1
|
Guo CJ, Cao XL, Zhang YF, Yue KY, Han J, Yan H, Han H, Zheng MH. Exosome-mediated inhibition of microRNA-449a promotes the amplification of mouse retinal progenitor cells and enhances their transplantation in retinal degeneration mouse models. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:763-778. [PMID: 36937621 PMCID: PMC10020531 DOI: 10.1016/j.omtn.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Inherited and age-related retinal degenerations are the commonest causes of blindness without effective treatments. Retinal progenitor cells (RPCs), which have the multipotency to differentiate into various retinal cell types, are regarded as a promising source of cell transplantation therapy for retinal degenerative diseases. However, the self-limited expansion of RPCs causes difficulty in cell source supply and restrict its clinical treatment. In this work, we found that inhibition of microRNA-449a (miR-449a) in RPCs can promote proliferation and inhibit apoptosis of RPCs, partially through upregulating Notch signaling. Further optimization of transduction miR-449a inhibitor into RPCs by endothelial cell-derived exosomes can promote the survival of RPCs transplanted in vivo and reduce cell apoptosis in retinal degeneration mouse models. In summary, these studies have shown that exosome-miR-449a inhibitor can effectively promote the expansion of RPCs in vitro and enhance transplanted RPCs survival in vivo, which might provide a novel intervention strategy for retinal degenerations in the future.
Collapse
Affiliation(s)
- Chen Jun Guo
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi, China
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Xiu Li Cao
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Yu Fei Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Kang Yi Yue
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi, China
| | - Hong Yan
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Hua Han
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
- Corresponding author: Hua Han, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #169, Xi’an 710032, China.
| | - Min Hua Zheng
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
- Corresponding author: Min-Hua Zheng, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, China.
| |
Collapse
|
2
|
Layer PG, Araki M, Vogel-Höpker A. New concepts for reconstruction of retinal and pigment epithelial tissues. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.10.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Bhatia B, Singhal S, Jayaram H, Khaw PT, Limb GA. Adult retinal stem cells revisited. Open Ophthalmol J 2010; 4:30-8. [PMID: 20871757 PMCID: PMC2945004 DOI: 10.2174/1874364101004010030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/22/2010] [Accepted: 04/12/2010] [Indexed: 01/12/2023] Open
Abstract
Recent advances in retinal stem cell research have raised the possibility that these cells have the potential to be used to repair or regenerate diseased retina. Various cell sources for replacement of retinal neurons have been identified, including embryonic stem cells, the adult ciliary epithelium, adult Müller stem cells and induced pluripotent stem cells (iPS). However, the true stem cell nature of the ciliary epithelium and its possible application in cell therapies has now been questioned, leaving other cell sources to be carefully examined as potential candidates for such therapies. The need for identification of the ontogenetic state of grafted stem cells in order to achieve their successful integration into the murine retina has been recognized. However, it is not known whether the same requirements may apply to achieve transplant cell integration into the adult human eye. In addition, the existence of natural barriers for stem cell transplantation, including microglial accumulation and abnormal extracellular matrix deposition have been demonstrated, suggesting that several obstacles need to be overcome before such therapies may be implemented. This review addresses recent scientific developments in the field and discusses various strategies that may be potentially used to design cell based therapies to treat human retinal disease.
Collapse
Affiliation(s)
- Bhairavi Bhatia
- Division of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology and Moorfields Eye Hospital, London, UK
| | | | | | | | | |
Collapse
|
4
|
Englund-Johansson U, Mohlin C, Liljekvist-Soltic I, Ekström P, Johansson K. Human neural progenitor cells promote photoreceptor survival in retinal explants. Exp Eye Res 2010; 90:292-9. [PMID: 19931247 DOI: 10.1016/j.exer.2009.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 11/08/2009] [Accepted: 11/10/2009] [Indexed: 12/20/2022]
|
5
|
Rieke M, Gottwald E, Weibezahn KF, Layer PG. Tissue reconstruction in 3D-spheroids from rodent retina in a motion-free, bioreactor-based microstructure. LAB ON A CHIP 2008; 8:2206-2213. [PMID: 19023488 DOI: 10.1039/b806988c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
While conventional rotation culture-based retinal spheroids are most useful to study basic processes of retinogenesis and tissue regeneration, they are less appropriate for an easy and inexpensive mass production of histotypic 3-dimensional tissue spheroids, which will be of utmost importance for future bioengineering, e.g. for replacement of animal experimentation. Here we compared conventionally reaggregated spheroids derived from dissociated retinal cells from neonatal gerbils (Meriones unguiculatus) with spheroids cultured on a novel microscaffold cell chip (called cf-chip) in a motion-free bioreactor. Reaggregation and developmental processes leading to tissue formation, e.g. proliferation, apoptosis and differentiation were observed during the first 10 days in vitro (div). Remarkably, in each cf-chip micro-chamber, only one spheroid developed. In both culture systems, sphere sizes and proliferation rates were almost identical. However, apoptosis was only comparably high up to 5 div, but then became negligible in the cf-chip, while it up-rose again in the conventional culture. In both systems, immunohistochemical characterisation revealed the presence of Müller glia cells, of ganglion, amacrine, bipolar and horizontal cells at a highly comparable arrangement. In both systems, photoreceptors were detected only in spheroids from P3 retinae. Benefits of the chip-based 3D cell culture were a reliable sphere production at enhanced viability, the feasibility of single sphere observation during cultivation time, a high reproducibility and easy control of culture conditions. Further development of this approach should allow high-throughput systems not only for retinal but also other types of histotypic spheroids, to become suitable for environmental monitoring and biomedical diagnostics.
