1
|
Behera S, Reddy RR, Taunk K, Rapole S, Pharande RR, Suryawanshi AR. Delineation of altered brain proteins associated with furious rabies virus infection in dogs by quantitative proteomics. J Proteomics 2021; 253:104463. [PMID: 34954397 DOI: 10.1016/j.jprot.2021.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/02/2021] [Accepted: 12/19/2021] [Indexed: 11/24/2022]
Abstract
Rabies is a fatal zoonotic disease caused by rabies virus (RABV). Despite the existence of control measures, dog-transmitted human rabies accounts for ˃95% reported cases due to unavailability of sensitive diagnostic methods, inadequate understanding of disease progression and absence of therapeutics. In addition, host factors and their role in RABV infection are poorly understood. In this study, we used 8-plex iTRAQ coupled with HRMS approach to identify differentially abundant proteins (DAPs) of dog brain associated with furious rabies virus infection. Total 40 DAPs including 26 down-regulated and 14 up-regulated proteins were statistically significant in infected samples. GO annotation and IPA showed that calcium signaling and calcium transport, efficient neuronal function, metabolic pathway associated proteins were mostly altered during this infection. Total 34 proteins including 10 down-regulated proteins pertaining to calcium signaling and calcium transport pathways were successfully verified by qRT-PCR and two proteins were verified by western blot, thereby suggesting these pathways may play an important role in this infection. This study provides the map of altered brain proteins and some insights into the molecular pathophysiology associated with furious rabies virus infection. However, further investigations are required to understand their role in disease mechanism. SIGNIFICANCE: Transmission of rabies by dogs poses the greatest hazard world-wide and the rare survival of post-symptomatic patients as well as severe neurological and immunological problems pose a question to understand the molecular mechanism involved in rabies pathogenesis. However, information regarding host factors and their function in RABV infection is still inadequate. Our study has used an advanced quantitative proteomics approach i.e. 8-plex iTRAQ coupled with HRMS and identified 40 DAPs in furious rabies infected dog brain tissues compared to the controls. Further analysis showed that calcium signaling and transport pathway, efficient neuronal functions and metabolic pathway associated brain proteins were most altered during furious rabies virus infection. This data provides a map of altered brain proteins which may have role in furious rabies virus infection. Hence, this will improve our understanding of the molecular pathogenesis of RABV infection.
Collapse
Affiliation(s)
- Suchismita Behera
- Clinical Proteomics, Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, India
| | - R Rajendra Reddy
- Clinical Proteomics, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Pune, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Pune, India
| | | | - Amol Ratnakar Suryawanshi
- Clinical Proteomics, Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, India.
| |
Collapse
|
2
|
Liprins in oncogenic signaling and cancer cell adhesion. Oncogene 2021; 40:6406-6416. [PMID: 34654889 PMCID: PMC8602034 DOI: 10.1038/s41388-021-02048-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
Liprins are a multifunctional family of scaffold proteins, identified by their involvement in several important neuronal functions related to signaling and organization of synaptic structures. More recently, the knowledge on the liprin family has expanded from neuronal functions to processes relevant to cancer progression, including cell adhesion, cell motility, cancer cell invasion, and signaling. These proteins consist of regions, which by prediction are intrinsically disordered, and may be involved in the assembly of supramolecular structures relevant for their functions. This review summarizes the current understanding of the functions of liprins in different cellular processes, with special emphasis on liprins in tumor progression. The available data indicate that liprins may be potential biomarkers for cancer progression and may have therapeutic importance.
Collapse
|
3
|
Ca 2+/calmodulin kinase II-dependent regulation of β IV-spectrin modulates cardiac fibroblast gene expression, proliferation, and contractility. J Biol Chem 2021; 297:100893. [PMID: 34153319 PMCID: PMC8294584 DOI: 10.1016/j.jbc.2021.100893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 01/26/2023] Open
Abstract
Fibrosis is a pronounced feature of heart disease and the result of dysregulated activation of resident cardiac fibroblasts (CFs). Recent work identified stress-induced degradation of the cytoskeletal protein βIV-spectrin as an important step in CF activation and cardiac fibrosis. Furthermore, loss of βIV-spectrin was found to depend on Ca2+/calmodulin-dependent kinase II (CaMKII). Therefore, we sought to determine the mechanism for CaMKII-dependent regulation of βIV-spectrin and CF activity. Computational screening and MS revealed a critical serine residue (S2250 in mouse and S2254 in human) in βIV-spectrin phosphorylated by CaMKII. Disruption of βIV-spectrin/CaMKII interaction or alanine substitution of βIV-spectrin Ser2250 (βIV-S2254A) prevented CaMKII-induced degradation, whereas a phosphomimetic construct (βIV-spectrin with glutamic acid substitution at serine 2254 [βIV-S2254E]) showed accelerated degradation in the absence of CaMKII. To assess the physiological significance of this phosphorylation event, we expressed exogenous βIV-S2254A and βIV-S2254E constructs in βIV-spectrin-deficient CFs, which have increased proliferation and fibrotic gene expression compared with WT CFs. βIV-S2254A but not βIV-S2254E normalized CF proliferation, gene expression, and contractility. Pathophysiological targeting of βIV-spectrin phosphorylation and subsequent degradation was identified in CFs activated with the profibrotic ligand angiotensin II, resulting in increased proliferation and signal transducer and activation of transcription 3 nuclear accumulation. While therapeutic delivery of exogenous WT βIV-spectrin partially reversed these trends, βIV-S2254A completely negated increased CF proliferation and signal transducer and activation of transcription 3 translocation. Moreover, we observed βIV-spectrin phosphorylation and associated loss in total protein within human heart tissue following heart failure. Together, these data illustrate a considerable role for the βIV-spectrin/CaMKII interaction in activating profibrotic signaling.
Collapse
|
4
|
Emperador-Melero J, Wong MY, Wang SSH, de Nola G, Nyitrai H, Kirchhausen T, Kaeser PS. PKC-phosphorylation of Liprin-α3 triggers phase separation and controls presynaptic active zone structure. Nat Commun 2021; 12:3057. [PMID: 34031393 PMCID: PMC8144191 DOI: 10.1038/s41467-021-23116-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/16/2021] [Indexed: 01/24/2023] Open
Abstract
The active zone of a presynaptic nerve terminal defines sites for neurotransmitter release. Its protein machinery may be organized through liquid-liquid phase separation, a mechanism for the formation of membrane-less subcellular compartments. Here, we show that the active zone protein Liprin-α3 rapidly and reversibly undergoes phase separation in transfected HEK293T cells. Condensate formation is triggered by Liprin-α3 PKC-phosphorylation at serine-760, and RIM and Munc13 are co-recruited into membrane-attached condensates. Phospho-specific antibodies establish phosphorylation of Liprin-α3 serine-760 in transfected cells and mouse brain tissue. In primary hippocampal neurons of newly generated Liprin-α2/α3 double knockout mice, synaptic levels of RIM and Munc13 are reduced and the pool of releasable vesicles is decreased. Re-expression of Liprin-α3 restored these presynaptic defects, while mutating the Liprin-α3 phosphorylation site to abolish phase condensation prevented this rescue. Finally, PKC activation in these neurons acutely increased RIM, Munc13 and neurotransmitter release, which depended on the presence of phosphorylatable Liprin-α3. Our findings indicate that PKC-mediated phosphorylation of Liprin-α3 triggers its phase separation and modulates active zone structure and function.
Collapse
Affiliation(s)
| | - Man Yan Wong
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Shan Shan H Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Giovanni de Nola
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Hajnalka Nyitrai
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,VIB-KU Leuven Center for Brain and Disease Research, Campus Gasthuisberg, Leuven, Belgium
| | - Tom Kirchhausen
- Departments of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Xie X, Liang M, Yu C, Wei Z. Liprin-α-Mediated Assemblies and Their Roles in Synapse Formation. Front Cell Dev Biol 2021; 9:653381. [PMID: 33869211 PMCID: PMC8044993 DOI: 10.3389/fcell.2021.653381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 01/20/2023] Open
Abstract
Brain's functions, such as memory and learning, rely on synapses that are highly specialized cellular junctions connecting neurons. Functional synapses orchestrate the assembly of ion channels, receptors, enzymes, and scaffold proteins in both pre- and post-synapse. Liprin-α proteins are master scaffolds in synapses and coordinate various synaptic proteins to assemble large protein complexes. The functions of liprin-αs in synapse formation have been largely uncovered by genetic studies in diverse model systems. Recently, emerging structural and biochemical studies on liprin-α proteins and their binding partners begin to unveil the molecular basis of the synaptic assembly. This review summarizes the recent structural findings on liprin-αs, proposes the assembly mechanism of liprin-α-mediated complexes, and discusses the liprin-α-organized assemblies in the regulation of synapse formation and function.
