1
|
Kantsadi AL, Hatzopoulos GN, Gönczy P, Vakonakis I. Structures of SAS-6 coiled coil hold implications for the polarity of the centriolar cartwheel. Structure 2022; 30:671-684.e5. [PMID: 35240058 DOI: 10.1016/j.str.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/22/2022]
Abstract
Centrioles are eukaryotic organelles that template the formation of cilia and flagella, as well as organize the microtubule network and the mitotic spindle in animal cells. Centrioles have proximal-distal polarity and a 9-fold radial symmetry imparted by a likewise symmetrical central scaffold, the cartwheel. The spindle assembly abnormal protein 6 (SAS-6) self-assembles into 9-fold radially symmetric ring-shaped oligomers that stack via an unknown mechanism to form the cartwheel. Here, we uncover a homo-oligomerization interaction mediated by the coiled-coil domain of SAS-6. Crystallographic structures of Chlamydomonas reinhardtii SAS-6 coiled-coil complexes suggest this interaction is asymmetric, thereby imparting polarity to the cartwheel. Using a cryoelectron microscopy (cryo-EM) reconstitution assay, we demonstrate that amino acid substitutions disrupting this asymmetric association also impair SAS-6 ring stacking. Our work raises the possibility that the asymmetric interaction inherent to SAS-6 coiled-coil provides a polar element for cartwheel assembly, which may assist the establishment of the centriolar proximal-distal axis.
Collapse
Affiliation(s)
| | - Georgios N Hatzopoulos
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1005 Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1005 Lausanne, Switzerland.
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
2
|
Guichard P, Laporte MH, Hamel V. The centriolar tubulin code. Semin Cell Dev Biol 2021; 137:16-25. [PMID: 34896019 DOI: 10.1016/j.semcdb.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
Centrioles are microtubule-based cell organelles present in most eukaryotes. They participate in the control of cell division as part of the centrosome, the major microtubule-organizing center of the cell, and are also essential for the formation of primary and motile cilia. During centriole assembly as well as across its lifetime, centriolar tubulin display marks defined by post-translational modifications (PTMs), such as glutamylation or acetylation. To date, the functions of these PTMs at centrioles are not well understood, although pioneering experiments suggest a role in the stability of this organelle. Here, we review the current knowledge regarding PTMs at centrioles with a particular focus on a possible link between these modifications and centriole's architecture, and propose possible hypothesis regarding centriolar tubulin PTMs's function.
Collapse
Affiliation(s)
- Paul Guichard
- University of Geneva, Department of Cell Biology, Geneva, Switzerland.
| | - Marine H Laporte
- University of Geneva, Department of Cell Biology, Geneva, Switzerland
| | - Virginie Hamel
- University of Geneva, Department of Cell Biology, Geneva, Switzerland.
| |
Collapse
|
3
|
Van Goor J, Shakes DC, Haag ES. Fisher vs. the Worms: Extraordinary Sex Ratios in Nematodes and the Mechanisms that Produce Them. Cells 2021; 10:1793. [PMID: 34359962 PMCID: PMC8303164 DOI: 10.3390/cells10071793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023] Open
Abstract
Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two "seminal" contributions of G. A. Parker.
Collapse
Affiliation(s)
- Justin Van Goor
- Department of Biology, University of Maryland, College Park, MD 20742, USA;
| | - Diane C. Shakes
- Department of Biology, William and Mary, Williamsburg, VA 23187, USA;
| | - Eric S. Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
4
|
Avidor-Reiss T, Mazur M, Fishman EL, Sindhwani P. The Role of Sperm Centrioles in Human Reproduction - The Known and the Unknown. Front Cell Dev Biol 2019; 7:188. [PMID: 31632960 PMCID: PMC6781795 DOI: 10.3389/fcell.2019.00188] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/23/2019] [Indexed: 01/02/2023] Open
Abstract
Each human spermatozoon contains two remodeled centrioles that it contributes to the zygote. There, the centrioles reconstitute a centrosome that assembles the sperm aster and participate in pronuclei migration and cleavage. Thus, centriole abnormalities may be a cause of male factor infertility and failure to carry pregnancy to term. However, the precise mechanisms by which sperm centrioles contribute to embryonic development in humans are still unclear, making the search for a link between centriole abnormalities and impaired male fecundity particularly difficult. Most previous investigations into the role of mammalian centrioles during fertilization have been completed in murine models; however, because mouse sperm and zygotes appear to lack centrioles, these studies provide information that is limited in its applicability to humans. Here, we review studies that examine the role of the sperm centrioles in the early embryo, with particular emphasis on humans. Available literature includes case studies and case-control studies, with a few retrospective studies and no prospective studies reported. This literature has provided some insight into the morphological characteristics of sperm centrioles in the zygote and has allowed identification of some centriole abnormalities in rare cases. Many of these studies suggest centriole involvement in early embryogenesis based on phenotypes of the embryo with only indirect evidence for centriole abnormality. Overall, these studies suggest that centriole abnormalities are present in some cases of sperm with asthenoteratozoospermia and unexplained infertility. Yet, most previously published studies have been restricted by the laborious techniques (like electron microscopy) and the limited availability of centriolar markers, resulting in small-scale studies and the lack of solid causational evidence. With recent progress in sperm centriole biology, such as the identification of the unique composition of sperm centrioles and the discovery of the atypical centriole, it is now possible to begin to fill the gaps in sperm centriole epidemiology and to identify the etiology of sperm centriole dysfunction in humans.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, OH, United States.,Department of Urology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States
| | - Matthew Mazur
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, OH, United States.,Department of Urology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States
| | - Emily L Fishman
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, OH, United States
| | - Puneet Sindhwani
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, OH, United States.,Department of Urology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States
| |
Collapse
|
5
|
Fisk HA, Thomas JL, Nguyen TB. Breaking Bad: Uncoupling of Modularity in Centriole Biogenesis and the Generation of Excess Centrioles in Cancer. Results Probl Cell Differ 2019; 67:391-411. [PMID: 31435805 DOI: 10.1007/978-3-030-23173-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Centrosomes are tiny yet complex cytoplasmic structures that perform a variety of roles related to their ability to act as microtubule-organizing centers. Like the genome, centrosomes are single copy structures that undergo a precise semi-conservative replication once each cell cycle. Precise replication of the centrosome is essential for genome integrity, because the duplicated centrosomes will serve as the poles of a bipolar mitotic spindle, and any number of centrosomes other than two will lead to an aberrant spindle that mis-segregates chromosomes. Indeed, excess centrosomes are observed in a variety of human tumors where they generate abnormal spindles in situ that are thought to participate in tumorigenesis by driving genomic instability. At the heart of the centrosome is a pair of centrioles, and at the heart of centrosome duplication is the replication of this centriole pair. Centriole replication proceeds through a complex macromolecular assembly process. However, while centrosomes may contain as many as 500 proteins, only a handful of proteins have been shown to be essential for centriole replication. Our observations suggest that centriole replication is a modular, bottom-up process that we envision akin to building a house; the proper site of assembly is identified, a foundation is assembled at that site, and subsequent modules are added on top of the foundation. Here, we discuss the data underlying our view of modularity in the centriole assembly process, and suggest that non-essential centriole assembly factors take on greater importance in cancer cells due to their function in coordination between centriole modules, using the Monopolar spindles 1 protein kinase and its substrate Centrin 2 to illustrate our model.
