1
|
Yong P, Zhang Z, Du S. Ectopic expression of Myomaker and Myomixer in slow muscle cells induces slow muscle fusion and myofiber death. J Genet Genomics 2024; 51:1187-1203. [PMID: 39209151 PMCID: PMC11570343 DOI: 10.1016/j.jgg.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Zebrafish embryos possess two major types of myofibers, the slow and fast fibers, with distinct patterns of cell fusion. The fast muscle cells can fuse, while the slow muscle cells cannot. Here, we show that myomaker is expressed in both slow and fast muscle precursors, whereas myomixer is exclusive to fast muscle cells. The loss of Prdm1a, a regulator of slow muscle differentiation, results in strong myomaker and myomixer expression and slow muscle cell fusion. This abnormal fusion is further confirmed by the direct ectopic expression of myomaker or myomixer in slow muscle cells of transgenic models. Using the transgenic models, we show that the heterologous fusion between slow and fast muscle cells can alter slow muscle cell migration and gene expression. Furthermore, the overexpression of myomaker and myomixer also disrupts membrane integrity, resulting in muscle cell death. Collectively, this study identifies that the fiber-type-specific expression of fusogenic proteins is critical for preventing inappropriate fusion between slow and fast fibers in fish embryos, highlighting the need for precise regulation of fusogenic gene expression to maintain muscle fiber integrity and specificity.
Collapse
Affiliation(s)
- Pengzheng Yong
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States of America
| | - Zhanxiong Zhang
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States of America
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States of America.
| |
Collapse
|
2
|
Perez ÉS, Duran BOS, Zanella BTT, Dal-Pai-Silva M. Review: Understanding fish muscle biology in the indeterminate growth species pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111502. [PMID: 37572733 DOI: 10.1016/j.cbpa.2023.111502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The muscle phenotype of fish is regulated by numerous factors that, although widely explored, still need to be fully understood. In this context, several studies aimed to unravel how internal and external stimuli affect the muscle growth of these vertebrates. The pacu (Piaractus mesopotamicus) is a species of indeterminate muscular growth that quickly reaches high body weight. For this reason, it adds great importance to the productive sector, along with other round fish. In this context, we aimed to compile studies on fish biology and skeletal muscle growth, focusing on studies by our research group that used pacu as an experimental model along with other species. Based on these studies, new muscle phenotype regulators were identified and explored in vivo, in vitro, and in silico studies, which strongly contribute to advances in understanding muscle growth mechanisms with future applications in the productive sector.
Collapse
Affiliation(s)
- Érika Stefani Perez
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
3
|
Lencer E, Rains A, Binne E, Prekeris R, Artinger KB. Mutations in cdon and boc affect trunk neural crest cell migration and slow-twitch muscle development in zebrafish. Development 2023; 150:dev201304. [PMID: 37390228 PMCID: PMC10357035 DOI: 10.1242/dev.201304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
The transmembrane proteins cdon and boc are implicated in regulating hedgehog signaling during vertebrate development. Recent work showing roles for these genes in axon guidance and neural crest cell migration suggest that cdon and boc may play additional functions in regulating directed cell movements. We use newly generated and existing mutants to investigate a role for cdon and boc in zebrafish neural crest cell migration. We find that single mutant embryos exhibit normal neural crest phenotypes, but that neural crest migration is strikingly disrupted in double cdon;boc mutant embryos. We further show that this migration phenotype is associated with defects in the differentiation of slow-twitch muscle cells, and the loss of a Col1a1a-containing extracellular matrix, suggesting that neural crest defects may be a secondary consequence to defects in mesoderm development. Combined, our data add to a growing literature showing that cdon and boc act synergistically to promote hedgehog signaling during vertebrate development, and suggest that the zebrafish can be used to study the function of hedgehog receptor paralogs.
Collapse
Affiliation(s)
- Ezra Lencer
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Addison Rains
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Erin Binne
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Kristin B. Artinger
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Mendieta-Serrano MA, Dhar S, Ng BH, Narayanan R, Lee JJY, Ong HT, Toh PJY, Röllin A, Roy S, Saunders TE. Slow muscles guide fast myocyte fusion to ensure robust myotome formation despite the high spatiotemporal stochasticity of fusion events. Dev Cell 2022; 57:2095-2110.e5. [PMID: 36027918 DOI: 10.1016/j.devcel.2022.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
Skeletal myogenesis is dynamic, and it involves cell-shape changes together with cell fusion and rearrangements. However, the final muscle arrangement is highly organized with striated fibers. By combining live imaging with quantitative analyses, we dissected fast-twitch myocyte fusion within the zebrafish myotome in toto. We found a strong mediolateral bias in fusion timing; however, at a cellular scale, there was heterogeneity in cell shape and the relationship between initial position of fast myocytes and resulting fusion partners. We show that the expression of the fusogen myomaker is permissive, but not instructive, in determining the spatiotemporal fusion pattern. Rather, we observed a close coordination between slow muscle rearrangements and fast myocyte fusion. In mutants that lack slow fibers, the spatiotemporal fusion pattern is substantially noisier. We propose a model in which slow muscles guide fast myocytes by funneling them close together, enhancing fusion probability. Thus, despite fusion being highly stochastic, a robust myotome structure emerges at the tissue scale.
Collapse
Affiliation(s)
| | - Sunandan Dhar
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Boon Heng Ng
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Rachna Narayanan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Jorge J Y Lee
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Pearlyn Jia Ying Toh
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Adrian Röllin
- Department of Statistics and Data Science, National University of Singapore, Singapore 117546, Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Department of Paediatrics, National University of Singapore, Singapore 119228, Singapore.
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
5
|
Luo Z, Shi J, Pandey P, Ruan ZR, Sevdali M, Bu Y, Lu Y, Du S, Chen EH. The cellular architecture and molecular determinants of the zebrafish fusogenic synapse. Dev Cell 2022; 57:1582-1597.e6. [PMID: 35709765 PMCID: PMC10180866 DOI: 10.1016/j.devcel.2022.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/04/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
Myoblast fusion is an indispensable process in skeletal muscle development and regeneration. Studies in Drosophila led to the discovery of the asymmetric fusogenic synapse, in which one cell invades its fusion partner with actin-propelled membrane protrusions to promote fusion. However, the timing and sites of vertebrate myoblast fusion remain elusive. Here, we show that fusion between zebrafish fast muscle cells is mediated by an F-actin-enriched invasive structure. Two cell adhesion molecules, Jam2a and Jam3b, are associated with the actin structure, with Jam2a being the major organizer. The Arp2/3 actin nucleation-promoting factors, WAVE and WASP-but not the bipartite fusogenic proteins, Myomaker or Myomixer-promote the formation of the invasive structure. Moreover, the convergence of fusogen-containing microdomains and the invasive protrusions is a prerequisite for cell membrane fusion. Thus, our study provides unprecedented insights into the cellular architecture and molecular determinants of the asymmetric fusogenic synapse in an intact vertebrate animal.
Collapse
Affiliation(s)
- Zhou Luo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Shi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Pratima Pandey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhi-Rong Ruan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria Sevdali
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ye Bu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yue Lu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Chen Y, Li J, Zhou Q, Liu Z, Li Q. Hexavalent chromium amplifies the developmental toxicity of graphene oxide during zebrafish embryogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111487. [PMID: 33126181 DOI: 10.1016/j.ecoenv.2020.111487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Combined toxicity is a critical issue in risk assessment of contaminants. However, very little is known about the joint effects of graphene oxide (GO, a crucial 2-dimensional carbon material) and hexavalent chromium (Cr6+, a widespread heavy metal), particularly with respect to the critical period of embryogenesis. In this study, the combined toxicity of GO and Cr6+ was evaluated through embryo-larval toxicity test in Danio rerio (zebrafish). Results indicated that the co-exposure of Cr6+ (1 mg/L) and GO (0.01 mg/L) inhibited hatching and spontaneous movement of embryos, but no significant changes were found in the single Cr6+ or GO group. Compared with the single GO or Cr6+ exposure, their co-exposure (GO+Cr6+) significantly enhanced the teratogenicity in a concentration-dependent pattern, and the spinal curvature was observed as the main deformity. GO+Cr6+ changed the protein secondary structures of embryos result of the generation of ROS and oxidative stress. The degradations of vertical myosepta and cartilages were observed in co-exposure group, suggesting that GO+Cr6+ disrupted the development of musculoskeletal system. The genes col11a1a, col2a1a and postnb were down-regulated but the genes acta1b and mmp9 were up-regulated by GO+Cr6+. The interactions between Cr6+ and GO demonstrated that the morphology, structure, and surface properties of GO were modified by Cr6+. The enhanced defects and O-containing groups of GO could trap more β-sheets, induced oxidative stress, disturbed the development of skeletal muscles and cartilages in zebrafish. These data suggested that GO+Cr6+ enhanced their joint toxicity due to the variation of nanoparticle properties. This finding is important for assessing the ecological risk of graphene family nanomaterials in the natural environment.