Collapse
Affiliation(s)
- Xingqiao Xie
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Mingfu Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
6
|
Zhang X, Yu H, Bai R, Ma C. Identification and Characterization of Biomarkers and Their Role in Opioid Addiction by Integrated Bioinformatics Analysis. Front Neurosci 2020; 14:608349. [PMID: 33328875 PMCID: PMC7729193 DOI: 10.3389/fnins.2020.608349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
Although numerous studies have confirmed that the mechanisms of opiate addiction include genetic and epigenetic aspects, the results of such studies are inconsistent. Here, we downloaded gene expression profiling information, GSE87823, from the Gene Expression Omnibus database. Samples from males between ages 19 and 35 were selected for analysis of differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analyses were used to analyze the pathways associated with the DEGs. We further constructed protein-protein interaction (PPI) networks using the STRING database and used 10 different calculation methods to validate the hub genes. Finally, we utilized the Basic Local Alignment Search Tool (BLAST) to identify the DEG with the highest sequence similarity in mouse and detected the change in expression of the hub genes in this animal model using RT-qPCR. We identified three key genes, ADCY9, PECAM1, and IL4. ADCY9 expression decreased in the nucleus accumbens of opioid-addicted mice compared with control mice, which was consistent with the change seen in humans. The importance and originality of this study are provided by two aspects. Firstly, we used a variety of calculation methods to obtain hub genes; secondly, we exploited homology analysis to solve the difficult challenge that addiction-related experiments cannot be carried out in patients or healthy individuals. In short, this study not only explores potential biomarkers and therapeutic targets of opioid addiction but also provides new ideas for subsequent research on opioid addiction.
Collapse
Affiliation(s)
- Xiuning Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China.,Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hailei Yu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Rui Bai
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| |
Collapse
|
7
|
Muniesh MS, Barmaver SN, Huang HY, Bayansan O, Wagner OI. PTP-3 phosphatase promotes intramolecular folding of SYD-2 to inactivate kinesin-3 UNC-104 in neurons. Mol Biol Cell 2020; 31:2932-2947. [PMID: 33147118 PMCID: PMC7927192 DOI: 10.1091/mbc.e19-10-0591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNC-104 is the Caenorhabditis elegans homolog of kinesin-3 KIF1A known for its fast shuffling of synaptic vesicle protein transport vesicles in axons. SYD-2 is the homolog of liprin-α in C. elegans known to activate UNC-104; however, signals that trigger SYD-2 binding to the motor remain unknown. Because SYD-2 is a substrate of PTP-3/LAR PTPR, we speculate a role of this phosphatase in SYD–2-mediated motor activation. Indeed, coimmunoprecipitation assays revealed increased interaction between UNC-104 and SYD-2 in ptp-3 knockout worms. Intramolecular FRET analysis in living nematodes demonstrates that SYD-2 largely exists in an open conformation state in ptp-3 mutants. These assays also revealed that nonphosphorylatable SYD-2 (Y741F) exists predominately in folded conformations, while phosphomimicking SYD-2 (Y741E) primarily exists in open conformations. Increased UNC-104 motor clustering was observed along axons likely as a result of elevated SYD-2 scaffolding function in ptp-3 mutants. Also, both motor velocities as well as cargo transport speeds were visibly increased in neurons of ptp-3 mutants. Lastly, epistatic analysis revealed that PTP-3 is upstream of SYD-2 to regulate its intramolecular folding.
Collapse
Affiliation(s)
| | - Syed Nooruzuha Barmaver
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Yi Huang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Odvogmed Bayansan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Oliver Ingvar Wagner
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
8
|
Chou VT, Johnson SA, Van Vactor D. Synapse development and maturation at the drosophila neuromuscular junction. Neural Dev 2020; 15:11. [PMID: 32741370 PMCID: PMC7397595 DOI: 10.1186/s13064-020-00147-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Synapses are the sites of neuron-to-neuron communication and form the basis of the neural circuits that underlie all animal cognition and behavior. Chemical synapses are specialized asymmetric junctions between a presynaptic neuron and a postsynaptic target that form through a series of diverse cellular and subcellular events under the control of complex signaling networks. Once established, the synapse facilitates neurotransmission by mediating the organization and fusion of synaptic vesicles and must also retain the ability to undergo plastic changes. In recent years, synaptic genes have been implicated in a wide array of neurodevelopmental disorders; the individual and societal burdens imposed by these disorders, as well as the lack of effective therapies, motivates continued work on fundamental synapse biology. The properties and functions of the nervous system are remarkably conserved across animal phyla, and many insights into the synapses of the vertebrate central nervous system have been derived from studies of invertebrate models. A prominent model synapse is the Drosophila melanogaster larval neuromuscular junction, which bears striking similarities to the glutamatergic synapses of the vertebrate brain and spine; further advantages include the simplicity and experimental versatility of the fly, as well as its century-long history as a model organism. Here, we survey findings on the major events in synaptogenesis, including target specification, morphogenesis, and the assembly and maturation of synaptic specializations, with a emphasis on work conducted at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Vivian T Chou
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth A Johnson
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Huang H, Koyuncu OO, Enquist LW. Pseudorabies Virus Infection Accelerates Degradation of the Kinesin-3 Motor KIF1A. J Virol 2020; 94:e01934-19. [PMID: 32075931 PMCID: PMC7163149 DOI: 10.1128/jvi.01934-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Alphaherpesviruses, including pseudorabies virus (PRV), are neuroinvasive pathogens that establish lifelong latency in peripheral ganglia following the initial infection at mucosal surfaces. The establishment of latent infection and subsequent reactivations, during which newly assembled virions are sorted into and transported anterogradely inside axons to the initial mucosal site of infection, rely on axonal bidirectional transport mediated by microtubule-based motors. Previous studies using cultured peripheral nervous system (PNS) neurons have demonstrated that KIF1A, a kinesin-3 motor, mediates the efficient axonal sorting and transport of newly assembled PRV virions. Here we report that KIF1A, unlike other axonal kinesins, is an intrinsically unstable protein prone to proteasomal degradation. Interestingly, PRV infection of neuronal cells leads not only to a nonspecific depletion of KIF1A mRNA but also to an accelerated proteasomal degradation of KIF1A proteins, leading to a near depletion of KIF1A protein late in infection. Using a series of PRV mutants deficient in axonal sorting and anterograde spread, we identified the PRV US9/gE/gI protein complex as a viral factor facilitating the proteasomal degradation of KIF1A proteins. Moreover, by using compartmented neuronal cultures that fluidically and physically separate axons from cell bodies, we found that the proteasomal degradation of KIF1A occurs in axons during infection. We propose that the PRV anterograde sorting complex, gE/gI/US9, recruits KIF1A to viral transport vesicles for axonal sorting and transport and eventually accelerates the proteasomal degradation of KIF1A in axons.IMPORTANCE Pseudorabies virus (PRV) is an alphaherpesvirus related to human pathogens herpes simplex viruses 1 and 2 and varicella-zoster virus. Alphaherpesviruses are neuroinvasive pathogens that establish lifelong latent infections in the host peripheral nervous system (PNS). Following reactivation from latency, infection spreads from the PNS back via axons to the peripheral mucosal tissues, a process mediated by kinesin motors. Here, we unveil and characterize the underlying mechanisms for a PRV-induced, accelerated degradation of KIF1A, a kinesin-3 motor promoting the sorting and transport of PRV virions in axons. We show that PRV infection disrupts the synthesis of KIF1A and simultaneously promotes the degradation of intrinsically unstable KIF1A proteins by proteasomes in axons. Our work implies that the timing of motor reduction after reactivation would be critical because progeny particles would have a limited time window for sorting into and transport in axons for further host-to-host spread.
Collapse
Affiliation(s)
- Hao Huang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Orkide O Koyuncu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
10
|
Han KA, Um JW, Ko J. Intracellular protein complexes involved in synapse assembly in presynaptic neurons. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:347-373. [PMID: 31036296 DOI: 10.1016/bs.apcsb.2018.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The presynaptic active zone, composed of evolutionarily conserved protein complexes, is a specialized area that serves to orchestrate precise and efficient neurotransmitter release by organizing various presynaptic proteins involved in mediating docking and priming of synaptic vesicles, recruiting voltage-gated calcium channels, and modulating presynaptic nerve terminals with aligned postsynaptic structures. Among membrane proteins localized to active zone, presynaptic neurexins and LAR-RPTPs (leukocyte common antigen-related receptor tyrosine phosphatase) have emerged as hubs that orchestrate both shared and distinct extracellular synaptic adhesion pathways. In this chapter, we discuss intracellular signaling cascades involved in recruiting various intracellular proteins at both excitatory and inhibitory synaptic sites. In particular, we highlight recent studies on key active zone proteins that physically and functionally link these cascades with neurexins and LAR-RPTPs in both vertebrate and invertebrate model systems. These studies allow us to build a general, universal view of how presynaptic active zones operate together with postsynaptic structures in neural circuits.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea.
