1
|
Lai WC, Hsu HC, Cheng CW, Wang SH, Li WC, Hsieh PS, Tseng TL, Lin TH, Shieh JC. Filament Negative Regulator CDC4 Suppresses Glycogen Phosphorylase Encoded GPH1 that Impacts the Cell Wall-Associated Features in Candida albicans. J Fungi (Basel) 2022; 8:jof8030233. [PMID: 35330235 PMCID: PMC8949380 DOI: 10.3390/jof8030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
We have previously identified Candida albicans GPH1 (orf19.7021) whose protein product was associated with C. albicans Cdc4. The GPH1 gene is a putative glycogen phosphorylase because its Saccharomyces cerevisiae homolog participates in glycogen catabolism, which involves the synthesis of β-glucan of the fungal cell wall. We made a strain whose CaCDC4 expression is repressed, and GPH1 is constitutively expressed. We established a GPH1 null mutant strain and used it to conduct the in vitro virulence assays that detect cell wall function. The in vitro virulence assay is centered on biofilm formation in which analytic procedures are implemented to evaluate cell surface hydrophobicity; competence, either in stress resistance, germ tube formation, or fibronection association; and the XTT-based adhesion and biofilm formation. We showed that the constitutively expressed GPH1 partially suppresses filamentation when the CaCDC4 expression is repressed. The C. albicans Gph1 protein is reduced in the presence of CaCdc4 in comparison with the absence of CaCdc4. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant displayed a reduction in the capability to form germ tubes and the cell surface hydrophobicity but an increase in binding with fibronectin. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant showed a rise in adhesion, the initial stage of biofilm formation, but displayed a similar capacity to form a mature biofilm. There was no major impact on the gph1Δ/gph1Δ mutant regarding the conditions of cell wall damaging and TOR pathway-associated nutrient depletion. We conclude that GPH1, adversely regulated by the filament suppressor CDC4, contributes to cell wall function in C. albicans.
Collapse
Affiliation(s)
- Wei-Chung Lai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Hsiao-Chi Hsu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Chun-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan;
| | - Shao-Hung Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi 60004, Taiwan;
| | - Wan Chen Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Po-Szu Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Tzu-Ling Tseng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Jia-Ching Shieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung City 40201, Taiwan
- Correspondence: ; Tel.: +886-424-730-022 (ext. 11806); Fax: +886-424-757-412
| |
Collapse
|
2
|
Lee YT, Fang YY, Sun YW, Hsu HC, Weng SM, Tseng TL, Lin TH, Shieh JC. THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans. Int J Mol Med 2018; 42:3193-3208. [PMID: 30320368 PMCID: PMC6202100 DOI: 10.3892/ijmm.2018.3930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022] Open
Abstract
Candida albicans (C. albicans) CDC4 (CaCDC4), encoding the F-box protein for the substrate specificity of the Skp1-cullin-F-box E3 ubiquitin ligase complex, suppresses the yeast-to-filament transition in C. albicans. In our previous study, Thr1 was identified as a CaCdc4-associated protein using affinity purification. THR1 encodes a homoserine kinase, which is involved in the threonine biosynthesis pathway. The present study generated a strain with repressible CaCDC4 expression and continuous THR1 expression. Colony and cell morphology analyses, as well as immunoblotting, revealed that the Thr1 protein was detectable under conditions in which the expression of CaCDC4 was repressed and that the filaments resulting from the repressed expression of CaCDC4 were suppressed by the constitutive expression of THR1 in C. albicans. Additionally, by using the CaSAT1-flipper method, the present study produced null mutants of THR1, GCN4, and CaCDC4. The phenotypic consequences were evaluated by growth curves, spotting assays, microscopic analysis, reverse transcription-polymerase chain reaction and XTT-based biofilm formation ability. The results revealed that fewer cells lacking THR1 entered the stationary phase but had no apparent morphological alteration. It was observed that the expression of THR1 was upregulated concurrently with GCN4 during nutrient depletion and that cells lacking GCN4 rescued the lethality of cells in the absence of THR1 in conditions accumulating homoserine in the threonine biosynthesis pathway. Of note, it was found that cells with either CaCDC4 or THR1 loss were sensitive to oxidative stress and osmotic stress, with those with THR1 loss being more sensitive. In addition, it was observed that cells with loss of either CaCDC4 or THR1 exhibited the ability to increase biofilm formation, with those lacking CaCDC4 exhibiting a greater extent of enhancement. It was concluded that CaCDC4 is important in the coordination of morphogenesis, nutrient sensing, and the stress response through THR1 in C. albicans.