Collapse
Affiliation(s)
- Yuming Chen
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Jitong Li
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases/Henan Neural Development Engineering Research Center for Children, Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zhijie Liu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiong Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
7
|
Mead AF, Kennedy GG, Palmer BM, Ebert AM, Warshaw DM. Mechanical Characteristics of Ultrafast Zebrafish Larval Swimming Muscles. Biophys J 2020; 119:806-820. [PMID: 32755560 PMCID: PMC7451861 DOI: 10.1016/j.bpj.2020.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 01/06/2023] Open
Abstract
Zebrafish (Danio rerio) swim within days of fertilization, powered by muscles of the axial myotomes. Forces generated by these muscles can be measured rapidly in whole, intact larval tails by adapting protocols developed for ex vivo muscle mechanics. But it is not known how well these measurements reflect the function of the underlying muscle fibers and sarcomeres. Here, we consider the anatomy of the 5-day-old, wild-type larval tail, and implement technical modifications to measuring muscle physiology in intact tails. Specifically, we quantify fundamental relationships between force, length, and shortening velocity, and capture the extreme contractile speeds required to swim with tail-beat frequencies of 80-100 Hz. Therefore, we analyze 1000 frames/s videos to track the movement of structures, visible in the transparent tail, which correlate with sarcomere length. We also characterize the passive viscoelastic properties of the preparation to isolate forces contributed by nonmuscle structures within the tail. Myotomal muscles generate more than 95% of their maximal isometric stress (76 ± 3 mN/mm2) over the range of muscle lengths used in vivo. They have rapid twitch kinetics (full width at half-maximal stress: 11 ± 1 ms) and a high twitch/tetanus ratio (0.91 ± 0.05), indicating adaptations for fast excitation-contraction coupling. Although contractile stress is relatively low, myotomal muscles develop high net power (134 ± 20 W/kg at 80 Hz) in cyclical work loop experiments designed to simulate the in vivo dynamics of muscle fibers during swimming. When shortening at a constant speed of 7 ± 1 muscle lengths/s, muscles develop 86 ± 2% of isometric stress, whereas peak instantaneous power during 100 Hz work loops occurs at 18 ± 2 muscle lengths/s. These approaches can improve the usefulness of zebrafish as a model system for muscle research by providing a rapid and sensitive functional readout for experimental interventions.
Collapse
Affiliation(s)
- Andrew F Mead
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont; Department of Biology, University of Vermont, Burlington, Vermont
| | - Guy G Kennedy
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont; Instrumentation and Model Facility, University of Vermont, Burlington, Vermont
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, Vermont
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont.
| |
Collapse
|
8
|
Hromowyk KJ, Talbot JC, Martin BL, Janssen PML, Amacher SL. Cell fusion is differentially regulated in zebrafish post-embryonic slow and fast muscle. Dev Biol 2020; 462:85-100. [PMID: 32165147 PMCID: PMC7225055 DOI: 10.1016/j.ydbio.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 02/08/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fusion occurs during development, growth, and regeneration. To investigate how muscle fusion compares among different muscle cell types and developmental stages, we studied muscle cell fusion over time in wild-type, myomaker (mymk), and jam2a mutant zebrafish. Using live imaging, we show that embryonic myoblast elongation and fusion correlate tightly with slow muscle cell migration. In wild-type embryos, only fast muscle fibers are multinucleate, consistent with previous work showing that the cell fusion regulator gene mymk is specifically expressed throughout the embryonic fast muscle domain. However, by 3 weeks post-fertilization, slow muscle fibers also become multinucleate. At this late-larval stage, mymk is not expressed in muscle fibers, but is expressed in small cells near muscle fibers. Although previous work showed that both mymk and jam2a are required for embryonic fast muscle cell fusion, we observe that muscle force and function is almost normal in mymk and jam2a mutant embryos, despite the lack of fast muscle multinucleation. We show that genetic requirements change post-embryonically, with jam2a becoming much less important by late-larval stages and mymk now required for muscle fusion and growth in both fast and slow muscle cell types. Correspondingly, adult mymk mutants perform poorly in sprint and endurance tests compared to wild-type and jam2a mutants. We show that adult mymk mutant muscle contains small mononucleate myofibers with average myonuclear domain size equivalent to that in wild type adults. The mymk mutant fibers have decreased Laminin expression and increased numbers of Pax7-positive cells, suggesting that impaired fiber growth and active regeneration contribute to the muscle phenotype. Our findings identify several aspects of muscle fusion that change with time in slow and fast fibers as zebrafish develop beyond embryonic stages.
Collapse
Affiliation(s)
- Kimberly J Hromowyk
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jared C Talbot
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA.
| | - Brit L Martin
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul M L Janssen
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharon L Amacher
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Arribat Y, Grepper D, Lagarrigue S, Richard J, Gachet M, Gut P, Amati F. Mitochondria in Embryogenesis: An Organellogenesis Perspective. Front Cell Dev Biol 2019; 7:282. [PMID: 31824944 PMCID: PMC6883342 DOI: 10.3389/fcell.2019.00282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022] Open
Abstract
Organogenesis is well characterized in vertebrates. However, the anatomical and functional development of intracellular compartments during this phase of development remains unknown. Taking an organellogenesis point of view, we characterize the spatiotemporal adaptations of the mitochondrial network during zebrafish embryogenesis. Using state of the art microscopy approaches, we find that mitochondrial network follows three distinct distribution patterns during embryonic development. Despite of this constant morphological change of the mitochondrial network, electron transport chain supercomplexes occur at early stages of embryonic development and conserve a stable organization throughout development. The remodeling of the mitochondrial network and the conservation of its structural components go hand-in-hand with somite maturation; for example, genetic disruption of myoblast fusion impairs mitochondrial network maturation. Reciprocally, mitochondria quality represents a key factor to determine embryonic progression. Alteration of mitochondrial polarization and electron transport chain halts embryonic development in a reversible manner suggesting developmental checkpoints that depend on mitochondrial integrity. Our findings establish the subtle dialogue and co-dependence between organogenesis and mitochondria in early vertebrate development. They also suggest the importance of adopting subcellular perspectives to understand organelle-organ communications during embryogenesis.
Collapse
Affiliation(s)
- Yoan Arribat
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dogan Grepper
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sylviane Lagarrigue
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Joy Richard
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Mélanie Gachet
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Philipp Gut
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Keenan SR, Currie PD. The Developmental Phases of Zebrafish Myogenesis. J Dev Biol 2019; 7:E12. [PMID: 31159511 PMCID: PMC6632013 DOI: 10.3390/jdb7020012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023] Open
Abstract
The development and growth of vertebrate axial muscle have been studied for decades at both the descriptive and molecular level. The zebrafish has provided an attractive model system for investigating both muscle patterning and growth due to its simple axial musculature with spatially separated fibre types, which contrasts to complex muscle groups often deployed in amniotes. In recent years, new findings have reshaped previous concepts that define how final teleost muscle form is established and maintained. Here, we summarise recent findings in zebrafish embryonic myogenesis with a focus on fibre type specification, followed by an examination of the molecular mechanisms that control muscle growth with emphasis on the role of the dermomyotome-like external cell layer. We also consider these data sets in a comparative context to gain insight into the evolution of axial myogenic patterning systems within the vertebrate lineage.
Collapse
Affiliation(s)
- Samuel R Keenan
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
11
|
Yin J, Lee R, Ono Y, Ingham PW, Saunders TE. Spatiotemporal Coordination of FGF and Shh Signaling Underlies the Specification of Myoblasts in the Zebrafish Embryo. Dev Cell 2018; 46:735-750.e4. [PMID: 30253169 DOI: 10.1016/j.devcel.2018.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/11/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
Somitic cells give rise to a variety of cell types in response to Hh, BMP, and FGF signaling. Cell position within the developing zebrafish somite is highly dynamic: how, when, and where these signals specify cell fate is largely unknown. Combining four-dimensional imaging with pathway perturbations, we characterize the spatiotemporal specification and localization of somitic cells. Muscle formation is guided by highly orchestrated waves of cell specification. We find that FGF directly and indirectly controls the differentiation of fast and slow-twitch muscle lineages, respectively. FGF signaling imposes tight temporal control on Shh induction of slow muscles by regulating the time at which fast-twitch progenitors displace slow-twitch progenitors from contacting the Shh-secreting notochord. Further, we find a reciprocal regulation of fast and slow muscle differentiation, morphogenesis, and migration. In conclusion, robust cell fate determination in the developing somite requires precise spatiotemporal coordination between distinct cell lineages and signaling pathways.
Collapse
Affiliation(s)
- Jianmin Yin
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Raymond Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore
| | - Yosuke Ono
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Living Systems Institute, University of Exeter, Exeter, UK
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore; Living Systems Institute, University of Exeter, Exeter, UK.
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore; Living Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
12
|
Myogenin promotes myocyte fusion to balance fibre number and size. Nat Commun 2018; 9:4232. [PMID: 30315160 PMCID: PMC6185967 DOI: 10.1038/s41467-018-06583-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/31/2018] [Indexed: 01/01/2023] Open
Abstract
Each skeletal muscle acquires its unique size before birth, when terminally differentiating myocytes fuse to form a defined number of multinucleated myofibres. Although mice in which the transcription factor Myogenin is mutated lack most myogenesis and die perinatally, a specific cell biological role for Myogenin has remained elusive. Here we report that loss of function of zebrafish myog prevents formation of almost all multinucleated muscle fibres. A second, Myogenin-independent, fusion pathway in the deep myotome requires Hedgehog signalling. Lack of Myogenin does not prevent terminal differentiation; the smaller myotome has a normal number of myocytes forming more mononuclear, thin, albeit functional, fast muscle fibres. Mechanistically, Myogenin binds to the myomaker promoter and is required for expression of myomaker and other genes essential for myocyte fusion. Adult myog mutants display reduced muscle mass, decreased fibre size and nucleation. Adult-derived myog mutant myocytes show persistent defective fusion ex vivo. Myogenin is therefore essential for muscle homeostasis, regulating myocyte fusion to determine both muscle fibre number and size. Loss of the transcription factor Myogenin in mice reduces skeletal myogenesis and leads to perinatal death but how Myogenin regulates muscle formation is unclear. Here, the authors show that zebrafish Myogenin enhances Myomaker expression, muscle cell fusion and myotome size, yet decreases fast muscle fibre number.