| |
Collapse
|
11
|
Varshney A, Benedetti K, Watters K, Shankar R, Tatarakis D, Coto Villa D, Magallanes K, Agenor V, Wung W, Farah F, Ali N, Le N, Pyle J, Farooqi A, Kieu Z, Bremer M, VanHoven M. The receptor protein tyrosine phosphatase CLR-1 is required for synaptic partner recognition. PLoS Genet 2018; 14:e1007312. [PMID: 29742100 PMCID: PMC5942785 DOI: 10.1371/journal.pgen.1007312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/19/2018] [Indexed: 11/19/2022] Open
Abstract
During neural circuit formation, most axons are guided to complex environments, coming into contact with multiple potential synaptic partners. However, it is critical that they recognize specific neurons with which to form synapses. Here, we utilize the split GFP-based marker Neuroligin-1 GFP Reconstitution Across Synaptic Partners (NLG-1 GRASP) to visualize specific synapses in live animals, and a circuit-specific behavioral assay to probe circuit function. We demonstrate that the receptor protein tyrosine phosphatase (RPTP) clr-1 is necessary for synaptic partner recognition (SPR) between the PHB sensory neurons and the AVA interneurons in C. elegans. Mutations in clr-1/RPTP result in reduced NLG-1 GRASP fluorescence and impaired behavioral output of the PHB circuit. Temperature-shift experiments demonstrate that clr-1/RPTP acts early in development, consistent with a role in SPR. Expression and cell-specific rescue experiments indicate that clr-1/RPTP functions in postsynaptic AVA neurons, and overexpression of clr-1/RPTP in AVA neurons is sufficient to direct additional PHB-AVA synaptogenesis. Genetic analysis reveals that clr-1/RPTP acts in the same pathway as the unc-6/Netrin ligand and the unc-40/DCC receptor, which act in AVA and PHB neurons, respectively. This study defines a new mechanism by which SPR is governed, and demonstrates that these three conserved families of molecules, with roles in neurological disorders and cancer, can act together to regulate communication between cells.
Collapse
Affiliation(s)
- Aruna Varshney
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Kelli Benedetti
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Katherine Watters
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Raakhee Shankar
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - David Tatarakis
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Doris Coto Villa
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Khristina Magallanes
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Venia Agenor
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - William Wung
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Fatima Farah
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Nebat Ali
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Nghi Le
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Jacqueline Pyle
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Amber Farooqi
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Zanett Kieu
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Martina Bremer
- Department of Mathematics and Statistics, San Jose State University, San Jose, CA, United States of America
| | - Miri VanHoven
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Liprin-α3 controls vesicle docking and exocytosis at the active zone of hippocampal synapses. Proc Natl Acad Sci U S A 2018; 115:2234-2239. [PMID: 29439199 DOI: 10.1073/pnas.1719012115] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The presynaptic active zone provides sites for vesicle docking and release at central nervous synapses and is essential for speed and accuracy of synaptic transmission. Liprin-α binds to several active zone proteins, and loss-of-function studies in invertebrates established important roles for Liprin-α in neurodevelopment and active zone assembly. However, Liprin-α localization and functions in vertebrates have remained unclear. We used stimulated emission depletion superresolution microscopy to systematically determine the localization of Liprin-α2 and Liprin-α3, the two predominant Liprin-α proteins in the vertebrate brain, relative to other active-zone proteins. Both proteins were widely distributed in hippocampal nerve terminals, and Liprin-α3, but not Liprin-α2, had a prominent component that colocalized with the active-zone proteins Bassoon, RIM, Munc13, RIM-BP, and ELKS. To assess Liprin-α3 functions, we generated Liprin-α3-KO mice by using CRISPR/Cas9 gene editing. We found reduced synaptic vesicle tethering and docking in hippocampal neurons of Liprin-α3-KO mice, and synaptic vesicle exocytosis was impaired. Liprin-α3 KO also led to mild alterations in active zone structure, accompanied by translocation of Liprin-α2 to active zones. These findings establish important roles for Liprin-α3 in active-zone assembly and function, and suggest that interplay between various Liprin-α proteins controls their active-zone localization.
Collapse
|
13
|
Ziv NE. Maintaining the active zone: Demand, supply and disposal of core active zone proteins. Neurosci Res 2018; 127:70-77. [DOI: 10.1016/j.neures.2017.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022]
|
14
|
Cdk5-dependent phosphorylation of liprinα1 mediates neuronal activity-dependent synapse development. Proc Natl Acad Sci U S A 2017; 114:E6992-E7001. [PMID: 28760951 DOI: 10.1073/pnas.1708240114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The experience-dependent modulation of brain circuitry depends on dynamic changes in synaptic connections that are guided by neuronal activity. In particular, postsynaptic maturation requires changes in dendritic spine morphology, the targeting of postsynaptic proteins, and the insertion of synaptic neurotransmitter receptors. Thus, it is critical to understand how neuronal activity controls postsynaptic maturation. Here we report that the scaffold protein liprinα1 and its phosphorylation by cyclin-dependent kinase 5 (Cdk5) are critical for the maturation of excitatory synapses through regulation of the synaptic localization of the major postsynaptic organizer postsynaptic density (PSD)-95. Whereas Cdk5 phosphorylates liprinα1 at Thr701, this phosphorylation decreases in neurons in response to neuronal activity. Blockade of liprinα1 phosphorylation enhances the structural and functional maturation of excitatory synapses. Nanoscale superresolution imaging reveals that inhibition of liprinα1 phosphorylation increases the colocalization of liprinα1 with PSD-95. Furthermore, disruption of liprinα1 phosphorylation by a small interfering peptide, siLIP, promotes the synaptic localization of PSD-95 and enhances synaptic strength in vivo. Our findings collectively demonstrate that the Cdk5-dependent phosphorylation of liprinα1 is important for the postsynaptic organization during activity-dependent synapse development.
Collapse
|
15
|
ZBP1 phosphorylation at serine 181 regulates its dendritic transport and the development of dendritic trees of hippocampal neurons. Sci Rep 2017; 7:1876. [PMID: 28500298 PMCID: PMC5431813 DOI: 10.1038/s41598-017-01963-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/07/2017] [Indexed: 11/23/2022] Open
Abstract
Local protein synthesis occurs in axons and dendrites of neurons, enabling fast and spatially restricted responses to a dynamically changing extracellular environment. Prior to local translation, mRNA that is to be translated is packed into ribonucleoprotein particles (RNPs) where RNA binding proteins ensure mRNA silencing and provide a link to molecular motors. ZBP1 is a component of RNP transport particles and is known for its role in the local translation of β-actin mRNA. Its binding to mRNA is regulated by tyrosine 396 phosphorylation, and this particular modification was shown to be vital for axonal growth and dendritic branching. Recently, additional phosphorylation of ZBP1 at serine 181 (Ser181) was described in non-neuronal cells. In the present study, we found that ZBP1 is also phosphorylated at Ser181 in neurons in a mammalian/mechanistic target of rapamycin complex 2-, Src kinase-, and mRNA binding-dependent manner. Furthermore, Ser181 ZBP1 phosphorylation was essential for the proper dendritic branching of hippocampal neurons that were cultured in vitro and for the proper ZBP1 dendritic distribution and motility.
Collapse
|
16
|
Adaptor Complex 2 Controls Dendrite Morphology via mTOR-Dependent Expression of GluA2. Mol Neurobiol 2017; 55:1590-1606. [PMID: 28190237 PMCID: PMC5820378 DOI: 10.1007/s12035-017-0436-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/03/2017] [Indexed: 11/26/2022]
Abstract
The formation of dendritic arbors in neurons is a highly regulated process. Among the regulators of dendritogenesis are numerous membrane proteins that are eventually internalized via clathrin-mediated endocytosis. AP2 is an adaptor complex that is responsible for recruiting endocytic machinery to internalized cargo. Its direct involvement in dendritogenesis in mammalian neurons has not yet been tested. We found that the knockdown of AP2b1 (β2-adaptin), an AP2 subunit, reduced the number of dendrites in developing rat hippocampal neurons and decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2 levels by inhibiting mechanistic/mammalian target of rapamycin (mTOR). The dendritic tree abruption that was caused by AP2b1 knockdown was rescued by the overexpression of GluA2 or restoration of the activity of the mTOR effector p70S6 kinase (S6K1). Altogether, this work provides evidence that the AP2 adaptor complex is needed for the dendritogenesis of mammalian neurons and reveals that mTOR-dependent GluA2 biosynthesis contributes to this process.