Collapse
Affiliation(s)
- Harold A Fisk
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| | - Jennifer L Thomas
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tan B Nguyen
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
6
|
Shahid U, Singh P. Emerging Picture of Deuterosome-Dependent Centriole Amplification in MCCs. Cells 2018; 7:E152. [PMID: 30262752 PMCID: PMC6210342 DOI: 10.3390/cells7100152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
Multiciliated cells (MCCs) have several hair-like structures called cilia, which are required to propel substances on their surface. A cilium is organized from a basal body which resembles a hollow microtubule structure called a centriole. In terminally differentiated MCCs, hundreds of new basal bodies/centrioles are formed via two parallel pathways: the centriole- and deuterosome-dependent pathways. The deuterosome-dependent pathway is also referred to as "de novo" because unlike the centriole-dependent pathway which requires pre-existing centrioles, in the de novo pathway multiple new centrioles are organized around non-microtubule structures called deuterosomes. In the last five years, some deuterosome-specific markers have been identified and concurrent advancements in the super-resolution techniques have significantly contributed to gaining insights about the major stages of centriole amplification during ciliogenesis. Altogether, a new picture is emerging which also challenges the previous notion that deuterosome pathway is de novo. This review is primarily focused on studies that have contributed towards the better understanding of deuterosome-dependent centriole amplification and presents a developing model about the major stages identified during this process.
Collapse
Affiliation(s)
- Umama Shahid
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagour Road, Karwar 342037, India.
| | - Priyanka Singh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagour Road, Karwar 342037, India.
| |
Collapse
|
7
|
Inoue D, Stemmer M, Thumberger T, Ruppert T, Bärenz F, Wittbrodt J, Gruss OJ. Expression of the novel maternal centrosome assembly factor Wdr8 is required for vertebrate embryonic mitoses. Nat Commun 2017; 8:14090. [PMID: 28098238 PMCID: PMC5253655 DOI: 10.1038/ncomms14090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023] Open
Abstract
The assembly of the first centrosome occurs upon fertilisation when male centrioles recruit pericentriolar material (PCM) from the egg cytoplasm. The mechanisms underlying the proper assembly of centrosomes during early embryogenesis remain obscure. We identify Wdr8 as a novel maternally essential protein that is required for centrosome assembly during embryonic mitoses of medaka (Oryzias latipes). By CRISPR-Cas9-mediated knockout, maternal/zygotic Wdr8-null (m/zWdr8-/-) blastomeres exhibit severe defects in centrosome structure that lead to asymmetric division, multipolar mitotic spindles and chromosome alignment errors. Via its WD40 domains, Wdr8 interacts with the centriolar satellite protein SSX2IP. Combining targeted gene knockout and in vivo reconstitution of the maternally essential Wdr8-SSX2IP complex reveals an essential link between maternal centrosome proteins and the stability of the zygotic genome for accurate vertebrate embryogenesis. Our approach provides a way of distinguishing maternal from paternal effects in early embryos and should contribute to understanding molecular defects in human infertility.
Collapse
Affiliation(s)
- Daigo Inoue
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Manuel Stemmer
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Thomas Ruppert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | - Felix Bärenz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Oliver J Gruss
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany.,Institute of Genetics, University of Bonn, Karlrobert-Kreiten-Straße 13, Bonn 53115, Germany
| |
Collapse
|
8
|
Molecular and cellular basis of autosomal recessive primary microcephaly. BIOMED RESEARCH INTERNATIONAL 2014; 2014:547986. [PMID: 25548773 PMCID: PMC4274849 DOI: 10.1155/2014/547986] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 01/23/2023]
Abstract
Autosomal recessive primary microcephaly (MCPH) is a rare hereditary neurodevelopmental disorder characterized by a marked reduction in brain size and intellectual disability. MCPH is genetically heterogeneous and can exhibit additional clinical features that overlap with related disorders including Seckel syndrome, Meier-Gorlin syndrome, and microcephalic osteodysplastic dwarfism. In this review, we discuss the key proteins mutated in MCPH. To date, MCPH-causing mutations have been identified in twelve different genes, many of which encode proteins that are involved in cell cycle regulation or are present at the centrosome, an organelle crucial for mitotic spindle assembly and cell division. We highlight recent findings on MCPH proteins with regard to their role in cell cycle progression, centrosome function, and early brain development.
Collapse
|
9
|
Abstract
Centrosomes are composed of two centrioles surrounded by pericentriolar material (PCM). However, the sperm and the oocyte modify or lose their centrosomes. Consequently, how the zygote establishes its first centrosome, and in particular, the origin of the second zygotic centriole, is uncertain. Drosophila melanogaster spermatids contain a single centriole called the Giant Centriole (GC) and a Proximal centriole-like (PCL) structure whose function is unknown. We found that, like the centriole, the PCL loses its protein markers at the end of spermiogenesis. After fertilization, the first two centrioles are observed via the recruitment of the zygotic PCM proteins and are seen in asterless mutant embryos that cannot form centrioles. The zygote’s centriolar proteins label only the daughter centrioles of the first two centrioles. These observations demonstrate that the PCL is the origin for the second centriole in the Drosophila zygote and that a paternal centriole precursor, without centriolar proteins, is transmitted to the egg during fertilization.
Collapse
|
10
|
Peel N. Everything in moderation: Proteolytic regulation of centrosome duplication. WORM 2013; 2:e22497. [PMID: 24058868 PMCID: PMC3704442 DOI: 10.4161/worm.22497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 11/30/2022]
Abstract
The presence of too many or too few centrosomes at mitosis can disrupt the timely formation of a bipolar spindle and may lead to aneuploidy and cancer. Strict control of centrosome duplication is therefore crucial. Centrosome duplication must occur once per cell cycle and the number of new centrioles made must be tightly controlled. The importance of protein degradation for the orderly progression of the cell cycle has long been recognized, but until recently the role of proteolysis in the regulation of centrosome duplication had not been appreciated. Recent evidence suggests that restricting protein levels so that a single new centriole is built next to each pre-existing centriole is one way in which centrosome duplication is controlled. Here we discuss our recent finding that the SCF ubiquitin ligase complex regulates centrosome duplication in C. elegans in the larger context of the proteolytic regulation of centrosome duplication.