Collapse
|
13
|
Functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior presomitic mesoderm in zebrafish. Mech Dev 2018; 152:21-31. [PMID: 29879477 DOI: 10.1016/j.mod.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/02/2018] [Indexed: 01/06/2023]
Abstract
Somites sequentially form with a regular interval by the segmentation from the anterior region of the presomitic mesoderm (PSM). The expression of several genes involved in the somite segmentation is switched off at the transition from the anterior PSM to somites. Zebrafish Ripply1, which down-regulates a T-box transcription factor Tbx6, is required for the suppression of segmentation gene expression. However, the functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior PSM remain elusive. In this study, we generated ripply1 mutants and examined genetic interaction between ripply1/2 and tbx6. Zebrafish ripply1-/- embryos failed to form the somite boundaries as was observed in knockdown embryos. We found that somite segmentation defects in ripply1 mutants were suppressed by heterozygous mutation of tbx6 or partial translational inhibition of tbx6 by antisense morpholino. We further showed that somite boundaries that were recovered in tbx6+/-; ripply1-/- embryos were dependent on the function of ripply2, indicating that relative gene dosage between ripply1/2 and tbx6 plays a critical role in the somite formation. Interestingly, the expression of segmentation genes such mesp as was still not fully suppressed at the anterior PSM of tbx6+/-; ripply1-/- embryos although the somite formation and rostral-caudal polarity of somites were properly established. Furthermore, impaired myogenesis was observed in the segmented somites in tbx6+/-; ripply1-/- embryos. These results revealed that partial suppression of the segmentation gene expression by Ripply is sufficient to establish the rostral-caudal polarity of somites, and that stronger suppression of the segmentation gene expression by Ripply is required for proper myogenesis in zebrafish embryos.
Collapse
|
14
|
Dancevic CM, Gibert Y, Berger J, Smith AD, Liongue C, Stupka N, Ward AC, McCulloch DR. The ADAMTS5 Metzincin Regulates Zebrafish Somite Differentiation. Int J Mol Sci 2018. [PMID: 29518972 PMCID: PMC5877627 DOI: 10.3390/ijms19030766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The ADAMTS5 metzincin, a secreted zinc-dependent metalloproteinase, modulates the extracellular matrix (ECM) during limb morphogenesis and other developmental processes. Here, the role of ADAMTS5 was investigated by knockdown of zebrafish adamts5 during embryogenesis. This revealed impaired Sonic Hedgehog (Shh) signaling during somite patterning and early myogenesis. Notably, synergistic regulation of myod expression by ADAMTS5 and Shh during somite differentiation was observed. These roles were not dependent upon the catalytic activity of ADAMTS5. These data identify a non-enzymatic function for ADAMTS5 in regulating an important cell signaling pathway that impacts on muscle development, with implications for musculoskeletal diseases in which ADAMTS5 and Shh have been associated.
Collapse
Affiliation(s)
- Carolyn M Dancevic
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Yann Gibert
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Joachim Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Adam D Smith
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Clifford Liongue
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Nicole Stupka
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Alister C Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Daniel R McCulloch
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
15
|
|
16
|
Abstract
Skeletal muscle performs an essential function in human physiology with defects in genes encoding a variety of cellular components resulting in various types of inherited muscle disorders. Muscular dystrophies (MDs) are a severe and heterogeneous type of human muscle disease, manifested by progressive muscle wasting and degeneration. The disease pathogenesis and therapeutic options for MDs have been investigated for decades using rodent models, and considerable knowledge has been accumulated on the cause and pathogenetic mechanisms of this group of human disorders. However, due to some differences between disease severity and progression, what is learned in mammalian models does not always transfer to humans, prompting the desire for additional and alternative models. More recently, zebrafish have emerged as a novel and robust animal model for the study of human muscle disease. Zebrafish MD models possess a number of distinct advantages for modeling human muscle disorders, including the availability and ease of generating mutations in homologous disease-causing genes, the ability to image living muscle tissue in an intact animal, and the suitability of zebrafish larvae for large-scale chemical screens. In this chapter, we review the current understanding of molecular and cellular mechanisms involved in MDs, the process of myogenesis in zebrafish, and the structural and functional characteristics of zebrafish larval muscles. We further discuss the insights gained from the key zebrafish MD models that have been so far generated, and we summarize the attempts that have been made to screen for small molecules inhibitors of the dystrophic phenotypes using these models. Overall, these studies demonstrate that zebrafish is a useful in vivo system for modeling aspects of human skeletal muscle disorders. Studies using these models have contributed both to the understanding of the pathogenesis of muscle wasting disorders and demonstrated their utility as highly relevant models to implement therapeutic screening regimens.
Collapse
Affiliation(s)
- M Li
- Monash University, Clayton, VIC, Australia
| | - K J Hromowyk
- The Ohio State University, Columbus, OH, United States
| | - S L Amacher
- The Ohio State University, Columbus, OH, United States
| | - P D Currie
- Monash University, Clayton, VIC, Australia
| |
Collapse
|
17
|
Vo TA, Galloway TF, Bardal T, Halseth CK, Øie G, Kjørsvik E. Skeletal muscle growth dynamics and the influence of first-feeding diet in Atlantic cod larvae (Gadus morhua L.). Biol Open 2016; 5:1575-1584. [PMID: 27612513 PMCID: PMC5155525 DOI: 10.1242/bio.018556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamics between hypertrophy (increase in cell size) and hyperplasia (increase in cell numbers) of white and red muscle in relation to body size [standard length (SL)], and the influence of the first-feeding diets on muscle growth were investigated in Atlantic cod larvae (Gadus morhua). Cod larvae were fed copepod nauplii or rotifers of different nutritional qualities from 4 to 29 days post hatching (dph), Artemia nauplii from 20 to 40 dph and a formulated diet from 36 to 60 dph. The short period of feeding with cultivated copepod nauplii had a positive effect on both muscle hyperplasia and hypertrophy after the copepod/rotifer phase (19 dph), and a positive long term effect on muscle hypertrophy (60 dph). The different nutritional qualities of rotifers did not significantly affect muscle growth. We suggest here a model of the dynamics between hyperplasia and hypertrophy of red and white muscle fibre cells in relation to cod SL (4 to 30 mm), where the different red and white muscle growth phases clearly coincided with different metamorphosis stages in cod larvae. These shifts could be included as biomarkers for the different stages of development during metamorphosis. The main dietary muscle effect was that hypertrophic growth of red muscle fibres was stronger in cod larvae that were fed copepods than in larvae that were fed rotifers, both in relation to larval age and size. Red muscle fibres are directly involved in larval locomotory performance, but may also play an important role in the larval myogenesis. This can have a long term effect on growth potential and fish performance. Summary: Hyperplastic and hypertrophic growth dynamics of red and white muscle were strongly related to cod larval size and corresponded with the metamorphosis process. First-feeding diet quality can prolong effects on muscle growth potential in cod larvae.
Collapse
Affiliation(s)
- Tu A Vo
- Norwegian University of Science and Technology, Dept. of Biology, 7491 Trondheim, Norway
| | - Trina F Galloway
- SINTEF Fisheries and Aquaculture, P.O. box 4762 Sluppen, 7465 Trondheim, Norway
| | - Tora Bardal
- Norwegian University of Science and Technology, Dept. of Biology, 7491 Trondheim, Norway
| | - Christine K Halseth
- Norwegian University of Science and Technology, Dept. of Biology, 7491 Trondheim, Norway
| | - Gunvor Øie
- SINTEF Fisheries and Aquaculture, P.O. box 4762 Sluppen, 7465 Trondheim, Norway
| | - Elin Kjørsvik
- Norwegian University of Science and Technology, Dept. of Biology, 7491 Trondheim, Norway
| |
Collapse
|
18
|
Jenkins MH, Alrowaished SS, Goody MF, Crawford BD, Henry CA. Laminin and Matrix metalloproteinase 11 regulate Fibronectin levels in the zebrafish myotendinous junction. Skelet Muscle 2016; 6:18. [PMID: 27141287 PMCID: PMC4852425 DOI: 10.1186/s13395-016-0089-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/31/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Remodeling of the extracellular matrix (ECM) regulates cell adhesion as well as signaling between cells and their microenvironment. Despite the importance of tightly regulated ECM remodeling for normal muscle development and function, mechanisms underlying ECM remodeling in vivo remain elusive. One excellent paradigm in which to study ECM remodeling in vivo is morphogenesis of the myotendinous junction (MTJ) during zebrafish skeletal muscle development. During MTJ development, there are dramatic shifts in the primary components comprising the MTJ matrix. One such shift involves the replacement of Fibronectin (Fn)-rich matrix, which is essential for both somite and early muscle development, with laminin-rich matrix essential for normal function of the myotome. Here, we investigate the mechanism underlying this transition. RESULTS We show that laminin polymerization indirectly promotes Fn downregulation at the MTJ, via a matrix metalloproteinase 11 (Mmp11)-dependent mechanism. Laminin deposition and organization is required for localization of Mmp11 to the MTJ, where Mmp11 is both necessary and sufficient for Fn downregulation in vivo. Furthermore, reduction of residual Mmp11 in laminin mutants promotes a Fn-rich MTJ that partially rescues skeletal muscle architecture. CONCLUSIONS These results identify a mechanism for Fn downregulation at the MTJ, highlight crosstalk between laminin and Fn, and identify a new in vivo function for Mmp11. Taken together, our data demonstrate a novel signaling pathway mediating Fn downregulation. Our data revealing new regulatory mechanisms that guide ECM remodeling during morphogenesis in vivo may inform pathological conditions in which Fn is dysregulated.