Collapse
|
17
|
Dbo/Henji Modulates Synaptic dPAK to Gate Glutamate Receptor Abundance and Postsynaptic Response. PLoS Genet 2016; 12:e1006362. [PMID: 27736876 PMCID: PMC5065118 DOI: 10.1371/journal.pgen.1006362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/13/2016] [Indexed: 01/28/2023] Open
Abstract
In response to environmental and physiological changes, the synapse manifests plasticity while simultaneously maintains homeostasis. Here, we analyzed mutant synapses of henji, also known as dbo, at the Drosophila neuromuscular junction (NMJ). In henji mutants, NMJ growth is defective with appearance of satellite boutons. Transmission electron microscopy analysis indicates that the synaptic membrane region is expanded. The postsynaptic density (PSD) houses glutamate receptors GluRIIA and GluRIIB, which have distinct transmission properties. In henji mutants, GluRIIA abundance is upregulated but that of GluRIIB is not. Electrophysiological results also support a GluR compositional shift towards a higher IIA/IIB ratio at henji NMJs. Strikingly, dPAK, a positive regulator for GluRIIA synaptic localization, accumulates at the henji PSD. Reducing the dpak gene dosage suppresses satellite boutons and GluRIIA accumulation at henji NMJs. In addition, dPAK associated with Henji through the Kelch repeats which is the domain essential for Henji localization and function at postsynapses. We propose that Henji acts at postsynapses to restrict both presynaptic bouton growth and postsynaptic GluRIIA abundance by modulating dPAK. To meet various developmental or environmental needs, the communication between pre- and postsynapse can be modulated in different aspects. The release of presynaptic vesicles can be regulated at the steps of docking, membrane fusion and endocytosis. Upon receiving neurotransmitter stimuli from presynaptic terminals, postsynaptic cells tune their responses by controlling the abundance of different neurotransmitter receptors at the synaptic membrane. The Drosophila NMJ is a well-defined genetic system to study the function and physiology of synapses. Two types of glutamate receptors (GluRs), IIA and IIB, present at the NMJ, exhibit distinct desensitization kinetics: GluRIIA desensitizes much slower than GluRIIB does, resulting in more ionic influx and larger postsynaptic responses. By altering the ratio of GluRIIA to GluRIIB, muscle cells modulate their responses to presynaptic release efficiently. However, how to regulate this intricate GluRIIA/GluRIIB ratio requires further study. Here, we describe a negative regulation for dPAK, a crucial regulator of GluRIIA localization at the PSD. Henji specifically binds to dPAK near the postsynaptic region and hinders dPAK localization from the PSD. By negatively controlling dPAK levels, synaptic GluRIIA abundance can be restrained within an appropriate range, protecting the synapse from unwanted fluctuations in synaptic strengths or the detriment of excitotoxicity.
Collapse
|
18
|
Choi Y, Nam J, Whitcomb DJ, Song YS, Kim D, Jeon S, Um JW, Lee SG, Woo J, Kwon SK, Li Y, Mah W, Kim HM, Ko J, Cho K, Kim E. SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development. Sci Rep 2016; 6:26676. [PMID: 27225731 PMCID: PMC4881023 DOI: 10.1038/srep26676] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/04/2016] [Indexed: 11/08/2022] Open
Abstract
Synaptogenic adhesion molecules play critical roles in synapse formation. SALM5/Lrfn5, a SALM/Lrfn family adhesion molecule implicated in autism spectrum disorders (ASDs) and schizophrenia, induces presynaptic differentiation in contacting axons, but its presynaptic ligand remains unknown. We found that SALM5 interacts with the Ig domains of LAR family receptor protein tyrosine phosphatases (LAR-RPTPs; LAR, PTPδ, and PTPσ). These interactions are strongly inhibited by the splice insert B in the Ig domain region of LAR-RPTPs, and mediate SALM5-dependent presynaptic differentiation in contacting axons. In addition, SALM5 regulates AMPA receptor-mediated synaptic transmission through mechanisms involving the interaction of postsynaptic SALM5 with presynaptic LAR-RPTPs. These results suggest that postsynaptic SALM5 promotes synapse development by trans-synaptically interacting with presynaptic LAR-RPTPs and is important for the regulation of excitatory synaptic strength.
Collapse
Affiliation(s)
- Yeonsoo Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Jungyong Nam
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Daniel J. Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, 463–707, Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Sangmin Jeon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Ji Won Um
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
- Department of Physiology and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Seong-Gyu Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Jooyeon Woo
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Seok-Kyu Kwon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Won Mah
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Jaewon Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
- Centre for Synaptic Plasticity, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| |
Collapse
|
19
|
Konopka A, Zeug A, Skupien A, Kaza B, Mueller F, Chwedorowicz A, Ponimaskin E, Wilczynski GM, Dzwonek J. Cleavage of Hyaluronan and CD44 Adhesion Molecule Regulate Astrocyte Morphology via Rac1 Signalling. PLoS One 2016; 11:e0155053. [PMID: 27163367 PMCID: PMC4862642 DOI: 10.1371/journal.pone.0155053] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/22/2016] [Indexed: 11/19/2022] Open
Abstract
Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM) proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis), we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a "stellate"-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological changes of astrocytes.
Collapse
Affiliation(s)
- Anna Konopka
- Laboratory of Molecular and Systemic Neuromorphology, The Nencki Institute of Experimental Biology, 02–093, Warsaw, ul. Pasteura 3, Poland
| | - Andre Zeug
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, 30625, Hannover, Germany
| | - Anna Skupien
- Laboratory of Molecular and Systemic Neuromorphology, The Nencki Institute of Experimental Biology, 02–093, Warsaw, ul. Pasteura 3, Poland
| | - Beata Kaza
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 02–093, Warsaw, ul. Pasteura 3, Poland
| | - Franziska Mueller
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, 30625, Hannover, Germany
| | - Agnieszka Chwedorowicz
- Laboratory of Molecular and Systemic Neuromorphology, The Nencki Institute of Experimental Biology, 02–093, Warsaw, ul. Pasteura 3, Poland
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, 30625, Hannover, Germany
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, The Nencki Institute of Experimental Biology, 02–093, Warsaw, ul. Pasteura 3, Poland
| | - Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, The Nencki Institute of Experimental Biology, 02–093, Warsaw, ul. Pasteura 3, Poland
| |
Collapse
|
20
|
Slomnicki LP, Pietrzak M, Vashishta A, Jones J, Lynch N, Elliot S, Poulos E, Malicote D, Morris BE, Hallgren J, Hetman M. Requirement of Neuronal Ribosome Synthesis for Growth and Maintenance of the Dendritic Tree. J Biol Chem 2016; 291:5721-5739. [PMID: 26757818 DOI: 10.1074/jbc.m115.682161] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 01/23/2023] Open
Abstract
The nucleolus serves as a principal site of ribosome biogenesis but is also implicated in various non-ribosomal functions, including negative regulation of the pro-apoptotic transcription factor p53. Although disruption of the nucleolus may trigger the p53-dependent neuronal death, neurotoxic consequences of a selective impairment of ribosome production are unclear. Here, we report that in rat forebrain neuronal maturation is associated with a remarkable expansion of ribosomes despite postnatal down-regulation of ribosomal biogenesis. In cultured rat hippocampal neurons, inhibition of the latter process by knockdowns of ribosomal proteins S6, S14, or L4 reduced ribosome content without disrupting nucleolar integrity, cell survival, and signaling responses to the neurotrophin brain-derived neurotrophic factor. Moreover, reduced general protein synthesis and/or formation of RNA stress granules suggested diminished ribosome recruitment to at least some mRNAs. Such a translational insufficiency was accompanied by impairment of brain-derived neurotrophic factor-mediated dendritic growth. Finally, RNA stress granules and smaller dendritic trees were also observed when ribosomal proteins were depleted from neurons with established dendrites. Thus, a robust ribosomal apparatus is required to carry out protein synthesis that supports dendritic growth and maintenance. Consequently, deficits of ribosomal biogenesis may disturb neurodevelopment by reducing neuronal connectivity. Finally, as stress granule formation and dendritic loss occur early in neurodegenerative diseases, disrupted homeostasis of ribosomes may initiate and/or amplify neurodegeneration-associated disconnection of neuronal circuitries.
Collapse
Affiliation(s)
- Lukasz P Slomnicki
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Maciej Pietrzak
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Aruna Vashishta
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - James Jones
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Nicholas Lynch
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Shane Elliot
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Eric Poulos
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - David Malicote
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Bridgit E Morris
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Justin Hallgren
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Michal Hetman
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and; Departments of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292.
| |
Collapse
|
21
|
Park H, Yang J, Kim R, Li Y, Lee Y, Lee C, Park J, Lee D, Kim H, Kim E. Mice lacking the PSD-95-interacting E3 ligase, Dorfin/Rnf19a, display reduced adult neurogenesis, enhanced long-term potentiation, and impaired contextual fear conditioning. Sci Rep 2015; 5:16410. [PMID: 26553645 PMCID: PMC4639748 DOI: 10.1038/srep16410] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/14/2015] [Indexed: 11/09/2022] Open
Abstract
Protein ubiquitination has a significant influence on diverse aspects of neuronal development and function. Dorfin, also known as Rnf19a, is a RING finger E3 ubiquitin ligase implicated in amyotrophic lateral sclerosis and Parkinson's disease, but its in vivo functions have not been explored. We report here that Dorfin is a novel binding partner of the excitatory postsynaptic scaffolding protein PSD-95. Dorfin-mutant (Dorfin(-/-)) mice show reduced adult neurogenesis and enhanced long-term potentiation in the hippocampal dentate gyrus, but normal long-term potentiation in the CA1 region. Behaviorally, Dorfin(-/-) mice show impaired contextual fear conditioning, but normal levels of cued fear conditioning, fear extinction, spatial learning and memory, object recognition memory, spatial working memory, and pattern separation. Using a proteomic approach, we also identify a number of proteins whose ubiquitination levels are decreased in the Dorfin(-/-) brain. These results suggest that Dorfin may regulate adult neurogenesis, synaptic plasticity, and contextual fear memory.