Collapse
Affiliation(s)
- Nina Peel
- Department of Biology; The College of New Jersey; Ewing, NJ USA
| |
Collapse
|
11
|
Hilbert M, Erat MC, Hachet V, Guichard P, Blank ID, Flückiger I, Slater L, Lowe ED, Hatzopoulos GN, Steinmetz MO, Gönczy P, Vakonakis I. Caenorhabditis elegans centriolar protein SAS-6 forms a spiral that is consistent with imparting a ninefold symmetry. Proc Natl Acad Sci U S A 2013; 110:11373-8. [PMID: 23798409 PMCID: PMC3710844 DOI: 10.1073/pnas.1302721110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Centrioles are evolutionary conserved organelles that give rise to cilia and flagella as well as centrosomes. Centrioles display a characteristic ninefold symmetry imposed by the spindle assembly abnormal protein 6 (SAS-6) family. SAS-6 from Chlamydomonas reinhardtii and Danio rerio was shown to form ninefold symmetric, ring-shaped oligomers in vitro that were similar to the cartwheels observed in vivo during early steps of centriole assembly in most species. Here, we report crystallographic and EM analyses showing that, instead, Caenorhabotis elegans SAS-6 self-assembles into a spiral arrangement. Remarkably, we find that this spiral arrangement is also consistent with ninefold symmetry, suggesting that two distinct SAS-6 oligomerization architectures can direct the same output symmetry. Sequence analysis suggests that SAS-6 spirals are restricted to specific nematodes. This oligomeric arrangement may provide a structural basis for the presence of a central tube instead of a cartwheel during centriole assembly in these species.
Collapse
Affiliation(s)
- Manuel Hilbert
- Laboratory of Biomolecular Research (LBR), Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Michèle C. Erat
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; and
| | - Virginie Hachet
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul Guichard
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Iris D. Blank
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; and
| | - Isabelle Flückiger
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Leanne Slater
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; and
| | - Edward D. Lowe
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; and
| | | | - Michel O. Steinmetz
- Laboratory of Biomolecular Research (LBR), Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; and
| |
Collapse
|
12
|
Shimanovskaya E, Qiao R, Lesigang J, Dong G. The SAS-5 N-terminal domain is a tetramer, with implications for centriole assembly in C. elegans. WORM 2013; 2:e25214. [PMID: 24778935 PMCID: PMC3875647 DOI: 10.4161/worm.25214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/05/2013] [Accepted: 05/29/2013] [Indexed: 11/19/2022]
Abstract
The centriole is a conserved microtubule-based organelle essential for both centrosome formation and cilium biogenesis. It has a unique 9-fold symmetry and its assembly is governed by at least five component proteins (SPD-2, ZYG-1, SAS-5, SAS-6 and SAS-4), which are recruited in a hierarchical order. Recently published structural studies of the SAS-6 N-terminal domain have greatly advanced our understanding of the mechanisms of centriole assembly. However, it remains unclear how the weak interaction between the SAS-6 N-terminal head groups could drive the assembly of a closed ring-like structure, and what determines the stacking of multiple rings on top one another in centriole duplication. We recently reported that SAS-5 binds specifically to a very narrow region of the SAS-6 central coiled coil through its C-terminal domain (CTD, residues 391-404). Here, we further demonstrate by both static light scattering and small angle X-ray scattering that the SAS-5 N-terminal domain (NTD, residues 1-260) forms a tetramer. Specifically, we found that the tetramer is formed by SAS-5 residues 82-260, whereas residues 1-81 are intrinsically disordered. Taking these results together, we propose a working model for SAS-5-mediated assembly of the multi-layered central tube structure.
Collapse
Affiliation(s)
| | - Renping Qiao
- Max F. Perutz Laboratories; Medical University of Vienna; Vienna, Austria
| | - Johannes Lesigang
- Max F. Perutz Laboratories; Medical University of Vienna; Vienna, Austria
| | - Gang Dong
- Max F. Perutz Laboratories; Medical University of Vienna; Vienna, Austria
| |
Collapse
|
13
|
Noatynska A, Gotta M, Meraldi P. Mitotic spindle (DIS)orientation and DISease: cause or consequence? ACTA ACUST UNITED AC 2013; 199:1025-35. [PMID: 23266953 PMCID: PMC3529530 DOI: 10.1083/jcb.201209015] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Correct alignment of the mitotic spindle during cell division is crucial for cell fate determination, tissue organization, and development. Mutations causing brain diseases and cancer in humans and mice have been associated with spindle orientation defects. These defects are thought to lead to an imbalance between symmetric and asymmetric divisions, causing reduced or excessive cell proliferation. However, most of these disease-linked genes encode proteins that carry out multiple cellular functions. Here, we discuss whether spindle orientation defects are the direct cause for these diseases, or just a correlative side effect.
Collapse
Affiliation(s)
- Anna Noatynska
- Department of Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
| | | | | |
Collapse
|
14
|
Qiao R, Cabral G, Lettman MM, Dammermann A, Dong G. SAS-6 coiled-coil structure and interaction with SAS-5 suggest a regulatory mechanism in C. elegans centriole assembly. EMBO J 2012; 31:4334-47. [PMID: 23064147 DOI: 10.1038/emboj.2012.280] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 09/20/2012] [Indexed: 01/17/2023] Open
Abstract
The centriole is a conserved microtubule-based organelle essential for both centrosome formation and cilium biogenesis. Five conserved proteins for centriole duplication have been identified. Two of them, SAS-5 and SAS-6, physically interact with each other and are codependent for their targeting to procentrioles. However, it remains unclear how these two proteins interact at the molecular level. Here, we demonstrate that the short SAS-5 C-terminal domain (residues 390-404) specifically binds to a narrow central region (residues 275-288) of the SAS-6 coiled coil. This was supported by the crystal structure of the SAS-6 coiled-coil domain (CCD), which, together with mutagenesis studies, indicated that the association is mediated by synergistic hydrophobic and electrostatic interactions. The crystal structure also shows a periodic charge pattern along the SAS-6 CCD, which gives rise to an anti-parallel tetramer. Overall, our findings establish the molecular basis of the specific interaction between SAS-5 and SAS-6, and suggest that both proteins individually adopt an oligomeric conformation that is disrupted upon the formation of the hetero-complex to facilitate the correct assembly of the nine-fold symmetric centriole.
Collapse
Affiliation(s)
- Renping Qiao
- Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
15
|
Mikeladze-Dvali T, von Tobel L, Strnad P, Knott G, Leonhardt H, Schermelleh L, Gönczy P. Analysis of centriole elimination during C. elegans oogenesis. Development 2012; 139:1670-9. [PMID: 22492357 PMCID: PMC4074223 DOI: 10.1242/dev.075440] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2012] [Indexed: 01/04/2023]
Abstract
Centrosomes are the principal microtubule organizing centers (MTOCs) of animal cells and comprise a pair of centrioles surrounded by pericentriolar material (PCM). Centriole number must be carefully regulated, notably to ensure bipolar spindle formation and thus faithful chromosome segregation. In the germ line of most metazoan species, centrioles are maintained during spermatogenesis, but eliminated during oogenesis. Such differential behavior ensures that the appropriate number of centrioles is present in the newly fertilized zygote. Despite being a fundamental feature of sexual reproduction in metazoans, the mechanisms governing centriole elimination during oogenesis are poorly understood. Here, we investigate this question in C. elegans. Using antibodies directed against centriolar components and serial-section electron microscopy, we establish that centrioles are eliminated during the diplotene stage of the meiotic cell cycle. Moreover, we show that centriole elimination is delayed upon depletion of the helicase CGH-1. We also find that somatic cells make a minor contribution to this process, and demonstrate that the germ cell karyotype is important for timely centriole elimination. These findings set the stage for a mechanistic dissection of centriole elimination in a metazoan organism.