Collapse
Affiliation(s)
- Molly H Jenkins
- School of Biology and Ecology, University of Maine, 217 Hitchner Hall, Orono, ME 04469 USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA.,Present Address: Minerva Biotechnologies, Waltham, MA 02451 USA
| | - Sarah S Alrowaished
- School of Biology and Ecology, University of Maine, 217 Hitchner Hall, Orono, ME 04469 USA
| | - Michelle F Goody
- School of Biology and Ecology, University of Maine, 217 Hitchner Hall, Orono, ME 04469 USA
| | - Bryan D Crawford
- Department of Biology, University of New Brunswick, Fredericton, NB Canada
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, 217 Hitchner Hall, Orono, ME 04469 USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA
| |
Collapse
|
19
|
Zhang YR, Gui LS, Li YK, Jiang BJ, Wang HC, Zhang YY, Zan LS. Molecular Characterization of Bovine SMO Gene and Effects of Its Genetic Variations on Body Size Traits in Qinchuan Cattle (Bos taurus). Int J Mol Sci 2015. [PMID: 26225956 PMCID: PMC4581179 DOI: 10.3390/ijms160816966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Smoothened (Smo)-mediated Hedgehog (Hh) signaling pathway governs the patterning, morphogenesis and growth of many different regions within animal body plans. This study evaluated the effects of genetic variations of the bovine SMO gene on economically important body size traits in Chinese Qinchuan cattle. Altogether, eight single nucleotide polymorphisms (SNPs: 1-8) were identified and genotyped via direct sequencing covering most of the coding region and 3'UTR of the bovine SMO gene. Both the p.698Ser.>Ser. synonymous mutation resulted from SNP1 and the p.700Ser.>Pro. non-synonymous mutation caused by SNP2 mapped to the intracellular C-terminal tail of bovine Smo protein; the other six SNPs were non-coding variants located in the 3'UTR. The linkage disequilibrium was analyzed, and five haplotypes were discovered in 520 Qinchuan cattle. Association analyses showed that SNP2, SNP3/5, SNP4 and SNP6/7 were significantly associated with some body size traits (p < 0.05) except SNP1/8 (p > 0.05). Meanwhile, cattle with wild-type combined haplotype Hap1/Hap1 had significantly (p < 0.05) greater body length than those with Hap2/Hap2. Our results indicate that variations in the SMO gene could affect body size traits of Qinchuan cattle, and the wild-type haplotype Hap1 together with the wild-type alleles of these detected SNPs in the SMO gene could be used to breed cattle with superior body size traits. Therefore, our results could be helpful for marker-assisted selection in beef cattle breeding programs.
Collapse
Affiliation(s)
- Ya-Ran Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lin-Sheng Gui
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yao-Kun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Bi-Jie Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Hong-Cheng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Ying-Ying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lin-Sen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
- National Beef Cattle Improvement Center of Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
20
|
Jackson HE, Ono Y, Wang X, Elworthy S, Cunliffe VT, Ingham PW. The role of Sox6 in zebrafish muscle fiber type specification. Skelet Muscle 2015; 5:2. [PMID: 25671076 PMCID: PMC4323260 DOI: 10.1186/s13395-014-0026-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022] Open
Abstract
Background The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. Methods The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Results Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. Conclusions The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation in the zebrafish, a role similar to that ascribed to its murine ortholog. Electronic supplementary material The online version of this article (doi:10.1186/s13395-014-0026-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harriet E Jackson
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore ; Bateson Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Yosuke Ono
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore
| | - Xingang Wang
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore
| | - Stone Elworthy
- Bateson Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Vincent T Cunliffe
- Bateson Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Philip W Ingham
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore ; Lee Kong Chian School of Medicine, Nanyang Technological University, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore ; Department of Medicine, Imperial College, South Kensington Campus, London, SW7 2AZ UK
| |
Collapse
|
21
|
Goody MF, Sher RB, Henry CA. Hanging on for the ride: adhesion to the extracellular matrix mediates cellular responses in skeletal muscle morphogenesis and disease. Dev Biol 2015; 401:75-91. [PMID: 25592225 DOI: 10.1016/j.ydbio.2015.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
Abstract
Skeletal muscle specification and morphogenesis during early development are critical for normal physiology. In addition to mediating locomotion, skeletal muscle is a secretory organ that contributes to metabolic homeostasis. Muscle is a highly adaptable tissue, as evidenced by the ability to increase muscle cell size and/or number in response to weight bearing exercise. Conversely, muscle wasting can occur during aging (sarcopenia), cancer (cancer cachexia), extended hospital stays (disuse atrophy), and in many genetic diseases collectively known as the muscular dystrophies and myopathies. It is therefore of great interest to understand the cellular and molecular mechanisms that mediate skeletal muscle development and adaptation. Muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction. This process requires carefully orchestrated interactions between cells and their extracellular matrix microenvironment. These interactions are dynamic, allowing muscle cells to sense biophysical, structural, organizational, and/or signaling changes within their microenvironment and respond appropriately. In many musculoskeletal diseases, these cell adhesion interactions are disrupted to such a degree that normal cellular adaptive responses are not sufficient to compensate for accumulating damage. Thus, one major focus of current research is to identify the cell adhesion mechanisms that drive muscle morphogenesis, with the hope that understanding how muscle cell adhesion promotes the intrinsic adaptability of muscle tissue during development may provide insight into potential therapeutic approaches for muscle diseases. Our objectives in this review are to highlight recent studies suggesting conserved roles for cell-extracellular matrix adhesion in vertebrate muscle morphogenesis and cellular adaptive responses in animal models of muscle diseases.
Collapse
Affiliation(s)
- Michelle F Goody
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States
| | - Roger B Sher
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States; Institute for Molecular Biophysics, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
22
|
Gurevich D, Siegel A, Currie PD. Skeletal myogenesis in the zebrafish and its implications for muscle disease modelling. Results Probl Cell Differ 2015; 56:49-76. [PMID: 25344666 DOI: 10.1007/978-3-662-44608-9_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current evidence indicates that post-embryonic muscle growth and regeneration in amniotes is mediated almost entirely by stem cells derived from muscle progenitor cells (MPCs), known as satellite cells. Exhaustion and impairment of satellite cell activity is involved in the severe muscle loss associated with degenerative muscle diseases such as Muscular Dystrophies and is the main cause of age-associated muscle wasting. Understanding the molecular and cellular basis of satellite cell function in muscle generation and regeneration (myogenesis) is critical to the broader goal of developing treatments that may ameliorate such conditions. Considerable knowledge exists regarding the embryonic stages of amniote myogenesis. Much less is known about how post-embryonic amniote myogenesis proceeds, how adult myogenesis relates to embryonic myogenesis on a cellular or genetic level. Of the studies focusing on post-embryonic amniote myogenesis, most are post-mortem and in vitro analyses, precluding the understanding of cellular behaviours and genetic mechanisms in an undisturbed in vivo setting. Zebrafish are optically clear throughout much of their post-embryonic development, facilitating their use in live imaging of cellular processes. Zebrafish also possess a compartment of MPCs, which appear similar to satellite cells and persist throughout the post-embryonic development of the fish, permitting their use in examining the contribution of these cells to muscle tissue growth and regeneration.
Collapse
Affiliation(s)
- David Gurevich
- Australian Regenerative Medicine Institute, Monash University, Level 1, Building 75, Wellington Road, Clayton, VIC, 3800, Australia
| | | | | |
Collapse
|
23
|
Applebaum M, Kalcheim C. Mechanisms of myogenic specification and patterning. Results Probl Cell Differ 2015; 56:77-98. [PMID: 25344667 DOI: 10.1007/978-3-662-44608-9_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesodermal somites are initially composed of columnar cells arranged as a pseudostratified epithelium that undergoes sequential and spatially restricted changes to generate the sclerotome and dermomyotome, intermediate structures that develop into vertebrae, striated muscles of the body and limbs, dermis, smooth muscle, and endothelial cells. Regional cues were elucidated that impart differential traits upon the originally multipotent progenitors. How do somite cells and their intermediate progenitors interpret these extrinsic cues and translate them into various levels and/or modalities of intracellular signaling that lead to differential gene expression profiles remains a significant challenge. So is the understanding of how differential fate specification relates to complex cellular migrations prefiguring the formation of body muscles and vertebrae. Research in the past years has largely transited from a descriptive phase in which the lineages of distinct somite-derived progenitors and their cellular movements were traced to a more mechanistic understanding of the local function of genes and regulatory networks underlying lineage segregation and tissue organization. In this chapter, we focus on some major advances addressing the segregation of lineages from the dermomyotome, while discussing both cellular as well as molecular mechanisms, where possible.
Collapse
Affiliation(s)
- Mordechai Applebaum
- Department of Medical Neurobiology, IMRIC and ELSC-Hebrew University-Hadassah Medical School, Jerusalem, 9101201, 12272, Israel,
| | | |
Collapse
|
24
|
Kim HH, Kim JG, Jeong J, Han SY, Kim KW. Akap12 is essential for the morphogenesis of muscles involved in zebrafish locomotion. Differentiation 2014; 88:106-16. [PMID: 25534553 DOI: 10.1016/j.diff.2014.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/20/2014] [Accepted: 11/28/2014] [Indexed: 12/22/2022]
Abstract
Swimming behavior in fish is driven by coordinated contractions of muscle fibers. In zebrafish, slow muscle cell migration is crucial for the formation of the muscle network; slow myoblasts, which arise from medial adaxial cells, migrate radially to the lateral surface of the trunk and tail during embryogenesis. This study found that the zebrafish A-kinase anchoring protein (akap)12 isoforms akap12α and akap12β are required for muscle morphogenesis and locomotor activity. Embryos deficient in akap12 exhibited reduced spontaneous coiling, touch response, and free swimming. Akap12-depleted slow but not fast muscle cells were misaligned, suggesting that the behavioral abnormalities resulted from specific defects in slow muscle patterning; indeed, slow muscle cells and muscle pioneers in these embryos showed abnormal migration in a cell-autonomous manner. Taken together, these results suggest that akap12 plays a critical role in the development of zebrafish locomotion by regulating the normal morphogenesis of muscles.