Collapse
Affiliation(s)
- Hanwool Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Jinhee Yang
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Ryunhee Kim
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Yeunkum Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Chungwoo Lee
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Jongil Park
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Dongmin Lee
- Department of Anatomy and Division of Brain Korea 21. Biomedical Science, College of Medicine, Korea University, Seoul 136-704, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21. Biomedical Science, College of Medicine, Korea University, Seoul 136-704, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| |
Collapse
|
22
|
Splicing-Dependent Trans-synaptic SALM3-LAR-RPTP Interactions Regulate Excitatory Synapse Development and Locomotion. Cell Rep 2015; 12:1618-30. [PMID: 26321637 PMCID: PMC4578660 DOI: 10.1016/j.celrep.2015.08.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 06/10/2015] [Accepted: 07/31/2015] [Indexed: 12/02/2022] Open
Abstract
Synaptic adhesion molecules regulate diverse aspects of synapse development and plasticity. SALM3 is a PSD-95-interacting synaptic adhesion molecule known to induce presynaptic differentiation in contacting axons, but little is known about its presynaptic receptors and in vivo functions. Here, we identify an interaction between SALM3 and LAR family receptor protein tyrosine phosphatases (LAR-RPTPs) that requires the mini-exon B splice insert in LAR-RPTPs. In addition, SALM3-dependent presynaptic differentiation requires all three types of LAR-RPTPs. SALM3 mutant (Salm3−/−) mice display markedly reduced excitatory synapse number but normal synaptic plasticity in the hippocampal CA1 region. Salm3−/− mice exhibit hypoactivity in both novel and familiar environments but perform normally in learning and memory tests administered. These results suggest that SALM3 regulates excitatory synapse development and locomotion behavior.
Collapse
|
23
|
Namba T, Funahashi Y, Nakamuta S, Xu C, Takano T, Kaibuchi K. Extracellular and Intracellular Signaling for Neuronal Polarity. Physiol Rev 2015; 95:995-1024. [PMID: 26133936 DOI: 10.1152/physrev.00025.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurons are one of the highly polarized cells in the body. One of the fundamental issues in neuroscience is how neurons establish their polarity; therefore, this issue fascinates many scientists. Cultured neurons are useful tools for analyzing the mechanisms of neuronal polarization, and indeed, most of the molecules important in their polarization were identified using culture systems. However, we now know that the process of neuronal polarization in vivo differs in some respects from that in cultured neurons. One of the major differences is their surrounding microenvironment; neurons in vivo can be influenced by extrinsic factors from the microenvironment. Therefore, a major question remains: How are neurons polarized in vivo? Here, we begin by reviewing the process of neuronal polarization in culture conditions and in vivo. We also survey the molecular mechanisms underlying neuronal polarization. Finally, we introduce the theoretical basis of neuronal polarization and the possible involvement of neuronal polarity in disease and traumatic brain injury.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Funahashi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Nakamuta
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chundi Xu
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Takano
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
24
|
Ackermann F, Waites CL, Garner CC. Presynaptic active zones in invertebrates and vertebrates. EMBO Rep 2015; 16:923-38. [PMID: 26160654 DOI: 10.15252/embr.201540434] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/19/2015] [Indexed: 11/09/2022] Open
Abstract
The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage-gated Ca(2+) channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses.
Collapse
Affiliation(s)
- Frauke Ackermann
- German Center for Neurodegenerative Disease, Charité Medical University, Berlin, Germany
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Craig C Garner
- German Center for Neurodegenerative Disease, Charité Medical University, Berlin, Germany
| |
Collapse
|
25
|
Coles CH, Jones EY, Aricescu AR. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Semin Cell Dev Biol 2015; 37:98-107. [PMID: 25234613 PMCID: PMC4765084 DOI: 10.1016/j.semcdb.2014.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
Abstract
The receptor protein tyrosine phosphatases (RPTPs) exhibit a wide repertoire of cellular signalling functions. In particular, type IIa RPTP family members have recently been highlighted as hubs for extracellular interactions in neurons, regulating neuronal extension and guidance, as well as synaptic organisation. In this review, we will discuss the recent progress of structural biology investigations into the architecture of type IIa RPTP ectodomains and their interactions with extracellular ligands. Structural insights, in combination with biophysical and cellular studies, allow us to begin to piece together molecular mechanisms for the transduction and integration of type IIa RPTP signals and to propose hypotheses for future experimental validation.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
26
|
Skupien A, Konopka A, Trzaskoma P, Labus J, Gorlewicz A, Swiech L, Babraj M, Dolezyczek H, Figiel I, Ponimaskin E, Wlodarczyk J, Jaworski J, Wilczynski GM, Dzwonek J. CD44 regulates dendrite morphogenesis through Src tyrosine kinase-dependent positioning of the Golgi. J Cell Sci 2014; 127:5038-51. [PMID: 25300795 DOI: 10.1242/jcs.154542] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The acquisition of proper dendrite morphology is a crucial aspect of neuronal development towards the formation of a functional network. The role of the extracellular matrix and its cellular receptors in this process has remained enigmatic. We report that the CD44 adhesion molecule, the main hyaluronan receptor, is localized in dendrites and plays a crucial inhibitory role in dendritic tree arborization in vitro and in vivo. This novel function is exerted by the activation of Src tyrosine kinase, leading to the alteration of Golgi morphology. The mechanism operates during normal brain development, but its inhibition might have a protective influence on dendritic trees under toxic conditions, during which the silencing of CD44 expression prevents dendritic shortening induced by glutamate exposure. Overall, our results indicate a novel role for CD44 as an essential regulator of dendritic arbor complexity in both health and disease.
Collapse
Affiliation(s)
- Anna Skupien
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Anna Konopka
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - PaweI Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Josephine Labus
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Adam Gorlewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Lukasz Swiech
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-190 Warsaw, Poland
| | - Matylda Babraj
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Hubert Dolezyczek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-190 Warsaw, Poland
| | - Grzegorz M Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| |
Collapse
|
27
|
Barcomb K, Buard I, Coultrap SJ, Kulbe JR, O'Leary H, Benke TA, Bayer KU. Autonomous CaMKII requires further stimulation by Ca2+/calmodulin for enhancing synaptic strength. FASEB J 2014; 28:3810-9. [PMID: 24843070 DOI: 10.1096/fj.14-250407] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A hallmark feature of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is generation of autonomous (Ca(2+)-independent) activity by T286 autophosphorylation. Biochemical studies have shown that "autonomous" CaMKII is ∼5-fold further stimulated by Ca(2+)/CaM, but demonstration of a physiological function for such regulation within cells has remained elusive. In this study, CaMKII-induced enhancement of synaptic strength in rat hippocampal neurons required both autonomous activity and further stimulation. Synaptic strength was decreased by CaMKIIα knockdown and rescued by reexpression, but not by mutants impaired for autonomy (T286A) or binding to NMDA-type glutamate receptor subunit 2B (GluN2B; formerly NR2B; I205K). Full rescue was seen with constitutively autonomous mutants (T286D), but only if they could be further stimulated (additional T305/306A mutation), and not with two other mutations that additionally impair Ca(2+)/CaM binding. Compared to rescue with wild-type CaMKII, the CaM-binding-impaired mutants even had reduced synaptic strength. One of these mutants (T305/306D) mimicked an inhibitory autophosphorylation of CaMKII, whereas the other one (Δstim) abolished CaM binding without introducing charged residues. Inhibitory T305/306 autophosphorylation also reduced GluN2B binding, but this effect was independent of reduced Ca(2+)/CaM binding and was not mimicked by T305/306D mutation. Thus, even autonomous CaMKII activity must be further stimulated by Ca(2+)/CaM for enhancement of synaptic strength.