Collapse
Affiliation(s)
| | | | | | - Graham Knott
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, 1015 Switzerland
| | | | | | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, 1015 Switzerland
| |
Collapse
|
16
|
Kinesin-1 prevents capture of the oocyte meiotic spindle by the sperm aster. Dev Cell 2012; 22:788-98. [PMID: 22465668 DOI: 10.1016/j.devcel.2012.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/03/2011] [Accepted: 01/12/2012] [Indexed: 11/20/2022]
Abstract
Centrioles are lost during oogenesis and inherited from the sperm at fertilization. In the zygote, the centrioles recruit pericentriolar proteins from the egg to form a mature centrosome that nucleates a sperm aster. The sperm aster then captures the female pronucleus to join the maternal and paternal genomes. Because fertilization occurs before completion of female meiosis, some mechanism must prevent capture of the meiotic spindle by the sperm aster. Here we show that in wild-type Caenorhabditis elegans zygotes, maternal pericentriolar proteins are not recruited to the sperm centrioles until after completion of meiosis. Depletion of kinesin-1 heavy chain or its binding partner resulted in premature centrosome maturation during meiosis and growth of a sperm aster that could capture the oocyte meiotic spindle. Kinesin prevents recruitment of pericentriolar proteins by coating the sperm DNA and centrioles and thus prevents triploidy by a nonmotor mechanism.
Collapse
|
17
|
Kitagawa D, Flückiger I, Polanowska J, Keller D, Reboul J, Gönczy P. PP2A phosphatase acts upon SAS-5 to ensure centriole formation in C. elegans embryos. Dev Cell 2011; 20:550-62. [PMID: 21497765 DOI: 10.1016/j.devcel.2011.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/27/2010] [Accepted: 02/07/2011] [Indexed: 01/13/2023]
Abstract
Centrosome duplication occurs once per cell cycle and ensures that the two resulting centrosomes assemble a bipolar mitotic spindle. Centriole formation is fundamental for centrosome duplication. In Caenorhabditis elegans, the evolutionarily conserved proteins SPD-2, ZYG-1, SAS-6, SAS-5, and SAS-4 are essential for centriole formation, but how they function is not fully understood. Here, we demonstrate that Protein Phosphatase 2A (PP2A) is also critical for centriole formation in C. elegans embryos. We find that PP2A subunits genetically and physically interact with the SAS-5/SAS-6 complex. Furthermore, we show that PP2A-mediated dephosphorylation promotes centriolar targeting of SAS-5 and ensures SAS-6 delivery to the site of centriole assembly. We find that PP2A is similarly needed for the presence of HsSAS-6 at centrioles and for centriole formation in human cells. These findings lead us to propose that PP2A-mediated loading of SAS-6 proteins is critical at the onset of centriole formation.
Collapse
Affiliation(s)
- Daiju Kitagawa
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
18
|
Hatch E, Stearns T. The life cycle of centrioles. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 75:425-31. [PMID: 21502410 DOI: 10.1101/sqb.2010.75.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Centrioles organize the centrosome and nucleate the ciliary axoneme, and the centriole life cycle has many parallels to the chromosome cycle. The centriole cycle in animals begins at fertilization with the contribution of two centrioles by the male gamete. In the ensuing cell cycles, the duplication of centrioles is controlled temporally, spatially, and numerically. As a consequence of the duplication mechanism, the two centrioles in a typical interphase cell are of different ages and have different functions. Here, we discuss how new centrioles are assembled, what mechanisms limit centriole number, and the consequences of the inherent asymmetry of centriole duplication and segregation.
Collapse
Affiliation(s)
- E Hatch
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
19
|
Pike AN, Fisk HA. Centriole assembly and the role of Mps1: defensible or dispensable? Cell Div 2011; 6:9. [PMID: 21492451 PMCID: PMC3094359 DOI: 10.1186/1747-1028-6-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/14/2011] [Indexed: 12/21/2022] Open
Abstract
The Mps1 protein kinase is an intriguing and controversial player in centriole assembly. Originally shown to control duplication of the budding yeast spindle pole body, Mps1 is present in eukaryotes from yeast to humans, the nematode C. elegans being a notable exception, and has also been shown to regulate the spindle checkpoint and an increasing number of cellular functions relating to genomic stability. While its function in the spindle checkpoint appears to be both universally conserved and essential in most organisms, conservation of its originally described function in spindle pole duplication has proven controversial, and it is less clear whether Mps1 is essential for centrosome duplication outside of budding yeast. Recent studies of Mps1 have identified at least two distinct functions for Mps1 in centriole assembly, while simultaneously supporting the notion that Mps1 is dispensable for the process. However, the fact that at least one centrosomal substrate of Mps1 is conserved from yeast to humans down to the phosphorylation site, combined with evidence demonstrating the exquisite control exerted over centrosomal Mps1 levels suggest that the notion of being essential may not be the most important of distinctions.
Collapse
Affiliation(s)
- Amanda N Pike
- Department of Molecular Genetics, The Ohio State University, 484 W, 12th Avenue, Columbus OH 43210-1292, USA.
| | | |
Collapse
|
20
|
Lindeman RE, Pelegri F. Vertebrate maternal-effect genes: Insights into fertilization, early cleavage divisions, and germ cell determinant localization from studies in the zebrafish. Mol Reprod Dev 2010; 77:299-313. [PMID: 19908256 PMCID: PMC4276564 DOI: 10.1002/mrd.21128] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the earliest stages of animal development prior to the commencement of zygotic transcription, all critical cellular processes are carried out by maternally-provided molecular products accumulated in the egg during oogenesis. Disruption of these maternal products can lead to defective embryogenesis. In this review, we focus on maternal genes with roles in the fundamental processes of fertilization, cell division, centrosome regulation, and germ cell development with emphasis on findings from the zebrafish, as this is a unique and valuable model system for vertebrate reproduction.
Collapse
Affiliation(s)
- Robin E. Lindeman
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin
| |
Collapse
|
21
|
Pearson CG, Osborn DPS, Giddings TH, Beales PL, Winey M. Basal body stability and ciliogenesis requires the conserved component Poc1. ACTA ACUST UNITED AC 2010; 187:905-20. [PMID: 20008567 PMCID: PMC2806327 DOI: 10.1083/jcb.200908019] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Poc1 shores up basal bodies to support cilia formation in Tetrahymena thermophila, zebrafish, and humans; Poc1 depletion causes phenotypes commonly seen in ciliopathies. Centrioles are the foundation for centrosome and cilia formation. The biogenesis of centrioles is initiated by an assembly mechanism that first synthesizes the ninefold symmetrical cartwheel and subsequently leads to a stable cylindrical microtubule scaffold that is capable of withstanding microtubule-based forces generated by centrosomes and cilia. We report that the conserved WD40 repeat domain–containing cartwheel protein Poc1 is required for the structural maintenance of centrioles in Tetrahymena thermophila. Furthermore, human Poc1B is required for primary ciliogenesis, and in zebrafish, DrPoc1B knockdown causes ciliary defects and morphological phenotypes consistent with human ciliopathies. T.thermophila Poc1 exhibits a protein incorporation profile commonly associated with structural centriole components in which the majority of Poc1 is stably incorporated during new centriole assembly. A second dynamic population assembles throughout the cell cycle. Our experiments identify novel roles for Poc1 in centriole stability and ciliogenesis.
