitor) or vehicle solution. Monocular deprivation resulted in the expected shift in ocular dominance of the binocular zone in saline controls but not in the ethanol group. While vinpocetine successfully restored ODP in the ethanol group, rolipram and vardenafil did not. However, when rolipram and vardenafil were given simultaneously ODP was restored. PDE4 and PDE5 are specific to cAMP and cGMP respectively, while PDE1 acts on both of these nucleotides. Our findings suggest that the combined activation of the cAMP and cGMP cascades may be a good approach to improve neuronal plasticity in FASD models.
Collapse
Affiliation(s)
- Crystal L Lantz
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | | | | |
Collapse
|
11
|
Abstract
The ingestion of alcohol during pregnancy can result in a group of neurobehavioral abnormalities collectively known as fetal alcohol spectrum disorders (FASD). During the past decade, studies using animal models indicated that early alcohol exposure can dramatically affect neuronal plasticity, an essential property of the central nervous system responsible for the normal wiring of the brain and involved in processes such as learning and memory. The abnormalities in neuronal plasticity caused by alcohol can explain many of the neurobehavioral deficits observed in FASD. Conversely, improving neuronal plasticity may have important therapeutic benefits. In this review, the author discuss the mechanisms that lead to these abnormalities and comment on recent pharmacological approaches that have been showing promising results in improving neuronal plasticity in FASD.
Collapse
Affiliation(s)
- Alexandre E Medina
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0709, USA.
| |
Collapse
|
12
|
Pohl-Guimaraes F, Krahe TE, Medina AE. Early valproic acid exposure alters functional organization in the primary visual cortex. Exp Neurol 2011; 228:138-48. [PMID: 21215743 DOI: 10.1016/j.expneurol.2010.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 12/01/2010] [Accepted: 12/28/2010] [Indexed: 12/16/2022]
Abstract
Epilepsy is one of the most common neurologic disorders and affects 0.5 to 1% of pregnant women. The use of antiepileptic drugs, which is usually continued throughout pregnancy, can cause in offspring mild to severe sensory deficits. Neuronal selectivity to stimulus orientation is a basic functional property of the visual cortex that is crucial for perception of shapes and borders. Here we investigate the effects of early exposure to valproic acid (Val) and levetiracetam (Lev), commonly used antiepileptic drugs, on the development of cortical neuron orientation selectivity and organization of cortical orientation columns. Ferrets pups were exposed to Val (200mg/kg), Lev (100mg/kg) or saline every other day between postnatal day (P) 10 and P30, a period roughly equivalent to the third trimester of human gestation. Optical imaging of intrinsic signals or single-unit recordings were examined at P42-P84, when orientation selectivity in the ferret cortex has reached a mature state. Optical imaging of intrinsic signals revealed decreased contrast of orientation maps in Val- but not Lev- or saline-treated animals. Moreover, single-unit recordings revealed that early Val treatment also reduced orientation selectivity at the cellular level. These findings indicate that Val exposure during a brief period of development disrupts cortical processing of sensory information at a later age and suggest a neurobiological substrate for some types of sensory deficits in fetal anticonvulsant syndrome.
Collapse
Affiliation(s)
- Fernanda Pohl-Guimaraes
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0709, USA
| | | | | |
Collapse
|
13
|
Overexpression of serum response factor restores ocular dominance plasticity in a model of fetal alcohol spectrum disorders. J Neurosci 2010; 30:2513-20. [PMID: 20164336 DOI: 10.1523/jneurosci.5840-09.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neuronal plasticity deficits underlie many of the neurobehavioral problems seen in fetal alcohol spectrum disorders (FASD). Recently, we showed that third trimester alcohol exposure leads to a persistent disruption in ocular dominance (OD) plasticity. For instance, a few days of monocular deprivation results in a robust reduction of cortical regions responsive to the deprived eye in normal animals, but not in ferrets exposed early to alcohol. This plasticity deficit can be reversed if alcohol-exposed animals are treated with a phosphodiesterase type 1 (PDE1) inhibitor during the period of monocular deprivation. PDE1 inhibition can increase cAMP and cGMP levels, activating transcription factors such as the cAMP response element binding protein (CREB) and the serum response factor (SRF). SRF is important for many plasticity processes such as LTP, LTD, spine motility, and axonal pathfinding. Here we attempt to rescue OD plasticity in alcohol-treated ferrets using a Sindbis viral vector to express a constitutively active form of SRF during the period of monocular deprivation. Using optical imaging of intrinsic signals and single-unit recordings, we observed that overexpression of a constitutively active form of SRF, but neither its dominant-negative nor GFP, restored OD plasticity in alcohol-treated animals. Surprisingly, this restoration was observed throughout the extent of the primary visual cortex and most cells infected by the virus were positive for GFAP rather than NeuN. This finding suggests that overexpression of SRF in astrocytes may reduce the deficits in neuronal plasticity seen in models of FASD.