Collapse
Affiliation(s)
| | | | | | | | - Heather O'Leary
- Department of Pharmacology and Department of Pediatrics, Section of Neurology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Timothy A Benke
- Department of Pharmacology and Department of Pediatrics, Section of Neurology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
28
|
Kowalski JR, Dube H, Touroutine D, Rush KM, Goodwin PR, Carozza M, Didier Z, Francis MM, Juo P. The Anaphase-Promoting Complex (APC) ubiquitin ligase regulates GABA transmission at the C. elegans neuromuscular junction. Mol Cell Neurosci 2014; 58:62-75. [PMID: 24321454 PMCID: PMC4036811 DOI: 10.1016/j.mcn.2013.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/23/2013] [Accepted: 12/02/2013] [Indexed: 01/05/2023] Open
Abstract
Regulation of both excitatory and inhibitory synaptic transmission is critical for proper nervous system function. Aberrant synaptic signaling, including altered excitatory to inhibitory balance, is observed in numerous neurological diseases. The ubiquitin enzyme system controls the abundance of many synaptic proteins and thus plays a key role in regulating synaptic transmission. The Anaphase-Promoting Complex (APC) is a multi-subunit ubiquitin ligase that was originally discovered as a key regulator of protein turnover during the cell cycle. More recently, the APC has been shown to function in postmitotic neurons, where it regulates diverse processes such as synapse development and synaptic transmission at glutamatergic synapses. Here we report that the APC regulates synaptic GABA signaling by acting in motor neurons to control the balance of excitatory (acetylcholine) to inhibitory (GABA) transmission at the Caenorhabditis elegans neuromuscular junction (NMJ). Loss-of-function mutants in multiple APC subunits have increased muscle excitation at the NMJ; this phenotype is rescued by expression of the missing subunit in GABA neurons. Quantitative imaging and electrophysiological analyses indicate that APC mutants have decreased GABA release but normal cholinergic transmission. Consistent with this, APC mutants exhibit convulsions in a seizure assay sensitive to reductions in GABA signaling. Previous studies in other systems showed that the APC can negatively regulate the levels of the active zone protein SYD-2 Liprin-α. Similarly, we found that SYD-2 accumulates in APC mutants at GABAergic presynaptic sites. Finally, we found that the APC subunit EMB-27 CDC16 can localize to presynapses in GABA neurons. Together, our data suggest a model in which the APC acts at GABAergic presynapses to promote GABA release and inhibit muscle excitation. These findings are the first evidence that the APC regulates transmission at inhibitory synapses and have implications for understanding nervous system pathologies, such as epilepsy, that are characterized by misregulated GABA signaling.
Collapse
Affiliation(s)
- Jennifer R Kowalski
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Hitesh Dube
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Denis Touroutine
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Kristen M Rush
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Patricia R Goodwin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Marc Carozza
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Zachary Didier
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
29
|
Developmental and activity-dependent miRNA expression profiling in primary hippocampal neuron cultures. PLoS One 2013; 8:e74907. [PMID: 24098357 PMCID: PMC3789729 DOI: 10.1371/journal.pone.0074907] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved non-coding RNAs of ∼22 nucleotides that regulate gene expression at the level of translation and play vital roles in hippocampal neuron development, function and plasticity. Here, we performed a systematic and in-depth analysis of miRNA expression profiles in cultured hippocampal neurons during development and after induction of neuronal activity. MiRNA profiling of primary hippocampal cultures was carried out using locked nucleic-acid-based miRNA arrays. The expression of 264 different miRNAs was tested in young neurons, at various developmental stages (stage 2-4) and in mature fully differentiated neurons (stage 5) following the induction of neuronal activity using chemical stimulation protocols. We identified 210 miRNAs in mature hippocampal neurons; the expression of most neuronal miRNAs is low at early stages of development and steadily increases during neuronal differentiation. We found a specific subset of 14 miRNAs with reduced expression at stage 3 and showed that sustained expression of these miRNAs stimulates axonal outgrowth. Expression profiling following induction of neuronal activity demonstrates that 51 miRNAs, including miR-134, miR-146, miR-181, miR-185, miR-191 and miR-200a show altered patterns of expression after NMDA receptor-dependent plasticity, and 31 miRNAs, including miR-107, miR-134, miR-470 and miR-546 were upregulated by homeostatic plasticity protocols. Our results indicate that specific miRNA expression profiles correlate with changes in neuronal development and neuronal activity. Identification and characterization of miRNA targets may further elucidate translational control mechanisms involved in hippocampal development, differentiation and activity-depended processes.
Collapse
|
30
|
LAR-RPTPs: synaptic adhesion molecules that shape synapse development. Trends Cell Biol 2013; 23:465-75. [DOI: 10.1016/j.tcb.2013.07.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 12/21/2022]
|
31
|
Spangler SA, Schmitz SK, Kevenaar JT, de Graaff E, de Wit H, Demmers J, Toonen RF, Hoogenraad CC. Liprin-α2 promotes the presynaptic recruitment and turnover of RIM1/CASK to facilitate synaptic transmission. ACTA ACUST UNITED AC 2013; 201:915-28. [PMID: 23751498 PMCID: PMC3678157 DOI: 10.1083/jcb.201301011] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liprin-α2 is required for the presynaptic recruitment and turnover of RIM1 and CASK, components of the release machinery, and facilitates synaptic output by regulating synaptic vesicle pool size. The presynaptic active zone mediates synaptic vesicle exocytosis, and modulation of its molecular composition is important for many types of synaptic plasticity. Here, we identify synaptic scaffold protein liprin-α2 as a key organizer in this process. We show that liprin-α2 levels were regulated by synaptic activity and the ubiquitin–proteasome system. Furthermore, liprin-α2 organized presynaptic ultrastructure and controlled synaptic output by regulating synaptic vesicle pool size. The presence of liprin-α2 at presynaptic sites did not depend on other active zone scaffolding proteins but was critical for recruitment of several components of the release machinery, including RIM1 and CASK. Fluorescence recovery after photobleaching showed that depletion of liprin-α2 resulted in reduced turnover of RIM1 and CASK at presynaptic terminals, suggesting that liprin-α2 promotes dynamic scaffolding for molecular complexes that facilitate synaptic vesicle release. Therefore, liprin-α2 plays an important role in maintaining active zone dynamics to modulate synaptic efficacy in response to changes in network activity.
Collapse
Affiliation(s)
- Samantha A Spangler
- Department of Neuroscience, Erasmus Medical Center, 3015GE Rotterdam, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Caylor RC, Jin Y, Ackley BD. The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology. Neural Dev 2013; 8:10. [PMID: 23663262 PMCID: PMC3661369 DOI: 10.1186/1749-8104-8-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/25/2013] [Indexed: 11/30/2022] Open
Abstract
Background The conserved Caenorhabditis elegans proteins NID-1/nidogen and PTP-3A/LAR-RPTP function to efficiently localize the presynaptic scaffold protein SYD-2/α-liprin at active zones. Loss of function in these molecules results in defects in the size, morphology and spacing of neuromuscular junctions. Results Here we show that the Cav2-like voltage-gated calcium channel (VGCC) proteins, UNC-2 and UNC-36, and the calmodulin kinase II (CaMKII), UNC-43, function to regulate the size and morphology of presynaptic domains in C. elegans. Loss of function in unc-2, unc-36 or unc-43 resulted in slightly larger GABAergic neuromuscular junctions (NMJs), but could suppress the synaptic morphology defects found in nid-1/nidogen or ptp-3/LAR mutants. A gain-of-function mutation in unc-43 caused defects similar to those found in nid-1 mutants. Mutations in egl-19, Cav1-like, or cca-1, Cav3-like, α1 subunits, or the second α2/δ subunit, tag-180, did not suppress nid-1, suggesting a specific interaction between unc-2 and the synaptic extracellular matrix (ECM) component nidogen. Using a synaptic vesicle marker in time-lapse microscopy studies, we observed GABAergic motor neurons adding NMJ-like structures during late larval development. The synaptic bouton addition appeared to form in at least two ways: (1) de novo formation, where a cluster of vesicles appeared to coalesce, or (2) when a single punctum became enlarged and then divided to form two discrete fluorescent puncta. In comparison to wild type animals, we found unc-2 mutants exhibited reduced NMJ dynamics, with fewer observed divisions during a similar stage of development. Conclusions We identified UNC-2/UNC-36 VGCCs and UNC-43/CaMKII as regulators of C. elegans synaptogenesis. UNC-2 has a modest role in synapse formation, but a broader role in regulating dynamic changes in the size and morphology of synapses that occur during organismal development. During the late 4th larval stage (L4), wild type animals exhibit synaptic morphologies that are similar to those found in animals lacking NID-1/PTP-3 adhesion, as well as those with constitutive activation of UNC-43. Genetic evidence indicates that the VGCCs and the NID-1/PTP-3 adhesion complex provide opposing functions in synaptic development, suggesting that modulation of synaptic adhesion may underlie synapse development in C. elegans.
Collapse
Affiliation(s)
- Raymond C Caylor
- Department of Molecular Biosciences, University of Kansas, 5004 Haworth Hall, 1200 Sunnyside Ave, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
33
|
Abstract
The large isoforms of the Rab3 interacting molecule (RIM) family, RIM1α/β and RIM2α/β, have been shown to be centrally involved in mediating presynaptic active zone function. The RIM protein family contains two additional small isoforms, RIM3γ and RIM4γ, which are composed only of the RIM-specific C-terminal C2B domain and varying N-terminal sequences and whose function remains to be elucidated. Here, we report that both, RIM3γ and RIM4γ, play an essential role for the development of neuronal arborization and of dendritic spines independent of synaptic function. γ-RIM knock-down in rat primary neuronal cultures and in vivo resulted in a drastic reduction in the complexity of neuronal arborization, affecting both axonal and dendritic outgrowth, independent of the time point of γ-RIM downregulation during dendrite development. Rescue experiments revealed that the phenotype is caused by a function common to both γ-RIMs. These findings indicate that γ-RIMs are involved in cell biological functions distinct from the regulation of synaptic vesicle exocytosis and play a role in the molecular mechanisms controlling the establishment of dendritic complexity and axonal outgrowth.