Collapse
Affiliation(s)
- Chad G Pearson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|
22
|
Duensing A, Duensing S. Centrosomes, polyploidy and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 676:93-103. [PMID: 20687471 DOI: 10.1007/978-1-4419-6199-0_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer cells are frequently characterized by ploidy changes including tetra-, poly- or aneuploidy. At the same time, malignant cells often contain supernumerary centrosomes. Aneuploidy and centrosome alterations are both hallmarks of tumor aggressiveness and increase with malignant progression. It has been proposed that aneuploidy results from a sequence of events in which failed mitoses produce tetra-/polyploid cells that enter a subsequent cell division with an increased number of centrosomes and hence with an increased risk for multipolar spindle formation and chromosome missegregation. Although this model attempts to integrate several common findings in cancer cells, it has been difficult to prove. Findings that centrosome aberrations can arise in diploid cells and the uncertain proliferative potential of polyploid cells suggest that alternative routes to chromosomal instability may exist. We discuss here recent results on centrosome biogenesis and the possible link between ploidy changes, centrosome aberrations and cancer.
Collapse
Affiliation(s)
- Anette Duensing
- Molecular Virology Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion Suite 1.8, 5117 Centre Avenue, Pittsburgh, Pennslyvania 15213, USA
| | | |
Collapse
|
23
|
Lim HH, Zhang T, Surana U. Regulation of centrosome separation in yeast and vertebrates: common threads. Trends Cell Biol 2009; 19:325-33. [PMID: 19576775 DOI: 10.1016/j.tcb.2009.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 02/06/2023]
Abstract
The assembly of a bipolar spindle is crucial for symmetric partitioning of duplicated chromosomes during cell division. Centrosomes (spindle pole body [SPB] in yeast) constitute the two poles of this bipolar structure and serve as microtubule nucleation centers. A eukaryotic cell enters the division cycle with one centrosome and duplicates it before spindle formation. A proteinaceous link keeps duplicated centrosomes together until it is severed at onset of mitosis, enabling centrosomes to migrate away from each other and assemble a characteristic mitotic spindle. Hence, centrosome separation is crucial in assembly of a bipolar spindle. Whereas centrosome (or SPB) duplication has been characterized in some detail, the separation process is less well understood. Here, we review recent studies that uncover new players and provide a greater understanding of the regulation of centrosome (or SPB) separation.
Collapse
Affiliation(s)
- Hong Hwa Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 138673 Singapore
| | | | | |
Collapse
|
24
|
Molecular dissection of the centrosome overduplication pathway in S-phase-arrested cells. Mol Cell Biol 2009; 29:1760-73. [PMID: 19139275 DOI: 10.1128/mcb.01124-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cancer cells frequently exhibit overduplicated centrosomes that lead to formation of multipolar spindles, chromosome missegregation, and aneuploidy. However, the molecular events involved in centrosome overduplication remain largely unknown. Experimentally, centrosome overduplication is observed in p53-deficient cells arrested in S phase with hydroxyurea. Using this assay, we have identified distinct roles for Cdk2, microtubules, dynein, and Hsp90 in the overduplication of functional centrosomes in mammalian cells and show that Cdk2 is also required for the generation of centriolar satellites. Moreover, we demonstrate that nuclear export is required for centriolar satellite formation and centrosome overduplication, with export inhibitors causing a Cdk-dependent accumulation of nuclear centrin granules. Hence, we propose that centrosome precursors may arise in the nucleus, providing a novel mechanistic explanation for how nuclear Cdk2 can promote centrosome overduplication in the cytoplasm. Furthermore, this study defines a molecular pathway that may be targeted to prevent centrosome overduplication in S-phase-arrested cancer cells.
Collapse
|
25
|
|
26
|
Bornens M, Azimzadeh J. Origin and evolution of the centrosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 607:119-29. [PMID: 17977464 DOI: 10.1007/978-0-387-74021-8_10] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this brief account we specifically address the question of how the plasma membrane-associated basal body/axoneme of the unicellular ancestor of eukaryotes has evolved into the centrosome organelle through the several attempts to multicellularity. We propose that the connection between the flagellar apparatus and the nucleus has been a critical feature for leading to the centriole-based centrosome of metazoa, the Spindle Pole Body of fungi, or to the absence of any centrosome in seed plants. We further suggest that the evolution of this connection could be reflected in the evolution of the centrin proteins. We then review evidence showing that the evolution of the centrosome-based tubulin network has been correlated with the evolution of the cortical actin-based cleavage apparatus. Finally we argue that this coevolution had a major impact on the cell individuation process and on the evolution of multicellular organisms. We conclude that only the metazoan lineage evolved multicellularity without loosing the ancestral association of three basic cellular functions of the basal body/axoneme or the derived centrosome organelle, namely sensation, motion and division.
Collapse
|
27
|
Rogers GC, Rusan NM, Peifer M, Rogers SL. A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. Mol Biol Cell 2008; 19:3163-78. [PMID: 18463166 DOI: 10.1091/mbc.e07-10-1069] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In animal cells, centrosomes nucleate microtubules that form polarized arrays to organize the cytoplasm. Drosophila presents an interesting paradox however, as centrosome-deficient mutant animals develop into viable adults. To understand this discrepancy, we analyzed behaviors of centrosomes and microtubules in Drosophila cells, in culture and in vivo, using a combination of live-cell imaging, electron microscopy, and RNAi. The canonical model of the cycle of centrosome function in animal cells states that centrosomes act as microtubule-organizing centers throughout the cell cycle. Unexpectedly, we found that many Drosophila cell-types display an altered cycle, in which functional centrosomes are only present during cell division. On mitotic exit, centrosomes disassemble producing interphase cells containing centrioles that lack microtubule-nucleating activity. Furthermore, steady-state interphase microtubule levels are not changed by codepleting both gamma-tubulins. However, gamma-tubulin RNAi delays microtubule regrowth after depolymerization, suggesting that it may function partially redundantly with another pathway. Therefore, we examined additional microtubule nucleating factors and found that Mini-spindles, CLIP-190, EB1, or dynein RNAi also delayed microtubule regrowth; surprisingly, this was not further prolonged when we codepleted gamma-tubulins. Taken together, these results modify our view of the cycle of centrosome function and reveal a multi-component acentrosomal microtubule assembly pathway to establish interphase microtubule arrays in Drosophila.