Collapse
Affiliation(s)
- Hyun-Ho Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jeong-gyun Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea
| | - Jinkyung Jeong
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Song-Yi Han
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea; Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
25
|
Rost F, Eugster C, Schröter C, Oates AC, Brusch L. Chevron formation of the zebrafish muscle segments. J Exp Biol 2014; 217:3870-82. [PMID: 25267843 PMCID: PMC4213178 DOI: 10.1242/jeb.102202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 09/04/2014] [Indexed: 01/16/2023]
Abstract
The muscle segments of fish have a folded shape, termed a chevron, which is thought to be optimal for the undulating body movements of swimming. However, the mechanism shaping the chevron during embryogenesis is not understood. Here, we used time-lapse microscopy of developing zebrafish embryos spanning the entire somitogenesis period to quantify the dynamics of chevron shape development. By comparing such time courses with the start of movements in wildtype zebrafish and analysing immobile mutants, we show that the previously implicated body movements do not play a role in chevron formation. Further, the monotonic increase of chevron angle along the anteroposterior axis revealed by our data constrains or rules out possible contributions by previously proposed mechanisms. In particular, we found that muscle pioneers are not required for chevron formation. We put forward a tension-and-resistance mechanism involving interactions between intra-segmental tension and segment boundaries. To evaluate this mechanism, we derived and analysed a mechanical model of a chain of contractile and resisting elements. The predictions of this model were verified by comparison with experimental data. Altogether, our results support the notion that a simple physical mechanism suffices to self-organize the observed spatiotemporal pattern in chevron formation.
Collapse
Affiliation(s)
- Fabian Rost
- Center for Information Services and High-Performance Computing, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christina Eugster
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Christian Schröter
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Andrew C Oates
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Lutz Brusch
- Center for Information Services and High-Performance Computing, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
26
|
TM4SF5 suppression disturbs integrin α5-related signalling and muscle development in zebrafish. Biochem J 2014; 462:89-101. [DOI: 10.1042/bj20140177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TM4SF5 suppression in zebrafish causes abnormal trunk morphology with aberrant translocation and organization of muscle cells, via altered fibronectin/integrin α5/FAK/vinculin/actin signalling. TM4SF5 controls muscle differentiation via alteration in integrin α5-related signalling.
Collapse
|
27
|
Rossi G, Messina G. Comparative myogenesis in teleosts and mammals. Cell Mol Life Sci 2014; 71:3081-99. [PMID: 24664432 PMCID: PMC4111864 DOI: 10.1007/s00018-014-1604-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 01/02/2023]
Abstract
Skeletal myogenesis has been and is currently under extensive study in both mammals and teleosts, with the latter providing a good model for skeletal myogenesis because of their flexible and conserved genome. Parallel investigations of muscle studies using both these models have strongly accelerated the advances in the field. However, when transferring the knowledge from one model to the other, it is important to take into account both their similarities and differences. The main difficulties in comparing mammals and teleosts arise from their different temporal development. Conserved aspects can be seen for muscle developmental origin and segmentation, and for the presence of multiple myogenic waves. Among the divergences, many fish have an indeterminate growth capacity throughout their entire life span, which is absent in mammals, thus implying different post-natal growth mechanisms. This review covers the current state of the art on myogenesis, with a focus on the most conserved and divergent aspects between mammals and teleosts.
Collapse
Affiliation(s)
- Giuliana Rossi
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | | |
Collapse
|
28
|
Raeker MÖ, Shavit JA, Dowling JJ, Michele DE, Russell MW. Membrane-myofibril cross-talk in myofibrillogenesis and in muscular dystrophy pathogenesis: lessons from the zebrafish. Front Physiol 2014; 5:14. [PMID: 24478725 PMCID: PMC3904128 DOI: 10.3389/fphys.2014.00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/07/2014] [Indexed: 11/16/2022] Open
Abstract
Striated muscle has a highly ordered structure in which specialized domains of the cell membrane involved in force transmission (costameres) and excitation-contraction coupling (T tubules) as well as the internal membranes of the sarcoplasmic reticulum are organized over specific regions of the sarcomere. Optimal muscle function is dependent on this high level of organization but how it established and maintained is not well understood. Due to its ex utero development and transparency, the zebrafish embryo is an excellent vertebrate model for the study of dynamic relationships both within and between cells during development. Transgenic models have allowed the delineation of cellular migration and complex morphogenic rearrangements during the differentiation of skeletal myocytes and the assembly and organization of new myofibrils. Molecular targeting of genes and transcripts has allowed the identification of key requirements for myofibril assembly and organization. With the recent advances in gene editing approaches, the zebrafish will become an increasingly important model for the study of human myopathies and muscular dystrophies. Its high fecundity and small size make it well suited to high-throughput screenings to identify novel pharmacologic and molecular therapies for the treatment of a broad range of neuromuscular conditions. In this review, we examine the lessons learned from the zebrafish model regarding the complex interactions between the sarcomere and the sarcolemma that pattern the developing myocyte and discuss the potential for zebrafish as a model system to examine the pathophysiology of, and identify new treatments for, human myopathies and muscular dystrophies.
Collapse
Affiliation(s)
- Maide Ö Raeker
- Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| | - Jordan A Shavit
- Pediatric Hematology and Oncology, Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| | - James J Dowling
- Division of Pediatric Neurology, Department of Pediatrics, The Hospital for Sick Children Toronto, Ontario, CA, USA
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
| | - Mark W Russell
- Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
29
|
Jackson HE, Ingham PW. Control of muscle fibre-type diversity during embryonic development: the zebrafish paradigm. Mech Dev 2013; 130:447-57. [PMID: 23811405 DOI: 10.1016/j.mod.2013.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 01/01/2023]
Abstract
Vertebrate skeletal muscle is composed of distinct types of fibre that are functionally adapted through differences in their physiological and metabolic properties. An understanding of the molecular basis of fibre-type specification is of relevance to human health and fitness. The zebrafish provides an attractive model for investigating fibre type specification; not only are their rapidly developing embryos optically transparent, but in contrast to amniotes, the embryonic myotome shows a discrete temporal and spatial separation of fibre type ontogeny that simplifies its analysis. Here we review the current state of understanding of muscle fibre type specification and differentiation during embryonic development of the zebrafish, with a particular focus on the roles of the Prdm1a and Sox6 transcription factors, and consider the relevance of these findings to higher vertebrate muscle biology.
Collapse
Affiliation(s)
- Harriet E Jackson
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | | |
Collapse
|
30
|
Ketley A, Warren A, Holmes E, Gering M, Aboobaker AA, Brook JD. The miR-30 microRNA family targets smoothened to regulate hedgehog signalling in zebrafish early muscle development. PLoS One 2013; 8:e65170. [PMID: 23755189 PMCID: PMC3673911 DOI: 10.1371/journal.pone.0065170] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022] Open
Abstract
The importance of microRNAs in development is now widely accepted. However, identifying the specific targets of individual microRNAs and understanding their biological significance remains a major challenge. We have used the zebrafish model system to evaluate the expression and function of microRNAs potentially involved in muscle development and study their interaction with predicted target genes. We altered expression of the miR-30 microRNA family and generated phenotypes that mimicked misregulation of the Hedgehog pathway. Inhibition of the miR-30 family increases activity of the pathway, resulting in elevated ptc1 expression and increased numbers of superficial slow-muscle fibres. We show that the transmembrane receptor smoothened is a target of this microRNA family. Our results indicate that fine coordination of smoothened activity by the miR-30 family allows the correct specification and differentiation of distinct muscle cell types during zebrafish embryonic development.
Collapse
Affiliation(s)
- Ami Ketley
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - Anne Warren
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - Emily Holmes
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - Martin Gering
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - A. Aziz Aboobaker
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - J. David Brook
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Pistocchi A, Gaudenzi G, Foglia E, Monteverde S, Moreno-Fortuny A, Pianca A, Cossu G, Cotelli F, Messina G. Conserved and divergent functions of Nfix in skeletal muscle development during vertebrate evolution. Development 2013; 140:1528-36. [PMID: 23482488 DOI: 10.1242/dev.076315] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During mouse skeletal muscle development, the Nfix gene has a pivotal role in regulating fetal-specific transcription. Zebrafish and mice share related programs for muscle development, although zebrafish develops at a much faster rate. In fact, although mouse fetal muscle fibers form after 15 days of development, in fish secondary muscle fibers form by 48 hours post-fertilization in a process that until now has been poorly characterized mechanically. In this work, we studied the zebrafish ortholog Nfix (nfixa) and its role in the proper switch to the secondary myogenic wave. This allowed us to highlight evolutionarily conserved and divergent functions of Nfix. In fact, the knock down of nfixa in zebrafish blocks secondary myogenesis, as in mouse, but also alters primary slow muscle fiber formation. Moreover, whereas Nfix mutant mice are motile, nfixa knockdown zebrafish display impaired motility that probably depends upon disruption of the sarcoplasmic reticulum. We conclude that, during vertebrate evolution, the transcription factor Nfix lost some specific functions, probably as a consequence of the different environment in which teleosts and mammals develop.