Collapse
|
34
|
Malik AR, Urbanska M, Gozdz A, Swiech LJ, Nagalski A, Perycz M, Blazejczyk M, Jaworski J. Cyr61, a matricellular protein, is needed for dendritic arborization of hippocampal neurons. J Biol Chem 2013; 288:8544-8559. [PMID: 23362279 DOI: 10.1074/jbc.m112.411629] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The shape of the dendritic arbor is one of the criteria of neuron classification and reflects functional specialization of particular classes of neurons. The development of a proper dendritic branching pattern strongly relies on interactions between the extracellular environment and intracellular processes responsible for dendrite growth and stability. We previously showed that mammalian target of rapamycin (mTOR) kinase is crucial for this process. In this work, we performed a screen for modifiers of dendritic growth in hippocampal neurons, the expression of which is potentially regulated by mTOR. As a result, we identified Cyr61, an angiogenic factor with unknown neuronal function, as a novel regulator of dendritic growth, which controls dendritic growth in a β1-integrin-dependent manner.
Collapse
Affiliation(s)
- Anna R Malik
- Laboratory of Molecular and Cellular Neurobiology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Malgorzata Urbanska
- Laboratory of Molecular and Cellular Neurobiology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Agata Gozdz
- Laboratory of Molecular and Cellular Neurobiology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Lukasz J Swiech
- Laboratory of Molecular and Cellular Neurobiology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Andrzej Nagalski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Malgorzata Perycz
- Laboratory of Molecular and Cellular Neurobiology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Magdalena Blazejczyk
- Laboratory of Molecular and Cellular Neurobiology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland.
| |
Collapse
|
35
|
Goodwin PR, Juo P. The scaffolding protein SYD-2/Liprin-α regulates the mobility and polarized distribution of dense-core vesicles in C. elegans motor neurons. PLoS One 2013; 8:e54763. [PMID: 23358451 PMCID: PMC3554613 DOI: 10.1371/journal.pone.0054763] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/14/2012] [Indexed: 01/05/2023] Open
Abstract
The polarized trafficking of axonal and dendritic components is essential for the development and maintenance of neuronal structure and function. Neuropeptide-containing dense-core (DCVs) vesicles are trafficked in a polarized manner from the cell body to their sites of release; however, the molecules involved in this process are not well defined. Here we show that the scaffolding protein SYD-2/Liprin-α is required for the normal polarized localization of Venus-tagged neuropeptides to axons of cholinergic motor neurons in C. elegans. In syd-2 loss of function mutants, the normal polarized localization of INS-22 neuropeptide-containing DCVs in motor neurons is disrupted, and DCVs accumulate in the cell body and dendrites. Time-lapse microscopy and kymograph analysis of mobile DCVs revealed that syd-2 mutants exhibit decreased numbers of DCVs moving in both anterograde and retrograde directions, and a corresponding increase in stationary DCVs in both axon commissures and dendrites. In addition, DCV run lengths and velocities were decreased in both axon commissures and dendrites of syd-2 mutants. This study shows that SYD-2 promotes bi-directional mobility of DCVs and identifies SYD-2 as a novel regulator of DCV trafficking and polarized distribution.
Collapse
Affiliation(s)
- Patricia R. Goodwin
- Department of Molecular Physiology and Pharmacology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter Juo
- Department of Molecular Physiology and Pharmacology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Yamada T, Yang Y, Bonni A. Spatial organization of ubiquitin ligase pathways orchestrates neuronal connectivity. Trends Neurosci 2013; 36:218-26. [PMID: 23332798 DOI: 10.1016/j.tins.2012.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 12/27/2022]
Abstract
Recent studies have revealed that E3 ubiquitin ligases have essential functions in the establishment of neuronal circuits. Strikingly, a common emerging theme in these studies is that spatial organization of E3 ubiquitin ligases plays a critical role in the control of neuronal morphology and connectivity. E3 ubiquitin ligases localize to the nucleus, centrosome, Golgi apparatus, axon and dendrite cytoskeleton, and synapses in neurons. Localization of ubiquitin ligases within distinct subcellular compartments may facilitate neuronal responses to extrinsic cues and the ubiquitination of local substrates. Here, we review the functions of neuronal E3 ubiquitin ligases at distinct subcellular locales and explore how they regulate neuronal morphology and function in the nervous system.
Collapse
Affiliation(s)
- Tomoko Yamada
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
37
|
Scaffolding proteins of the post-synaptic density contribute to synaptic plasticity by regulating receptor localization and distribution: relevance for neuropsychiatric diseases. Neurochem Res 2012; 38:1-22. [PMID: 22991141 DOI: 10.1007/s11064-012-0886-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/16/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
Synaptic plasticity represents the long lasting activity-related strengthening or weakening of synaptic transmission, whose well-characterized types are the long term potentiation and depression. Despite this classical definition, however, the molecular mechanisms by which synaptic plasticity may occur appear to be extremely complex and various. The post-synaptic density (PSD) of glutamatergic synapses is a major site for synaptic plasticity processes and alterations of PSD members have been recently implicated in neuropsychiatric diseases where an impairment of synaptic plasticity has also been reported. Among PSD members, scaffolding proteins have been demonstrated to bridge surface receptors with their intracellular effectors and to regulate receptors distribution and localization both at surface membranes and within the PSD. This review will focus on the molecular physiology and pathophysiology of synaptic plasticity processes, which are tuned by scaffolding PSD proteins and their close related partners, through the modulation of receptor localization and distribution at post-synaptic sites. We suggest that, by regulating both the compartmentalization of receptors along surface membrane and their degradation as well as by modulating receptor trafficking into the PSD, postsynaptic scaffolding proteins may contribute to form distinct signaling micro-domains, whose efficacy in transmitting synaptic signals depends on the dynamic stability of the scaffold, which in turn is provided by relative amounts and post-translational modifications of scaffolding members. The putative relevance for neuropsychiatric diseases and possible pathophysiological mechanisms are discussed in the last part of this work.
Collapse
|
38
|
Urbanska M, Gozdz A, Swiech LJ, Jaworski J. Mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) control the dendritic arbor morphology of hippocampal neurons. J Biol Chem 2012; 287:30240-56. [PMID: 22810227 DOI: 10.1074/jbc.m112.374405] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dendrites are the main site of information input into neurons. Their development is a multistep process controlled by mammalian target of rapamycin (mTOR) among other proteins. mTOR is a serine/threonine protein kinase that forms two functionally distinct complexes in mammalian cells: mTORC1 and mTORC2. However, the one that contributes to mammalian neuron development remains unknown. This work used short hairpin RNA against Raptor and Rictor, unique components of mTORC1 and mTORC2, respectively, to dissect mTORC involvement in this process. We provide evidence that both mTOR complexes are crucial for the proper dendritic arbor morphology of hippocampal neurons. These two complexes are required for dendritic development both under basal conditions and upon the induction of mTOR-dependent dendritic growth. We also identified Akt as a downstream effector of mTORC2 needed for proper dendritic arbor morphology, the action of which required mTORC1 and p70S6K1.
Collapse
Affiliation(s)
- Malgorzata Urbanska
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | | | | | | |
Collapse
|
39
|
Regulation of NMDA receptor transport: a KIF17-cargo binding/releasing underlies synaptic plasticity and memory in vivo. J Neurosci 2012; 32:5486-99. [PMID: 22514311 DOI: 10.1523/jneurosci.0718-12.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Regulation of NMDA receptor trafficking is crucial to modulate neuronal communication. Ca(2+)/calmodulin-dependent protein kinase phosphorylates the tail domain of KIF17, a member of the kinesin superfamily, to control NMDA receptor subunit 2B (GluN2B) transport by changing the KIF17-cargo interaction in vitro. However, the mechanisms of regulation of GluN2B transport in vivo and its physiological significance are unknown. We generated transgenic mice carrying wild-type KIF17 (TgS), or KIF17 with S1029A (TgA) or S1029D (TgD) phosphomimic mutations in kif17(-/-) background. TgA/kif17(-/-) and TgD/kif17(-/-) mice exhibited reductions in synaptic NMDA receptors because of their inability to load/unload GluN2B onto/from KIF17, leading to impaired neuronal plasticity, CREB activation, and spatial memory. Expression of GFP-KIF17 in TgS/kif17(-/-) mouse neurons rescued the synaptic and behavioral defects of kif17(-/-) mice. These results suggest that phosphorylation-based regulation of NMDA receptor transport is critical for learning and memory in vivo.