Collapse
Affiliation(s)
- Gregory C Rogers
- Department of Biology, Lineberger Comprehensive Cancer Center, and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Early cell biologists perceived centrosomes to be permanent cellular structures. Centrosomes were observed to reproduce once each cycle and to orchestrate assembly a transient mitotic apparatus that segregated chromosomes and a centrosome to each daughter at the completion of cell division. Centrosomes are composed of a pair of centrioles buried in a complex pericentriolar matrix. The bulk of microtubules in cells lie with one end buried in the pericentriolar matrix and the other extending outward into the cytoplasm. Centrioles recruit and organize pericentriolar material. As a result, centrioles dominate microtubule organization and spindle assembly in cells born with centrosomes. Centrioles duplicate in concert with chromosomes during the cell cycle. At the onset of mitosis, sibling centrosomes separate and establish a bipolar spindle that partitions a set of chromosomes and a centrosome to each daughter cell at the completion of mitosis and cell division. Centriole inheritance has historically been ascribed to a template mechanism in which the parental centriole contributed to, if not directed, assembly of a single new centriole once each cell cycle. It is now clear that neither centrioles nor centrosomes are essential to cell proliferation. This review examines the recent literature on inheritance of centrioles in animal cells.
Collapse
Affiliation(s)
- Patricia G Wilson
- Regenerative Bioscience Center, Department of Animal and Dairy Science, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
29
|
Yabe T, Ge X, Pelegri F. The zebrafish maternal-effect gene cellular atoll encodes the centriolar component sas-6 and defects in its paternal function promote whole genome duplication. Dev Biol 2007; 312:44-60. [PMID: 17950723 PMCID: PMC2693064 DOI: 10.1016/j.ydbio.2007.08.054] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 08/25/2007] [Accepted: 08/29/2007] [Indexed: 11/30/2022]
Abstract
A female-sterile zebrafish maternal-effect mutation in cellular atoll (cea) results in defects in the initiation of cell division starting at the second cell division cycle. This phenomenon is caused by defects in centrosome duplication, which in turn affect the formation of a bipolar spindle. We show that cea encodes the centriolar coiled-coil protein Sas-6, and that zebrafish Cea/Sas-6 protein localizes to centrosomes. cea also has a genetic paternal contribution, which when mutated results in an arrested first cell division followed by normal cleavage. Our data supports the idea that, in zebrafish, paternally inherited centrosomes are required for the first cell division while maternally derived factors are required for centrosomal duplication and cell divisions in subsequent cell cycles. DNA synthesis ensues in the absence of centrosome duplication, and the one-cycle delay in the first cell division caused by cea mutant sperm leads to whole genome duplication. We discuss the potential implications of these findings with regards to the origin of polyploidization in animal species. In addition, the uncoupling of developmental time and cell division count caused by the cea mutation suggests the presence of a time window, normally corresponding to the first two cell cycles, which is permissive for germ plasm recruitment.
Collapse
Affiliation(s)
| | - Xiaoyan Ge
- Laboratory of Genetics, University of Wisconsin – Madison
| | | |
Collapse
|
30
|
Rodrigues-Martins A, Bettencourt-Dias M, Riparbelli M, Ferreira C, Ferreira I, Callaini G, Glover DM. DSAS-6 Organizes a Tube-like Centriole Precursor, and Its Absence Suggests Modularity in Centriole Assembly. Curr Biol 2007; 17:1465-72. [PMID: 17689959 DOI: 10.1016/j.cub.2007.07.034] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/17/2007] [Accepted: 07/17/2007] [Indexed: 11/29/2022]
Abstract
Centrioles are microtubule-based cylindrical structures that exhibit 9-fold symmetry and facilitate the organization of centrosomes, flagella, and cilia [1]. Abnormalities in centrosome structure and number occur in many cancers [1, 2]. Despite its importance, very little is known about centriole biogenesis. Recent studies in C. elegans have highlighted a group of molecules necessary for centriole assembly [1, 3]. ZYG-1 kinase recruits a complex of two coiled-coil proteins, SAS-6 and SAS-5, which are necessary to form the C. elegans centriolar tube, a scaffold in centriole formation [4, 5]. This complex also recruits SAS-4, which is required for the assembly of the centriolar microtubules that decorate that tube [4, 5]. Here we show that Drosophila SAS-6 is involved in centriole assembly and cohesion. Overexpression of DSAS-6 in syncitial embryos led to the de novo formation of multiple microtubule-organizing centers (MTOCs). Strikingly, the center of these MTOCs did not contain centrioles, as described previously for SAK/PLK4 overexpression [6]. Instead, tube-like structures were present, supporting the idea that centriolar assembly starts with the formation of a tube-like scaffold, dependent on DSAS-6 [5]. In DSAS-6 loss-of-function mutants, centrioles failed to close and to elongate the structure along all axes of the 9-fold symmetry, suggesting modularity in centriole assembly. We propose that the tube is built from nine subunits fitting together laterally and longitudinally in a modular and sequential fashion, like pieces of a layered "hollow" cake.
Collapse
Affiliation(s)
- Ana Rodrigues-Martins
- Cancer Research UK Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Hergovich A, Cornils H, Hemmings BA. Mammalian NDR protein kinases: from regulation to a role in centrosome duplication. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:3-15. [PMID: 17881309 DOI: 10.1016/j.bbapap.2007.07.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 07/20/2007] [Accepted: 07/24/2007] [Indexed: 02/06/2023]
Abstract
The NDR (nuclear Dbf2-related) family of kinases is highly conserved from yeast to human, and has been classified as a subgroup of the AGC group of protein kinases based on the sequence of the catalytic domain. Like all other members of the AGC class of protein kinases, NDR kinases require the phosphorylation of conserved Ser/Thr residues for activation. Importantly, NDR family members have two unique stretches of primary sequence: an N-terminal regulatory (NTR) domain and an insert of several residues between subdomains VII and VIII of the kinase domain. The kinase domain insert functions as an auto-inhibitory sequence (AIS), while binding of the co-activator MOB (Mps-one binder) proteins to the NTR domain releases NDR kinases from inhibition of autophosphorylation. However, despite such advances in our understanding of the molecular activation mechanism(s) and physiological functions of NDR kinases in yeast and invertebrates, most biological NDR substrates still remain to be identified. Nevertheless, by showing that the centrosomal subpopulation of human NDR1/2 is required for proper centrosome duplication, the first biological role of human NDR1/2 kinases has been defined recently. How far NDR-driven centrosome overduplication could actually contribute to cellular transformation will also be discussed.
Collapse
Affiliation(s)
- Alexander Hergovich
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland
| | | | | |
Collapse
|
32
|
Bettencourt-Dias M, Glover DM. Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 2007; 8:451-63. [PMID: 17505520 DOI: 10.1038/nrm2180] [Citation(s) in RCA: 411] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Centrosomes, which were first described in the late 19th century, are found in most animal cells and undergo duplication once every cell cycle so that their number remains stable, like the genetic material of a cell. However, their function and regulation have remained elusive and controversial. Only recently has some understanding of these fundamental aspects of centrosome function and biogenesis been gained through the concerted application of genomics and proteomics, which we term 'centrosomics'. The identification of new molecules has highlighted the evolutionary conservation of centrosome function and provided a conceptual framework for understanding centrosome behaviour and how it can go awry in human disease.