Collapse
Affiliation(s)
- Anna Pistocchi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Devakanmalai GS, Zumrut HE, Ozbudak EM. Cited3 activates Mef2c to control muscle cell differentiation and survival. Biol Open 2013; 2:505-14. [PMID: 23789100 PMCID: PMC3654270 DOI: 10.1242/bio.20132550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 03/25/2013] [Indexed: 01/13/2023] Open
Abstract
Vertebrate muscle development occurs through sequential differentiation of cells residing in somitic mesoderm – a process that is largely governed by transcriptional regulators. Our recent spatiotemporal microarray study in zebrafish has identified functionally uncharacterized transcriptional regulators that are expressed at the initial stages of myogenesis. cited3 is one such novel gene encoding a transcriptional coactivator, which is expressed in the precursors of oxidative slow-twitch myofibers. Our experiments placed cited3 into a gene regulatory network, where it acts downstream of Hedgehog signaling and myoD/myf5 but upstream of mef2c. Knockdown of expression of cited3 by antisense morpholino oligonucleotides impaired muscle cell differentiation and growth, caused muscle cell death and eventually led to total immotility. Transplantation experiments demonstrated that Cited3 cell-autonomously activates the expression of mef2c in slow myofibers, while it non-cell-autonomously regulates expression of structural genes in fast myofibers. Restoring expression of cited3 or mef2c rescued all the cited3 loss-of-function phenotypes. Protein truncation experiments revealed the functional necessity of C-terminally conserved domain of Cited3, which is known to mediate interactions of Cited-family proteins with histone acetylases. Our findings demonstrate that Cited3 is a critical transcriptional coactivator functioning during muscle differentiation and its absence leads to defects in terminal differentiation and survival of muscle cells.
Collapse
|
33
|
Dubinska-Magiera M, Zaremba-Czogalla M, Rzepecki R. Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease. Cell Mol Life Sci 2012; 70:2713-41. [PMID: 23138638 PMCID: PMC3708280 DOI: 10.1007/s00018-012-1190-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 09/28/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022]
Abstract
The aim of this review article is to evaluate the current knowledge on associations between muscle formation and regeneration and components of the nuclear lamina. Lamins and their partners have become particularly intriguing objects of scientific interest since it has been observed that mutations in genes coding for these proteins lead to a wide range of diseases called laminopathies. For over the last 10 years, various laboratories worldwide have tried to explain the pathogenesis of these rare disorders. Analyses of the distinct aspects of laminopathies resulted in formulation of different hypotheses regarding the mechanisms of the development of these diseases. In the light of recent discoveries, A-type lamins—the main building blocks of the nuclear lamina—together with other key elements, such as emerin, LAP2α and nesprins, seem to be of great importance in the modulation of various signaling pathways responsible for cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Magda Dubinska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335, Wroclaw, Poland
| | | | | |
Collapse
|
34
|
Bower NI, de la Serrana DG, Cole NJ, Hollway GE, Lee HT, Assinder S, Johnston IA. Stac3 is required for myotube formation and myogenic differentiation in vertebrate skeletal muscle. J Biol Chem 2012; 287:43936-49. [PMID: 23076145 DOI: 10.1074/jbc.m112.361311] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stac3 was identified as a nutritionally regulated gene from an Atlantic salmon subtractive hybridization library with highest expression in skeletal muscle. Salmon Stac3 mRNA was highly correlated with myogenin and myoD1a expression during differentiation of a salmon primary myogenic culture and was regulated by amino acid availability. In zebrafish embryos, stac3 was initially expressed in myotomal adaxial cells and in fast muscle fibers post-segmentation. Morpholino knockdown resulted in defects in myofibrillar protein assembly, particularly in slow muscle fibers, and decreased levels of the hedgehog receptor patched. The function of Stac3 was further characterized in vitro using the mammalian C2C12 myogenic cell line. Stac3 mRNA expression increased during the differentiation of the C2C12 myogenic cell line. Knockdown of Stac3 by RNAi inhibited myotube formation, and microarray analysis revealed that transcripts involved in cell cycle, focal adhesion, cytoskeleton, and the pro-myogenic factors Igfbp-5 and Igf2 were down-regulated. RNAi-treated cells had suppressed Akt signaling and exogenous insulin-like growth factor (Igf) 2 was unable to rescue the phenotype, however, Igf/Akt signaling was not blocked. Overexpression of Stac3, which results in increased levels of Igfbp-5 mRNA, did not lead to increased differentiation. In synchronized cells, Stac3 mRNA was most abundant during the G(1) phase of the cell cycle. RNAi-treated cells were smaller, had higher proliferation rates and a decreased proportion of cells in G(1) phase when compared with controls, suggesting a role in the G(1) phase checkpoint. These results identify Stac3 as a new gene required for myogenic differentiation and myofibrillar protein assembly in vertebrates.
Collapse
Affiliation(s)
- Neil I Bower
- Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews KY16 8LB, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
35
|
Lacalli T. The Middle Cambrian fossil Pikaia and the evolution of chordate swimming. EvoDevo 2012; 3:12. [PMID: 22695332 PMCID: PMC3390900 DOI: 10.1186/2041-9139-3-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/13/2012] [Indexed: 12/02/2022] Open
Abstract
Conway Morris and Caron (2012) have recently published an account of virtually all the available information on Pikaia gracilens, a well-known Cambrian fossil and supposed basal chordate, and propose on this basis some new ideas about Pikaia’s anatomy and evolutionary significance. Chief among its chordate-like features are the putative myomeres, a regular series of vertical bands that extends the length of the body. These differ from the myomeres of living chordates in that boundaries between them (the myosepta) are gently curved, with minimal overlap, whereas amphioxus and vertebrates have strongly overlapping V- and W-shaped myomeres. The implication, on biomechanical grounds, is that myomeres in Pikaia exerted much less tension on the myosepta, so the animal would have been incapable of swimming as rapidly as living chordates operating in the fast-twitch mode used for escape and attack. Pikaia either lacked the fast-twitch fibers necessary for such speeds, having instead only slow-twitch fibers, or it had an ancestral fiber type with functional capabilities more like modern slow fibers than fast ones. The first option is supported by the sequence of development in zebrafish, where both myoseptum formation and fast fiber deployment show a dependence on slow fibers, which develop first. For Pikaia, the absence of fast fibers has both behavioral and anatomical implications, which are discussed. Among the latter is the possibility that a notochord may not have been needed as a primary stiffening device if other structures (for example, the dorsal organ) could perform that role.
Collapse
Affiliation(s)
- Thurston Lacalli
- Biology Department, University of Victoria, Cunningham Building, Victoria, BC, V8W-3N5, Canada.
| |
Collapse
|
36
|
Windner SE, Bird NC, Patterson SE, Doris RA, Devoto SH. Fss/Tbx6 is required for central dermomyotome cell fate in zebrafish. Biol Open 2012; 1:806-14. [PMID: 23213474 PMCID: PMC3507223 DOI: 10.1242/bio.20121958] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/29/2012] [Indexed: 12/18/2022] Open
Abstract
The dermomyotome is a pool of progenitor cells on the surface of the myotome. In zebrafish, dermomyotome precursors (anterior border cells, ABCs) can be first identified in the anterior portion of recently formed somites. They must be prevented from undergoing terminal differentiation during segmentation, even while mesodermal cells around them respond to signaling cues and differentiate. T-box containing transcription factors regulate many aspects of mesoderm fate including segmentation and somite patterning. The fused somites (fss) gene is the zebrafish ortholog of tbx6. We demonstrate that in addition to its requirement for segmentation, fss/tbx6 is also required for the specification of ABCs and subsequently the central dermomyotome. The absence of Tbx6-dependent central dermomyotome cells in fss/tbx6 mutants is spatially coincident with a patterning defect in the myotome. Using transgenic fish with a heat-shock inducible tbx6 gene in the fss/tbx6 mutant background, we further demonstrate that ubiquitous fss/tbx6 expression has spatially distinct effects on recovery of the dermomyotome and segment boundaries, suggesting that the mechanism of Fss/Tbx6 action is distinct with respect to dermomyotome development and segmentation. We propose that Fss/Tbx6 is required for preventing myogenic differentiation of central dermomyotome precursors before and after segmentation and that central dermomyotome cells represent a genetically and functionally distinct subpopulation within the zebrafish dermomyotome.
Collapse
Affiliation(s)
- Stefanie Elisabeth Windner
- Department of Biology, Wesleyan University , Middletown, CT 06459 , USA ; Division of Zoology and Functional Anatomy, Department of Organismic Biology, University of Salzburg , A-5020 Salzburg, Austria
| | | | | | | | | |
Collapse
|
37
|
Do muscle founder cells exist in vertebrates? Trends Cell Biol 2012; 22:391-6. [PMID: 22710008 DOI: 10.1016/j.tcb.2012.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/17/2012] [Accepted: 05/21/2012] [Indexed: 11/21/2022]
Abstract
Skeletal muscle is formed by the iterative fusion of precursor cells (myocytes) into long multinuclear fibres. Extensive studies of fusion in Drosophila embryos have lead to a paradigm in which myoblasts are divided into two distinct subtypes - founder and fusion-competent myoblasts (FCMs) - that can fuse to each other, but not among themselves. Only founder cells can direct the formation of muscle fibres, while FCMs act as a cellular substrate. Recent studies in zebrafish and mice have demonstrated conservation of the molecules originally identified in Drosophila, but an important question remains: is vertebrate fusion regulated by specifying myocyte subtypes? Stated simply: do vertebrate founder cells exist? In light of recent findings, we argue that a different regulatory mechanism has evolved in vertebrates.