Collapse
|
40
|
de Graaff E, Maat P, Hulsenboom E, van den Berg R, van den Bent M, Demmers J, Lugtenburg PJ, Hoogenraad CC, Sillevis Smitt P. Identification of delta/notch-like epidermal growth factor-related receptor as the Tr antigen in paraneoplastic cerebellar degeneration. Ann Neurol 2012; 71:815-24. [DOI: 10.1002/ana.23550] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 01/22/2012] [Accepted: 01/27/2012] [Indexed: 01/17/2023]
|
41
|
Abstract
Presynaptic compartments are formed through the recruitment of preassembled clusters of proteins to points of cell-cell contact, however, the molecular mechanism(s) underlying this process remains unclear. We demonstrate that clusters of polymerized actin can recruit and maintain synaptic vesicles to discrete sites along the axon, and that cadherin/β-catenin/scribble/β-pix complexes play an important role in this event. Previous work has demonstrated that β-catenin and scribble are important for the clustering of vesicles at synapses. We demonstrate that β-pix, a Rac/Cdc42 guanine nucleotide exchange factor (GEF), forms a complex with cadherin, β-catenin, and scribble at synapses and enhances localized actin polymerization in rat hippocampal neurons. In cells expressing β-pix siRNA or dominant-negative β-pix that lacks its GEF activity, actin polymerization at synapses is dramatically reduced, and synaptic vesicle localization is disrupted. This β-pix phenotype can be rescued by cortactin overexpression, suggesting that β-pix-mediated actin polymerization at synapses regulates vesicle localization.
Collapse
|
42
|
Synaptic protein degradation in memory reorganization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:221-40. [PMID: 22351058 DOI: 10.1007/978-3-7091-0932-8_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a ubiquitous, major pathway of protein degradation that is involved in most cellular processes by regulating the abundance of certain proteins. Accumulating evidence indicates a role for the UPS in specific functions of neurons. In this chapter, we first introduce the role of the UPS in neuronal function and the mechanism of UPS regulation following synaptic activity. Then, we focus on the recently revealed, distinct role of the UPS in the destabilization of a reactivated memory. Finally, we discuss the physiological role of this destabilization process. The reactivated memory may undergo modification from the initial memory depending on the context in which the memory is reactivated, which we will term memory reorganization. We will introduce the role of the protein degradation-dependent destabilization process for memory reorganization and suggest a hypothetical model combining the recent findings.
Collapse
|
43
|
Kantardzhieva A, Peppi M, Lane WS, Sewell WF. Protein composition of immunoprecipitated synaptic ribbons. J Proteome Res 2011; 11:1163-74. [PMID: 22103298 DOI: 10.1021/pr2008972] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The synaptic ribbon is an electron-dense structure found in hair cells and photoreceptors. The ribbon is surrounded by neurotransmitter-filled vesicles and considered to play a role in vesicle release. We generated an objective, quantitative analysis of the protein composition of the ribbon complex using a mass spectrometry-based proteomics analysis. Our use of affinity-purified ribbons and control IgG immunoprecipitations ensure that the identified proteins are indeed associated with the ribbon complex. The use of mouse tissue, where the proteome is complete, generated a comprehensive analysis of the candidates. We identified 30 proteins (comprising 56 isoforms and subunits) associated with the ribbon complex. The ribbon complex primarily comprises proteins found in conventional synapses, which we categorized into 6 functional groups: vesicle handling (38.5%), scaffold (7.3%), cytoskeletal molecules (20.6%), phosphorylation enzymes (10.6%), molecular chaperones (8.2%), and transmembrane proteins from the presynaptic membrane firmly attached to the ribbon (11.3%). The 3 CtBP isoforms represent the major protein in the ribbon whether calculated by molar amount (30%) or by mass (20%). The relatively high quantity of phosphorylation enzymes suggests a very active and regulated structure. The ribbon appears to comprise a concentrated cluster of proteins dealing with vesicle creation, retention and distribution, and consequent exocytosis.
Collapse
Affiliation(s)
- A Kantardzhieva
- Eaton-Peabody Laboratory, Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, 243 Charles Street, Boston, Massachusetts 02114, United States
| | | | | | | |
Collapse
|
44
|
Zürner M, Mittelstaedt T, tom Dieck S, Becker A, Schoch S. Analyses of the spatiotemporal expression and subcellular localization of liprin-α proteins. J Comp Neurol 2011; 519:3019-39. [DOI: 10.1002/cne.22664] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Spangler SA, Jaarsma D, De Graaff E, Wulf PS, Akhmanova A, Hoogenraad CC. Differential expression of liprin-α family proteins in the brain suggests functional diversification. J Comp Neurol 2011; 519:3040-60. [DOI: 10.1002/cne.22665] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Zipcode binding protein 1 regulates the development of dendritic arbors in hippocampal neurons. J Neurosci 2011; 31:5271-85. [PMID: 21471362 DOI: 10.1523/jneurosci.2387-10.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pattern of dendritic branching, together with the density of synapses and receptor composition, defines the electrical properties of a neuron. The development of the dendritic arbor and its additional stabilization are highly orchestrated at the molecular level and are guided by intrinsic mechanisms and extracellular information. Although protein translation is known to contribute to these processes, the role of its local component has not been fully explored. For local translation, mRNAs are transported to dendrites in their dormant form as ribonucleoparticles (RNPs). We hypothesized that disturbing spatial mRNA distribution via RNP targeting may result in severe underdevelopment of the dendritic arbor. Zipcode binding protein 1 (ZBP1) controls β-actin mRNA transport and translation in dendrites. We showed that proper cellular levels of ZBP1, its ability to engage in mRNA binding, and Src-dependent release of mRNA cargo from ZBP1 are vital for dendritic arbor development in cultured rat hippocampal neurons. Moreover, β-actin overexpression significantly alleviated the effects of ZBP1 knockdown. These results suggest that ZBP1-dependent dendritic mRNA transport contributes to proper dendritic branching.
Collapse
|
47
|
Dabrowski A, Umemori H. Orchestrating the synaptic network by tyrosine phosphorylation signalling. J Biochem 2011; 149:641-53. [PMID: 21508038 PMCID: PMC3143439 DOI: 10.1093/jb/mvr047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 04/08/2011] [Indexed: 01/07/2023] Open
Abstract
The establishment of a functional brain requires coordinated and stereotyped formation of synapses between neurons. For this, trans-synaptic molecular cues (synaptic organizers) are exchanged between a neuron and its target to organize appropriate synapses. The understanding of signalling mechanisms by which such synaptic organizers lead to synapse formation is just being elucidated. However, recent studies revealed that some of these cues act through receptor protein tyrosine kinases (RPTKs) or phosphatases (RPTPs). Synaptogenic RPTKs and RPTPs pattern synaptic network through affecting local protein-protein binding dynamics, changing the phosphorylation state of signalling cascades, or promoting gene expression. Each RPTK or RPTP has distinct roles in synapse formation, serving at different synapses or showing differential synaptogenic effects. Thus, tyrosine phosphorylation signalling plays critical roles in building the orchestrated synaptic circuitry in the brain.
Collapse
Affiliation(s)
- Ania Dabrowski
- Molecular & Behavioral Neuroscience Institute, Medical Scientist Training Program, Neuroscience Graduate Program and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Hisashi Umemori
- Molecular & Behavioral Neuroscience Institute, Medical Scientist Training Program, Neuroscience Graduate Program and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
48
|
Abstract
Dendritic arbors are compartments of neurons dedicated to receiving synaptic inputs. Their shape is an outcome of both the intrinsic genetic program and environmental signals. The microtubules and actin cytoskeleton are both crucial for proper dendritic morphology, but how they interact is unclear. The present study demonstrates that microtubule plus-end tracking protein CLIP-170 and actin-binding protein IQGAP1 regulate dendrite morphology of rat neurons by coordinating the interaction between microtubules and the actin cytoskeleton. Moreover, we show that mTOR kinase interacts with CLIP-170 and is needed for efficient formation of a protein complex containing CLIP-170 and IQGAP1. Dynamic microtubules, CLIP-170, and IQGAP1 are required for proper dendritic arbor morphology and PI3K-mTOR-induced increase in dendritic arbor complexity. Moreover, CLIP-170 and IQGAP1 knockdown modulates dendritic arbor growth via regulation of the actin cytoskeleton. We postulate that mTOR controls dendritic arbor morphology by enhancing cross talk between dynamic microtubules and actin through CLIP-170 and IQGAP1.
Collapse
|
49
|
Namba T, Nakamuta S, Funahashi Y, Kaibuchi K. The role of selective transport in neuronal polarization. Dev Neurobiol 2011; 71:445-57. [DOI: 10.1002/dneu.20876] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Yin H, Wang L, Xiao F, Huang Z, Huang Y, Zhou C, Han Y, Tao S, Yang H, Wang X. Upregulation of liprin-α1 protein in the temporal neocortex of intractable epileptic patients and experimental rats. Synapse 2011; 65:742-50. [DOI: 10.1002/syn.20894] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/06/2010] [Indexed: 11/09/2022]
|