Collapse
Affiliation(s)
- Matthias Rieke
- Institute of Zoology, Darmstadt University of Technology, Schnittspahnstrasse 13, D-64287, Darmstadt, Germany
| | | | | | | |
Collapse
|
6
|
Liljekvist-Soltic I, Olofsson J, Johansson K. Progenitor cell-derived factors enhance photoreceptor survival in rat retinal explants. Brain Res 2008; 1227:226-33. [PMID: 18621034 DOI: 10.1016/j.brainres.2008.06.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
Abstract
Explantation of postnatal rat retinas is associated with degenerative events that show morphological similarities to human retinal degenerative disorders. The most evident morphological features are photoreceptor apoptosis involving caspase-3 and Müller cell activation. The purpose of the present study was to determine the content of protective factors in rat retinal progenitor cells and analyze the influence of the identified factors on the survival of photoreceptor cells and retinal gliosis. Tissue inhibitors of matrix metalloproteinase-1 (TIMP-1) and vascular endothelial growth factor (VEGF) were identified as putative beneficial factors, and their combined effect was examined in rat retinal explant cultures. Photoreceptor apoptosis was estimated by cell counts of cleaved caspase-3 and caspase-12 immunolabeled as well as TUNEL labeled cells. TIMP-1 and VEGF in combination significantly suppressed photoreceptor apoptosis involving caspase-3 activation. Cell counts of caspase-12 and TUNEL labeled photoreceptors showed no significant difference between the experiment and control retinas. TIMP-1 and VEGF appeared to have no effect on Müller cell activation as measured by GFAP and Ki-67 immunohistochemistry. Our data suggest that TIMP-1 and VEGF in combination promote the survival of photoreceptor cells in rat retinal explants, possibly by affecting a caspase-3 signaling pathway.
Collapse
|
7
|
Bytyqi AH, Bachmann G, Rieke M, Paraoanu LE, Layer PG. Cell-by-cell reconstruction in reaggregates from neonatal gerbil retina begins from the inner retina and is promoted by retinal pigmented epithelium. Eur J Neurosci 2007; 26:1560-74. [PMID: 17880391 DOI: 10.1111/j.1460-9568.2007.05767.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For future retinal tissue engineering, it is essential to understand formation of retinal tissue in a 'cell-by-cell' manner, as can be best studied in retinal reaggregates. In avians, complete laminar spheres can be produced, with ganglion cells internally and photoreceptors at the surface; a similar degree of retinal reconstruction has not been achieved for mammals. Here, we have studied self-organizing potencies of retinal cells from neonatal gerbil retinae to form histotypic spheroids up to 15 days in culture (R-spheres). Shortly after reaggregation, a first sign of tissue organization was detected by use of an amacrine cell (AC)-specific calretinin (CR) antibody. These cells sorted out into small clusters and sent unipolar processes towards the centre of each cluster. Thereby, inner cell-free spaces developed into inner plexiform layer (IPL)-like areas with extended parallel CR(+) fibres. Occasionally, IPL areas merged to combine an 'inner half retina', whereby ganglion cells (GCs) occupied the outer sphere surface. This tendency was much improved in the presence of supernatants from retinal pigmented cells (RPE-spheres), e.g. cell organization and proliferation was much increased, and cell death shortened. As shown by several markers, a perfect outer ring was formed by GCs and displaced ACs, followed by a distinct IPL and 1-2 rows of ACs internally. The inner core of RPE spheres consisted of horizontal and possibly bipolar cells, while immunostaining and RT-PCR analysis proved that photoreceptors were absent. This shows that (1) mammalian retinal histogenesis in reaggregates can be brought to a hitherto unknown high level, (2) retinal tissue self-organizes from the level of the IPL, and (3) RPE factors promote formation of almost complete retinal spheres, however, their polarity was opposite to that found in respective avian spheroids.