Collapse
Affiliation(s)
- Mónica Bettencourt-Dias
- Instituto Gulbenkian de Ciência, Cell Cycle Regulation Laboratory, Rua da Quinta Grande, 6, P-2780-156 Oeiras, Portugal.
| | | |
Collapse
|
33
|
Centrosome duplication: of rules and licenses. Trends Cell Biol 2007; 17:215-21. [PMID: 17383880 DOI: 10.1016/j.tcb.2007.03.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 12/31/2006] [Accepted: 03/14/2007] [Indexed: 01/11/2023]
Abstract
Most microtubule arrays in animal cells, including the bipolar spindle required for cell division, are organized by centrosomes. Thus, strict control of centrosome numbers is crucial for accurate chromosome segregation. Each centrosome comprises two centrioles, which need to be duplicated exactly once in every cell cycle. Recent work has begun to illuminate the mechanisms that regulate centriole duplication. First, genetic and structural studies concur to delineate a centriole assembly pathway in Caenorhabditis elegans. Second, the protease Separase, previously known to trigger sister chromatid separation, has been implicated in a licensing mechanism that restricts centrosome duplication to a single occurrence per cell cycle. Finally, Plk4 (also called Sak), a member of the Polo kinase family, has been identified as a novel positive regulator of centriole formation.
Collapse
|
34
|
Abstract
Centrosomes and their fungal equivalents, spindle pole bodies (SPBs), are the main microtubule (MT)-organizing centers in eukaryotic cells. Several proteins have been implicated in microtubule formation by centrosomes and SPBs, including microtubule-minus-end-binding proteins and proteins that bind along the length or stabilize the plus ends of microtubules. Recent work has improved our understanding of the molecular mechanisms of MT formation. In particular, it has shown that gamma-tubulin and its associated proteins play key roles in microtubule nucleation and spindle assembly in evolutionarily distant species ranging from fungi to mammals. Other work indicates that gamma-tubulin-mediated microtubule nucleation, although necessary, is not sufficient for mitotic spindle assembly but requires additional proteins that regulate microtubule nucleation independently of centrosomes.
Collapse
Affiliation(s)
- Christiane Wiese
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.
| | | |
Collapse
|
35
|
Pelletier L, O'Toole E, Schwager A, Hyman AA, Müller-Reichert T. Centriole assembly in Caenorhabditis elegans. Nature 2007; 444:619-23. [PMID: 17136092 DOI: 10.1038/nature05318] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 10/06/2006] [Indexed: 11/09/2022]
Abstract
Centrioles are necessary for flagella and cilia formation, cytokinesis, cell-cycle control and centrosome organization/spindle assembly. They duplicate once per cell cycle, but the mechanisms underlying their duplication remain unclear. Here we show using electron tomography of staged C. elegans one-cell embryos that daughter centriole assembly begins with the formation and elongation of a central tube followed by the peripheral assembly of nine singlet microtubules. Tube formation and elongation is dependent on the SAS-5 and SAS-6 proteins, whereas the assembly of singlet microtubules onto the central tube depends on SAS-4. We further show that centriole assembly is triggered by an upstream signal mediated by SPD-2 and ZYG-1. These results define a structural pathway for the assembly of a daughter centriole and should have general relevance for future studies on centriole assembly in other organisms.
Collapse
Affiliation(s)
- Laurence Pelletier
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Recent years have seen a revival of interest in the possible contribution of centrosomes to the development of human cancers. The underlying hypothesis, formulated almost 100 years ago (Boveri T. The origin of malignant tumors; Baltimore, MD: Williams and Wilkins, 1929.), states that numerical and/or structural centrosome abnormalities will cause chromosome [corrected] missegregation. In addition, centrosome abnormalities are expected to affect cell shape, polarity, and motility. Thus, deregulation of centrosome number and function may foster both chromosomal instability and loss of tissue architecture--2 of the most common phenotypes associated with solid human tumors. In support of the role of centrosome deregulation in tumorigenesis, centrosome aberrations have been observed in early, premalignant lesions. Moreover, they are frequent in many different types of common tumors and their prominence often correlates with poor clinical outcome. This review addresses the origins of centrosome aberrations in human tumors as well as the expected impact of centrosome aberrations on cell fate and tumor development.
Collapse
Affiliation(s)
- Erich A Nigg
- Department of Cell Biology, Max-Planck-Institute for Biochemistry, Martinsried, Germany
| |
Collapse
|
37
|
Delattre M, Canard C, Gönczy P. Sequential protein recruitment in C. elegans centriole formation. Curr Biol 2006; 16:1844-9. [PMID: 16979563 DOI: 10.1016/j.cub.2006.07.059] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 07/11/2006] [Accepted: 07/14/2006] [Indexed: 11/22/2022]
Abstract
Formation of the microtubule-based centriole is a poorly understood process that is crucial for duplication of the centrosome, the principal microtubule-organizing center of animal cells . Five proteins have been identified as being essential for centriole formation in Caenorhabditis elegans: the kinase ZYG-1, as well as the coiled-coil proteins SAS-4, SAS-5, SAS-6, and SPD-2 . The relationship between these proteins is incompletely understood, limiting understanding of how they contribute to centriole formation. In this study, we established the order in which these five proteins are recruited to centrioles, and we conducted molecular epistasis experiments expanding on earlier work. We find that SPD-2 is loaded first and is needed for the centriolar localization of the four other proteins. ZYG-1 recruitment is required thereafter for the remaining three proteins to localize to centrioles. SAS-5 and SAS-6 are recruited next and are needed for the presence of SAS-4, which is incorporated last. Our results indicate in addition that the presence of SAS-5 and SAS-6 allows diminution of centriolar ZYG-1. Moreover, astral microtubules appear dispensable for the centriolar recruitment of all five proteins. Several of these proteins have homologs in other metazoans, and we expect the assembly pathway that stems from our work to be conserved.
Collapse
Affiliation(s)
- Marie Delattre
- Swiss Institute for Experimental Cancer Research, School of Life Sciences (ISREC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | | | | |
Collapse
|
38
|
Kim DY, Roy R. Cell cycle regulators control centrosome elimination during oogenesis in Caenorhabditis elegans. ACTA ACUST UNITED AC 2006; 174:751-7. [PMID: 16954347 PMCID: PMC2064329 DOI: 10.1083/jcb.200512160] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In many animals, the bipolar spindle of the first zygotic division is established after the contribution of centrioles by the sperm at fertilization. To avoid the formation of a multipolar spindle in the zygote, centrosomes are eliminated during oogenesis in most organisms, although the mechanism of this selective elimination is poorly understood. We show that cki-2, a Caenorhabditis elegans cyclin-dependent kinase (Cdk) inhibitor, is required for their appropriate elimination during oogenesis. In the absence of cki-2, embryos have supernumerary centrosomes and form multipolar spindles that result in severe aneuploidy after anaphase of the first division. Moreover, we demonstrate that this defect can be suppressed by reducing cyclin E or Cdk2 levels. This implies that the proper regulation of a cyclin E-Cdk complex by cki-2 is required for the elimination of the centrosome that occurs before or during oogenesis to ensure the assembly of a bipolar spindle in the C. elegans zygote.