Collapse
|
14
|
Filgueiras CC, Krahe TE, Medina AE. Phosphodiesterase type 1 inhibition improves learning in rats exposed to alcohol during the third trimester equivalent of human gestation. Neurosci Lett 2010; 473:202-7. [PMID: 20219634 DOI: 10.1016/j.neulet.2010.02.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/17/2010] [Accepted: 02/18/2010] [Indexed: 02/07/2023]
Abstract
Deficits in learning and memory have been extensively observed in animal models of fetal alcohol spectrum disorders (FASD). Here we use the Morris maze to test whether vinpocetine, a phosphodiesterase type 1 inhibitor, restores learning performance in rats exposed to alcohol during the third trimester equivalent of human gestation. Long Evans rats received ethanol (5g/kg i.p.) or saline on alternate days from postnatal day (P) 4 to P10. Two weeks later (P25), the latency to find a hidden platform was evaluated (2 trials per day spaced at 40-min inter-trial intervals) during 4 consecutive days. Vinpocetine treatment started on the first day of behavioral testing: animals received vinpocetine (20mg/kg i.p.) or vehicle solution every other day until the end of behavioral procedures. Early alcohol exposure significantly affected the performance to find the hidden platform. The average latency of ethanol-exposed animals was significantly higher than that observed for the control group. Treatment of alcohol-exposed animals with vinpocetine restored their performance to control levels. Our results show that inhibition of PDE1 improves learning and memory deficits in rats early exposed to alcohol and provide evidence for the potential therapeutic use of vinpocetine in FASD.
Collapse
Affiliation(s)
- Claudio C Filgueiras
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709, United States
| | | | | |
Collapse
|
15
|
Abstract
Ocular dominance plasticity (ODP) following monocular deprivation (MD) is a model of activity-dependent neural plasticity that is restricted to an early critical period regulated by maturation of inhibition. Unique developmental plasticity mechanisms may improve outcomes following early brain injury. Our objective was to determine the effects of neonatal cerebral hypoxia-ischemia (HI) on ODP. The rationale extends from observations that neonatal HI results in death of subplate neurons, a transient population known to influence development of inhibition. In rodents subjected to neonatal HI and controls, maps of visual response were derived from optical imaging during the critical period for ODP and changes in the balance of eye-specific response following MD were measured. In controls, MD results in a shift of the ocular dominance index (ODI) from a baseline of 0.15 to -0.10 (p < 0.001). Neonatal HI with moderate cortical injury impairs this shift, ODI = 0.14 (p < 0.01). Plasticity was intact in animals with mild injury and in those exposed to hypoxia alone. Neonatal HI resulted in decreased parvalbumin expression in hemispheres receiving HI compared with hypoxia alone: 23.4 versus 35.0 cells/high-power field (p = 0.01), with no change in other markers of inhibitory or excitatory neurons. Despite abnormal inhibitory neuron phenotype, spontaneous activity of single units and development of orientation selective responses were intact following neonatal HI, while overall visual responses were reduced. Our data suggest that specific plasticity mechanisms are impaired following early brain injury and that the impairment is associated with altered inhibitory neuronal development and cortical activation.