Collapse
|
38
|
Lin YY. Muscle diseases in the zebrafish. Neuromuscul Disord 2012; 22:673-84. [PMID: 22647769 DOI: 10.1016/j.nmd.2012.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/09/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Animal models in biomedical research are important for understanding the pathological mechanisms of human diseases at a molecular and cellular level. Several aspects of mammalian animals, however, may limit their use in modelling neuromuscular disorders. Many attributes of zebrafish (Danio rerio) are complementary to mammalian experimental systems, establishing the zebrafish as a powerful model organism in disease biology. This review focuses on a number of key studies using the zebrafish to model hereditary muscle diseases with additional emphasis on recent advances in zebrafish functional genomics and drug discovery. Increasing research in zebrafish disease models, combined with knowledge from mammalian models, will bring novel insights into the disease pathogenesis of neuromuscular disorders, as well as facilitate the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Yung-Yao Lin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, United Kingdom.
| |
Collapse
|
39
|
Webb SE, Cheung CCY, Chan CM, Love DR, Miller AL. Application of complementary luminescent and fluorescent imaging techniques to visualize nuclear and cytoplasmic Ca²⁺ signalling during the in vivo differentiation of slow muscle cells in zebrafish embryos under normal and dystrophic conditions. Clin Exp Pharmacol Physiol 2012; 39:78-86. [PMID: 21824171 DOI: 10.1111/j.1440-1681.2011.05582.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Evidence is accumulating for a role for Ca²⁺ signalling in the differentiation and development of embryonic skeletal muscle. 2. Imaging of intact, normally developing transgenic zebrafish that express the protein component of the Ca²⁺-sensitive complex aequorin, specifically in skeletal muscle, show that two distinct periods of spontaneous synchronised Ca²⁺ transients occur in the trunk: one at approximately 17.5-19.5 h post-fertilization (h.p.f.; termed signalling period SP1) and the other after approximately 23 h.p.f. (termed SP2). These periods of intense Ca²⁺ signalling activity are separated by a quiet period. 3. Higher-resolution confocal imaging of embryos loaded with the fluorescent Ca²⁺ reporter calcium green-1 dextran shows that the Ca²⁺ signals are generated almost exclusively in the slow muscle cells, the first muscle cells to differentiate, with distinct nuclear and cytoplasmic components. 4. Here, we show that coincidental with the SP1 Ca²⁺ signals, dystrophin becomes localized to the vertical myoseptae of the myotome. Introduction of a dmd morpholino (dmd-MO) resulted in no dystrophin being expressed in the vertical myoseptae, as well as a disruption of myotome morphology and sarcomere organization. In addition, the Ca²⁺ signalling signatures of dmd-MO-injected embryos or homozygous sapje mutant embryos were abnormal such that the frequency, amplitude and timing of the Ca²⁺ signals were altered compared with controls. 5. Our new data suggest that, in addition to a structural role, dystrophin may function in the regulation of [Ca²⁺](i) during the early stages of slow muscle cell differentiation when the Ca²⁺ signals generated in these cells coincide with the first spontaneous contractions of the trunk.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and Key State Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
40
|
Baas D, Caussanel-Boude S, Guiraud A, Calhabeu F, Delaune E, Pilot F, Chopin E, Machuca-Gayet I, Vernay A, Bertrand S, Rual JF, Jurdic P, Hill DE, Vidal M, Schaeffer L, Goillot E. CKIP-1 regulates mammalian and zebrafish myoblast fusion. J Cell Sci 2012; 125:3790-800. [PMID: 22553210 DOI: 10.1242/jcs.101048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Multinucleated muscle fibres arise by fusion of precursor cells called myoblasts. We previously showed that CKIP-1 ectopic expression in C2C12 myoblasts increased cell fusion. In this work, we report that CKIP-1 depletion drastically impairs C2C12 myoblast fusion in vitro and in vivo during zebrafish muscle development. Within developing fast-twich myotome, Ckip-1 localises at the periphery of fast precursor cells, closed to the plasma membrane. Unlike wild-type myoblasts that form spatially arrayed multinucleated fast myofibres, Ckip-1-deficient myoblasts show a drastic reduction in fusion capacity. A search for CKIP-1 binding partners identified the ARPC1 subunit of Arp2/3 actin nucleation complex essential for myoblast fusion. We demonstrate that CKIP-1, through binding to plasma membrane phosphoinositides via its PH domain, regulates cell morphology and lamellipodia formation by recruiting the Arp2/3 complex at the plasma membrane. These results establish CKIP-1 as a regulator of cortical actin that recruits the Arp2/3 complex at the plasma membrane essential for muscle precursor elongation and fusion.
Collapse
Affiliation(s)
- Dominique Baas
- Equipe Différenciation Neuromusculaire, Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR 5239/ENS Lyon, Université de Lyon, IFR128 Biosciences Lyon-Gerland, 46 Allée d'Italie, 69364 LYON cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Charvet B, Malbouyres M, Pagnon-Minot A, Ruggiero F, Le Guellec D. Development of the zebrafish myoseptum with emphasis on the myotendinous junction. Cell Tissue Res 2011; 346:439-49. [PMID: 22086205 DOI: 10.1007/s00441-011-1266-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/17/2011] [Indexed: 11/30/2022]
Abstract
Zebrafish myosepta connect two adjacent muscle cells and transmit muscular forces to axial structures during swimming via the myotendinous junction (MTJ). The MTJ establishes transmembrane linkages system consisting of extracellular matrix molecules (ECM) surrounding the basement membrane, cytoskeletal elements anchored to sarcolema, and all intermediate proteins that link ECM to actin filaments. Using a series of zebrafish specimens aged between 24 h post-fertilization and 2 years old, the present paper describes at the transmission electron microscope level the development of extracellular and intracellular elements of the MTJ. The transverse myoseptum development starts during the segmentation period by deposition of sparse and loosely organized collagen fibrils. During the hatching period, a link between actin filaments and sarcolemma is established. The basal lamina underlining sarcolemma is well differentiated. Later, collagen fibrils display an orthogonal orientation and fibroblast-like cells invade the myoseptal stroma. A dense network of collagen fibrils is progressively formed that both anchor myoseptal fibroblasts and sarcolemmal basement membrane. The differentiation of a functional MTJ is achieved when sarcolemma interacts with both cytoskeletal filaments and extracellular components. This solid structural link between contractile apparatus and ECM leads to sarcolemma deformations resulting in the formation of regular invaginations, and allows force transmission during muscle contraction. This paper presents the first ultrastructural atlas of the zebrafish MTJ development, which represents an useful tool to analyse the mechanisms of the myotendinous system formation and their disruption in muscle disorders.
Collapse
Affiliation(s)
- Benjamin Charvet
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, Lyon, France
| | | | | | | | | |
Collapse
|
42
|
Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions. Dev Biol 2011; 359:251-61. [PMID: 21925157 DOI: 10.1016/j.ydbio.2011.08.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 11/22/2022]
Abstract
Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos were strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle functions.
Collapse
|
43
|
Johnston IA, Bower NI, Macqueen DJ. Growth and the regulation of myotomal muscle mass in teleost fish. ACTA ACUST UNITED AC 2011; 214:1617-28. [PMID: 21525308 DOI: 10.1242/jeb.038620] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Teleost muscle first arises in early embryonic life and its development is driven by molecules present in the egg yolk and modulated by environmental stimuli including temperature and oxygen. Several populations of myogenic precursor cells reside in the embryonic somite and external cell layer and contribute to muscle fibres in embryo, larval, juvenile and adult stages. Many signalling proteins and transcription factors essential for these events are known. In all cases, myogenesis involves myoblast proliferation, migration, fusion and terminal differentiation. Maturation of the embryonic muscle is associated with motor innervation and the development of a scaffold of connective tissue and complex myotomal architecture needed to generate swimming behaviour. Adult muscle is a heterogeneous tissue composed of several cell types that interact to affect growth patterns. The development of capillary and lymphatic circulations and extramuscular organs--notably the gastrointestinal, endocrine, neuroendocrine and immune systems--serves to increase information exchange between tissues and with the external environment, adding to the complexity of growth regulation. Teleosts often exhibit an indeterminate growth pattern, with body size and muscle mass increasing until mortality or senescence occurs. The dramatic increase in myotomal muscle mass between embryo and adult requires the continuous production of muscle fibres until 40-50% of the maximum body length is reached. Sarcomeric proteins can be mobilised as a source of amino acids for energy metabolism by other tissues and for gonad generation, requiring the dynamic regulation of muscle mass throughout the life cycle. The metabolic and contractile phenotypes of muscle fibres also show significant plasticity with respect to environmental conditions, migration and spawning. Many genes regulating muscle growth are found as multiple copies as a result of paralogue retention following whole-genome duplication events in teleost lineages. The extent to which indeterminate growth, ectothermy and paralogue preservation have resulted in modifications of the genetic pathways regulating muscle growth in teleosts compared to mammals largely remains unknown. This review describes the use of compensatory growth models, transgenesis and tissue culture to explore the mechanisms of muscle growth in teleosts and provides some perspectives on future research directions.