Collapse
Affiliation(s)
- Afrim H Bytyqi
- Technische Universität Darmstadt, Entwicklungsbiologie & Neurogenetik, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany
| | | | | | | | | |
Collapse
|
8
|
Abstract
Progenitor and stem cell transplantation represent therapeutic strategies for retinal disorders that are accompanied by photoreceptor degeneration. The transplanted cells may either replace degenerating photoreceptors or secrete beneficial factors that halt the processes of photoreceptor degeneration. The present study analyzes whether rat retinal progenitor cells differentiated into photoreceptor phenotypic cells in neurospheres have a potential to interact with rat retinal explants. Immunocytochemistry for rhodopsin and synaptophysin indicated photoreceptor cell-like differentiation in neurospheres that were stimulated by basic fibroblast growth factor and epidermal growth factor. Differentiation into neural phenotypes including photoreceptor cells was effectively blocked by an addition of leukemia inhibitory factor. Grafting of neurospheres onto retinal explants demonstrated a consistent penetration of glial cell processes into the explanted tissue. On the other hand, the incorporation of donor cells into explants was very low. A general finding was that neurospheres grafting was associated with local decrease in Müller cell activation in the explants. Further characterization of these effect(s) could provide further insight into progenitor cell-based therapies of retinal degenerative disorders.
Collapse
|
9
|
Aleksandrova MA, Podgornyi OV, Poltavtseva RA, Panova IG, Sukhikh GT. Structure and cell composition of spheres cultured from human fetal retina. Bull Exp Biol Med 2007; 142:152-9. [PMID: 17369927 DOI: 10.1007/s10517-006-0315-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The structure and cell composition of spheres obtained by culturing human fetal retinal cells after 15, 18, 22-23, and 24 weeks of gestation were studied. The cells were cultured as neurospheres: in serum-free medium with growth factors, in which they formed floating spheres. Immunocytochemical analysis showed that cell proliferation in the spheres decreased with increasing fetal age. Stem/progenitor cells, neuroblasts, and photoreceptors were detected in the spheres. Glial cells were detected only in spheres originating from 22- and 24-week fetuses. All spheres, irrespective of age and duration of culturing, consisted of numerous cell rosettes, each histotypically similar to the neuroblastic layer of the developing retina.
Collapse
Affiliation(s)
- M A Aleksandrova
- N. K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow.
| | | | | | | | | |
Collapse
|
10
|
Harvey AR, Hu Y, Leaver SG, Mellough CB, Park K, Verhaagen J, Plant GW, Cui Q. Gene therapy and transplantation in CNS repair: The visual system. Prog Retin Eye Res 2006; 25:449-89. [PMID: 16963308 DOI: 10.1016/j.preteyeres.2006.07.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Normal visual function in humans is compromised by a range of inherited and acquired degenerative conditions, many of which affect photoreceptors and/or retinal pigment epithelium. As a consequence the majority of experimental gene- and cell-based therapies are aimed at rescuing or replacing these cells. We provide a brief overview of these studies, but the major focus of this review is on the inner retina, in particular how gene therapy and transplantation can improve the viability and regenerative capacity of retinal ganglion cells (RGCs). Such studies are relevant to the development of new treatments for ocular conditions that cause RGC loss or dysfunction, for example glaucoma, diabetes, ischaemia, and various inflammatory and neurodegenerative diseases. However, RGCs and associated central visual pathways also serve as an excellent experimental model of the adult central nervous system (CNS) in which it is possible to study the molecular and cellular mechanisms associated with neuroprotection and axonal regeneration after neurotrauma. In this review we present the current state of knowledge pertaining to RGC responses to injury, neurotrophic and gene therapy strategies aimed at promoting RGC survival, and how best to promote the regeneration of RGC axons after optic nerve or optic tract injury. We also describe transplantation methods being used in attempts to replace lost RGCs or encourage the regrowth of RGC axons back into visual centres in the brain via peripheral nerve bridges. Cooperative approaches including novel combinations of transplantation, gene therapy and pharmacotherapy are discussed. Finally, we consider a number of caveats and future directions, such as problems associated with compensatory sprouting and the reformation of visuotopic maps, the need to develop efficient, regulatable viral vectors, and the need to develop different but sequential strategies that target the cell body and/or the growth cone at appropriate times during the repair process.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|