Collapse
Affiliation(s)
- Dae Young Kim
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
39
|
Cox J, Jackson AP, Bond J, Woods CG. What primary microcephaly can tell us about brain growth. Trends Mol Med 2006; 12:358-66. [PMID: 16829198 DOI: 10.1016/j.molmed.2006.06.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/08/2006] [Accepted: 06/27/2006] [Indexed: 10/24/2022]
Abstract
Autosomal recessive primary microcephaly (MCPH) is a neuro-developmental disorder that causes a great reduction in brain growth in utero. MCPH is hypothesized to be a primary disorder of neurogenic mitosis, leading to reduced neuron number. Hence, MCPH proteins are likely to be important components of cellular pathways regulating human brain size. At least six genes can cause this disorder and four of these have recently been identified: autosomal recessive primary microcephaly 1 (MCPH1), abnormal spindle-like, microcephaly associated (ASPM), cyclin-dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) and centromere protein J (CENPJ). Whereas aberration of ASPM is the most common cause of MCPH, MCPH1 patients can be more readily diagnosed by the finding of increased numbers of "prophase-like cells" on routine cytogenetic investigation. Three MCPH proteins are centrosomal components but have apparently diverse roles that affect mitosis. There is accumulating evidence that evolutionary changes to the MCPH genes have contributed to the large brain size seen in primates, particularly humans. The aim of this article is to review what has been learnt about the rare condition primary microcephaly and the information this provides about normal brain growth.
Collapse
Affiliation(s)
- James Cox
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, CB2 2XY Cambridge, UK
| | | | | | | |
Collapse
|
40
|
Hajeri VA, Trejo J, Padilla PA. Characterization of sub-nuclear changes in Caenorhabditis elegans embryos exposed to brief, intermediate and long-term anoxia to analyze anoxia-induced cell cycle arrest. BMC Cell Biol 2005; 6:47. [PMID: 16368008 PMCID: PMC1343549 DOI: 10.1186/1471-2121-6-47] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 12/20/2005] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The soil nematode C. elegans survives oxygen-deprived conditions (anoxia; <.001 kPa O2) by entering into a state of suspended animation in which cell cycle progression reversibly arrests. The majority of blastomeres of embryos exposed to anoxia arrest at interphase, prophase and metaphase. The spindle checkpoint proteins SAN-1 and MDF-2 are required for embryos to survive 24 hours of anoxia. To further investigate the mechanism of cell-cycle arrest we examined and compared sub-nuclear changes such as chromatin localization pattern, post-translational modification of histone H3, spindle microtubules, and localization of the spindle checkpoint protein SAN-1 with respect to various anoxia exposure time points. To ensure analysis of embryos exposed to anoxia and not post-anoxic recovery we fixed all embryos in an anoxia glove box chamber. RESULTS Embryos exposed to brief periods to anoxia (30 minutes) contain prophase blastomeres with chromosomes in close proximity to the nuclear membrane, condensation of interphase chromatin and metaphase blastomeres with reduced spindle microtubules density. Embryos exposed to longer periods of anoxia (1-3 days) display several characteristics including interphase chromatin that is further condensed and in close proximity to the nuclear membrane, reduction in spindle structure perimeter and reduced localization of SAN-1 at the kinetochore. Additionally, we show that the spindle checkpoint protein SAN-1 is required for brief periods of anoxia-induced cell cycle arrest, thus demonstrating that this gene product is vital for early anoxia responses. In this report we suggest that the events that occur as an immediate response to brief periods of anoxia directs cell cycle arrest. CONCLUSION From our results we conclude that the sub-nuclear characteristics of embryos exposed to anoxia depends upon exposure time as assayed using brief (30 minutes), intermediate (6 or 12 hours) or long-term (24 or 72 hours) exposures. Analyzing these changes will lead to an understanding of the mechanisms required for initiation and maintenance of cell cycle arrest in respect to anoxia exposure time as well as order the events that occur to bring about anoxia-induced cell cycle arrest.
Collapse
Affiliation(s)
- Vinita A Hajeri
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Jesus Trejo
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Pamela A Padilla
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
41
|
Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L, Riparbelli M, Lehmann L, Gatt MK, Carmo N, Balloux F, Callaini G, Glover DM. SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol 2005; 15:2199-207. [PMID: 16326102 DOI: 10.1016/j.cub.2005.11.042] [Citation(s) in RCA: 487] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 10/27/2005] [Accepted: 11/11/2005] [Indexed: 11/24/2022]
Abstract
BACKGROUND SAK/PLK4 is a distinct member of the polo-like kinase family. SAK-/- mice die during embryogenesis, whereas SAK+/- mice develop liver and lung tumors and SAK+/- MEFs show mitotic abnormalities. However, the mechanism underlying these phenotypes is still not known. RESULTS Here, we show that downregulation of SAK in Drosophila cells, by mutation or RNAi, leads to loss of centrioles, the core structures of centrosomes. Such cells are able to undergo repeated rounds of cell division, but display broad disorganized mitotic spindle poles. We also show that SAK mutants lose their centrioles during the mitotic divisions preceding male meiosis but still produce cysts of 16 primary spermatocytes as in the wild-type. Mathematical modeling of the stereotyped cell divisions of spermatogenesis can account for such loss by defective centriole duplication. The majority of spermatids in SAK mutants lack centrioles and so are unable to make sperm axonemes. Finally, we show that depletion of SAK in human cells also prevents centriole duplication and gives rise to mitotic abnormalities. CONCLUSIONS SAK/PLK4 is necessary for centriole duplication both in Drosophila and human cells. Drosophila cells tolerate the lack of centrioles and undertake mitosis but cannot form basal bodies and hence flagella. Human cells depleted of SAK show error-prone mitosis, likely to underlie its tumor-suppressor role.
Collapse
Affiliation(s)
- M Bettencourt-Dias
- Cancer Research UK Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tsou MFB, Stearns T. Controlling centrosome number: licenses and blocks. Curr Opin Cell Biol 2005; 18:74-8. [PMID: 16361091 DOI: 10.1016/j.ceb.2005.12.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 12/01/2005] [Indexed: 11/22/2022]
Abstract
Centrosomes organize microtubule structures in animal cells. The centrosome duplicates once per cell cycle in most dividing cells via a pathway that relies on a pre-existing centrosome. The molecular mechanism of this 'once and only once' control is not understood, and recent results show that centrosomes can also be assembled by a de novo pathway that bypasses this control. These results require a rethinking of how proper centrosome number is maintained. We propose that the engagement of centrioles with each other normally blocks centrosome re-duplication, and that disengagement of centrioles from each other at the end of mitosis licenses them for duplication in the subsequent cell cycle.
Collapse
Affiliation(s)
- Meng-Fu Bryan Tsou
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|