Collapse
|
16
|
Krahe TE, Paul AP, Medina AE. Phosphodiesterase type 4 inhibition does not restore ocular dominance plasticity in a ferret model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2009; 34:493-8. [PMID: 20028352 DOI: 10.1111/j.1530-0277.2009.01114.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND There is growing evidence that deficits in neuronal plasticity account for some of the neurological problems observed in fetal alcohol spectrum disorders (FASD). Recently, we showed that early alcohol exposure results in a permanent impairment in visual cortex ocular dominance (OD) plasticity in a ferret model of FASD. This disruption can be reversed, however, by treating animals with a Phosphodiesterase (PDE) type 1 inhibitor long after the period of alcohol exposure. AIM Because the mammalian brain presents different types of PDE isoforms we tested here whether inhibition of PDE type 4 also ameliorates the effects of alcohol on OD plasticity. MATERIAL AND METHODS Ferrets received 3.5 g/Kg alcohol i.p. (25% in saline) or saline as control every other day between postnatal day (P) 10 to P30, which is roughly equivalent to the third trimester equivalent of human gestation. Following a prolonged alcohol-free period (10 to 15 days), ferrets had the lid of the right eye sutured closed for 4 days and were examined for ocular dominance changes at the end of the period of deprivation. RESULTS Using in vivo electrophysiology we show that inhibition of PDE4 by rolipram does not restore OD plasticity in alcohol-treated ferrets. CONCLUSION This result suggests that contrary to PDE1, PDE4 inhibition does not play a role in the restoration of OD plasticity in the ferret model of FASD.
Collapse
Affiliation(s)
- Thomas E Krahe
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298-0709, USA
| | | | | |
Collapse
|
17
|
Medina AE, Krahe TE. Neocortical plasticity deficits in fetal alcohol spectrum disorders: lessons from barrel and visual cortex. J Neurosci Res 2008; 86:256-63. [PMID: 17671993 DOI: 10.1002/jnr.21447] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is characterized by a constellation of behavioral and physiological abnormalities, including learning and sensory deficits. There is growing evidence that abnormalities of neuronal plasticity underlie these deficits. However, the cellular and molecular mechanisms by which prenatal alcohol exposure disrupts neuronal plasticity remain elusive. Recently, studies with the barrel and the visual cortex as models to study the effects of early alcohol exposure on neuronal plasticity shed light on this subject. In this Mini-Review, we discuss the effects of ethanol exposure during development on neuronal plasticity and suggest environmental and pharmacological approaches to ameliorate these problems.
Collapse
Affiliation(s)
- Alexandre E Medina
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298-0709, USA.
| | | |
Collapse
|
18
|
Crews F, He J, Hodge C. Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav 2007; 86:189-99. [PMID: 17222895 PMCID: PMC11646682 DOI: 10.1016/j.pbb.2006.12.001] [Citation(s) in RCA: 690] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 11/20/2006] [Accepted: 12/04/2006] [Indexed: 01/04/2023]
Abstract
Cortical growth and remodeling continues from birth through youth and adolescence to stable adult levels changing slowly into senescence. There are critical periods of cortical development when specific experiences drive major synaptic rearrangements and learning that only occur during the critical period. For example, visual cortex is characterized by a critical period of plasticity involved in establishing visual acuity. Adolescence is defined by characteristic behaviors that include high levels of risk taking, exploration, novelty and sensation seeking, social interaction and play behaviors. In addition, adolescence is the final period of development of the adult during which talents, reasoning and complex adult behaviors mature. This maturation of behaviors corresponds with periods of marked changes in neurogenesis, cortical synaptic remodeling, neurotransmitter receptors and transporters, as well as major changes in hormones. Frontal cortical development is later in adolescence and likely contributes to refinement of reasoning, goal and priority setting, impulse control and evaluating long and short term rewards. Adolescent humans have high levels of binge drinking and experimentation with other drugs. This review presents findings supporting adolescence as a critical period of cortical development important for establishing life long adult characteristics that are disrupted by alcohol and drug use.
Collapse
Affiliation(s)
- Fulton Crews
- Bowles Center for Alcohol Studies, School of Medecine, University of North Carolina at Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
19
|
Medina AE, Krahe TE, Ramoa AS. Restoration of neuronal plasticity by a phosphodiesterase type 1 inhibitor in a model of fetal alcohol exposure. J Neurosci 2006; 26:1057-60. [PMID: 16421325 PMCID: PMC6675358 DOI: 10.1523/jneurosci.4177-05.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although some studies showed the efficacy of phosphodiesterase (PDE) inhibitors as neuronal plasticity enhancers, little is known about the effectiveness of these drugs to improve plasticity in cases of mental retardation. Fetal alcohol syndrome (FAS) is the leading cause of mental retardation in the western world. Using a combination of electrophysiological and optical imaging techniques, we show here that vinpocetine, a PDE type I inhibitor, restores ocular dominance plasticity in the ferret model of fetal alcohol exposure. Our finding should contribute to a better understanding and treatment of cognitive deficits associated with mental disorders, such as FAS.
Collapse
Affiliation(s)
- Alexandre E Medina
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | |
Collapse
|