Collapse
Affiliation(s)
- Ian A Johnston
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY168LB, UK.
| | | | | |
Collapse
|
44
|
Lobbardi R, Lambert G, Zhao J, Geisler R, Kim HR, Rosa FM. Fine-tuning of Hh signaling by the RNA-binding protein Quaking to control muscle development. Development 2011; 138:1783-94. [PMID: 21447554 DOI: 10.1242/dev.059121] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of the different muscles within the somite is a complex process that involves the Hedgehog (Hh) signaling pathway. To specify the proper number of muscle cells and organize them spatially and temporally, the Hh signaling pathway needs to be precisely regulated at different levels, but only a few factors external to the pathway have been described. Here, we report for the first time the role of the STAR family RNA-binding protein Quaking A (QkA) in somite muscle development. We show in zebrafish that the loss of QkA function affects fast muscle fiber maturation as well as Hh-induced muscle derivative specification and/or morphogenesis. Mosaic analysis reveals that fast fiber maturation depends on the activity of QkA in the environment of fast fiber progenitors. We further show that Hh signaling requires QkA activity for muscle development. By an in silico approach, we screened the 3'UTRs of known Hh signaling component mRNAs for the Quaking response element and found the transcription factor Gli2a, a known regulator of muscle fate development. Using destabilized GFP as a reporter, we show that the gli2a mRNA 3'UTR is a functional QkA target. Consistent with this notion, the loss of QkA function rescued slow muscle fibers in yot mutant embryos, which express a dominant-negative Gli2a isoform. Thus, our results reveal a new mechanism to ensure muscle cell fate diversity by fine-tuning of the Hh signaling pathway via RNA-binding proteins.
Collapse
Affiliation(s)
- Riadh Lobbardi
- Ecole Normale Supérieure, Institut de Biologie, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
45
|
Webb SE, Miller AL. Visualization of Ca²+ signaling during embryonic skeletal muscle formation in vertebrates. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004325. [PMID: 21421918 DOI: 10.1101/cshperspect.a004325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dynamic changes in cytosolic and nuclear Ca(2+) concentration are reported to play a critical regulatory role in different aspects of skeletal muscle development and differentiation. Here we review our current knowledge of the spatial dynamics of Ca(2+) signals generated during muscle development in mouse, rat, and Xenopus myocytes in culture, in the exposed myotome of dissected Xenopus embryos, and in intact normally developing zebrafish. It is becoming clear that subcellular domains, either membrane-bound or otherwise, may have their own Ca(2+) signaling signatures. Thus, to understand the roles played by myogenic Ca(2+) signaling, we must consider: (1) the triggers and targets within these signaling domains; (2) interdomain signaling, and (3) how these Ca(2+) signals integrate with other signaling networks involved in myogenesis. Imaging techniques that are currently available to provide direct visualization of these Ca(2+) signals are also described.
Collapse
Affiliation(s)
- Sarah E Webb
- Section of Biochemistry and Cell Biology, and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PRC
| | | |
Collapse
|
46
|
Peterson MT, Henry CA. Hedgehog signaling and laminin play unique and synergistic roles in muscle development. Dev Dyn 2010; 239:905-13. [PMID: 20063418 DOI: 10.1002/dvdy.22204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hedgehog (Hh) signaling and laminin-111, a basement membrane protein, are required for early muscle development. Hh signaling specifies different populations of muscle fibers and laminin-111 is critical for early muscle morphogenesis. However, additional requirements for Hh signaling and laminin during later phases of muscle development are not known. Furthermore, interactions between Hh signaling and laminin in this context are unknown. We used laminin gamma1 mutant zebrafish and cyclopamine to block Hh signal transduction separately and in combination to investigate their functions and interactions. We found that both Hh signaling and laminin are required for normal myosin chain expression. In addition, Hh signaling and laminin act synergistically during fast-twitch fiber elongation: fast muscle cells do not elongate in embryos deficient for both Hh signaling and laminin. Finally, we present evidence that suggests that Hh signaling is indirectly required via slow fiber specification for recovery of fast fiber elongation in laminin gamma1 mutant embryos.
Collapse
Affiliation(s)
- Matthew T Peterson
- School of Biology and Ecology, University of Maine, Orono, Maine 04469, USA
| | | |
Collapse
|
47
|
Dolez M, Nicolas JF, Hirsinger E. Laminins, via heparan sulfate proteoglycans, participate in zebrafish myotome morphogenesis by modulating the pattern of Bmp responsiveness. Development 2010; 138:97-106. [PMID: 21115608 DOI: 10.1242/dev.053975] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In zebrafish, Hedgehog-induced Engrailed expression defines a muscle fibre population that includes both slow and fast fibre types and exhibits an organisational role on myotome and surrounding tissues, such as motoneurons and lateral line. This Engrailed-positive population is restricted in the myotome to a central domain. To understand how this population is established, we have analysed the phenotype of the sly/lamc1 mutation in the Laminin γ1 chain that was shown to specifically affect Engrailed expression in pioneers. We find that the sly mutation affects Engrailed expression in the entire central domain and that Hedgehog signalling does not mediate this effect. We show that Bmp-responding cells are excluded from the central domain and that this pattern is modulated by laminins, but not by Hedgehog signalling. Knockdown of Bmp signalling rescues Engrailed expression in the sly mutant and ectopically activates Engrailed expression in slow and fast lineages in wild-type embryos. Last, extracellular matrix-associated heparan sulfate proteoglycans are absent in sly and their enzymatic removal mimics the sly phenotype. Our results therefore show that laminins, via heparan sulfate proteoglycans, are instrumental in patterning Bmp responsiveness and that Bmp signalling restricts Engrailed expression to the central domain. This study underlines the importance of extracellular cues for the precise spatial modulation of cell response to morphogens.
Collapse
Affiliation(s)
- Morgane Dolez
- Institut Pasteur, Unit of Molecular Biology of Development, Department of Developmental Biology, 25 rue du Docteur Roux, CNRS, URA2578, F-75015 Paris, France
| | | | | |
Collapse
|
48
|
Ono Y, Kinoshita S, Ikeda D, Watabe S. Early development of medaka Oryzias latipes muscles as revealed by transgenic approaches using embryonic and larval types of myosin heavy chain genes. Dev Dyn 2010; 239:1807-17. [PMID: 20503376 DOI: 10.1002/dvdy.22298] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We cloned three full-length cDNAs encoding myosin heavy chains (MYHs) previously found to be expressed in embryos or larvae of medaka Oryzias latipes. Based on cDNA sequence information, the three medaka MYH genes, mMYH(emb1), mMYH(L1) and mMYH(L2), were localized on the chromosomes. In vivo promoter assay using the gene encoding green or red fluorescent protein and linked to the 5'-flanking region of mMYH demonstrated that the transcripts of fast-type mMYH(emb1), first expressed in embryos but belonging to the adult type in phylogenetic analysis, were located in the horizontal myoseptum. On the other hand, embryonic fast-type mMYH(L1) and mMYH(L2) were expressed in the whole myotomes. Interestingly, cells expressing mMYH(emb1) were localized together with engrailed, and cyclopamine, which blocks hedgehog signaling, inhibited mMYH(emb1) expression as well as the formation of the horizontal myoseptum, suggesting that muscle pioneer cells express mMYH(emb1) as a key protein in the formation of the horizontal myoseptum.
Collapse
Affiliation(s)
- Yosuke Ono
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | | | | | | |
Collapse
|
49
|
Hinits Y, Osborn DPS, Hughes SM. Differential requirements for myogenic regulatory factors distinguish medial and lateral somitic, cranial and fin muscle fibre populations. Development 2009; 136:403-14. [PMID: 19141670 DOI: 10.1242/dev.028019] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myogenic regulatory factors of the Myod family (MRFs) are transcription factors essential for mammalian skeletal myogenesis. However, the roles of each gene in myogenesis remain unclear, owing partly to genetic linkage at the Myf5/Mrf4 locus and to rapid morphogenetic movements in the amniote somite. In mice, Myf5 is essential for the earliest epaxial myogenesis, whereas Myod is required for timely differentiation of hypaxially derived muscle. A second major subdivision of the somite is between primaxial muscle of the somite proper and abaxial somite-derived migratory muscle precursors. Here, we use a combination of mutant and morphant analysis to ablate the function of each of the four conserved MRF genes in zebrafish, an organism that has retained a more ancestral bodyplan. We show that a fundamental distinction in somite myogenesis is into medial versus lateral compartments, which correspond to neither epaxial/hypaxial nor primaxial/abaxial subdivisions. In the medial compartment, Myf5 and/or Myod drive adaxial slow fibre and medial fast fibre differentiation. Myod-driven Myogenin activity alone is sufficient for lateral fast somitic and pectoral fin fibre formation from the lateral compartment, as well as for cranial myogenesis. Myogenin activity is a significant contributor to fast fibre differentiation. Mrf4 does not contribute to early myogenesis in zebrafish. We suggest that the differential use of duplicated MRF paralogues in this novel two-component myogenic system facilitated the diversification of vertebrates.
Collapse
Affiliation(s)
- Yaniv Hinits
- Randall Division for Cell and Molecular Biophysics and MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | | | | |
Collapse
|
50
|
Chong SW, Korzh V, Jiang YJ. Myogenesis and molecules - insights from zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2009; 74:1693-1755. [PMID: 20735668 DOI: 10.1111/j.1095-8649.2009.02174.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Myogenesis is a fundamental process governing the formation of muscle in multicellular organisms. Recent studies in zebrafish Danio rerio have described the molecular events occurring during embryonic morphogenesis and have thus greatly clarified this process, helping to distinguish between the events that give rise to fast v. slow muscle. Coupled with the well-known Hedgehog signalling cascade and a wide variety of cellular processes during early development, the continual research on D. rerio slow muscle precursors has provided novel insights into their cellular behaviours in this organism. Similarly, analyses on fast muscle precursors have provided knowledge of the behaviour of a sub-set of epitheloid cells residing in the anterior domain of somites. Additionally, the findings by various groups on the roles of several molecules in somitic myogenesis have been clarified in the past year. In this study, the authors briefly review the current trends in the field of research of D. rerio trunk myogenesis.
Collapse
Affiliation(s)
- S-W Chong
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, A STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | | | | |
Collapse
|