Collapse
Affiliation(s)
- Yuan-Ti Lee
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Yi-Ya Fang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Yu Wen Sun
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Hsiao-Chi Hsu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Shan-Mei Weng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Tzu-Ling Tseng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Jia-Ching Shieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| |
Collapse
|
3
|
Calderón-Noreña DM, González-Novo A, Orellana-Muñoz S, Gutiérrez-Escribano P, Arnáiz-Pita Y, Dueñas-Santero E, Suárez MB, Bougnoux ME, del Rey F, Sherlock G, d’Enfert C, Correa-Bordes J, de Aldana CRV. A single nucleotide polymorphism uncovers a novel function for the transcription factor Ace2 during Candida albicans hyphal development. PLoS Genet 2015; 11:e1005152. [PMID: 25875512 PMCID: PMC4398349 DOI: 10.1371/journal.pgen.1005152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/17/2015] [Indexed: 01/10/2023] Open
Abstract
Candida albicans is a major invasive fungal pathogen in humans. An important virulence factor is its ability to switch between the yeast and hyphal forms, and these filamentous forms are important in tissue penetration and invasion. A common feature for filamentous growth is the ability to inhibit cell separation after cytokinesis, although it is poorly understood how this process is regulated developmentally. In C. albicans, the formation of filaments during hyphal growth requires changes in septin ring dynamics. In this work, we studied the functional relationship between septins and the transcription factor Ace2, which controls the expression of enzymes that catalyze septum degradation. We found that alternative translation initiation produces two Ace2 isoforms. While full-length Ace2, Ace2L, influences septin dynamics in a transcription-independent manner in hyphal cells but not in yeast cells, the use of methionine-55 as the initiation codon gives rise to Ace2S, which functions as the nuclear transcription factor required for the expression of cell separation genes. Genetic evidence indicates that Ace2L influences the incorporation of the Sep7 septin to hyphal septin rings in order to avoid inappropriate activation of cell separation during filamentous growth. Interestingly, a natural single nucleotide polymorphism (SNP) present in the C. albicans WO-1 background and other C. albicans commensal and clinical isolates generates a stop codon in the ninth codon of Ace2L that mimics the phenotype of cells lacking Ace2L. Finally, we report that Ace2L and Ace2S interact with the NDR kinase Cbk1 and that impairing activity of this kinase results in a defect in septin dynamics similar to that of hyphal cells lacking Ace2L. Together, our findings identify Ace2L and the NDR kinase Cbk1 as new elements of the signaling system that modify septin ring dynamics in hyphae to allow cell-chain formation, a feature that appears to have evolved in specific C. albicans lineages.
Collapse
Affiliation(s)
- Diana M. Calderón-Noreña
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| | - Alberto González-Novo
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| | - Sara Orellana-Muñoz
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| | - Pilar Gutiérrez-Escribano
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Yolanda Arnáiz-Pita
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| | - Encarnación Dueñas-Santero
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| | - M. Belén Suárez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Mycologie, Paris, France
- INRA, USC2019, Paris, France
| | - Francisco del Rey
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Christophe d’Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Mycologie, Paris, France
- INRA, USC2019, Paris, France
| | - Jaime Correa-Bordes
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Carlos R. Vázquez de Aldana
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| |
Collapse
|
4
|
Gunbin KV, Suslov VV, Turnaev II, Afonnikov DA, Kolchanov NA. Molecular evolution of cyclin proteins in animals and fungi. BMC Evol Biol 2011; 11:224. [PMID: 21798004 PMCID: PMC3162929 DOI: 10.1186/1471-2148-11-224] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/28/2011] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. RESULTS We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. CONCLUSIONS The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events.
Collapse
Affiliation(s)
- Konstantin V Gunbin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentyev ave., 10, Novosibirsk, Russia
| | - Valentin V Suslov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentyev ave., 10, Novosibirsk, Russia
| | - Igor I Turnaev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentyev ave., 10, Novosibirsk, Russia
| | - Dmitry A Afonnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentyev ave., 10, Novosibirsk, Russia
- Novosibirsk state University, Pirogova, 2, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentyev ave., 10, Novosibirsk, Russia
- Novosibirsk state University, Pirogova, 2, Novosibirsk, Russia
| |
Collapse
|
5
|
Gutiérrez-Escribano P, González-Novo A, Suárez MB, Li CR, Wang Y, de Aldana CRV, Correa-Bordes J. CDK-dependent phosphorylation of Mob2 is essential for hyphal development in Candida albicans. Mol Biol Cell 2011; 22:2458-69. [PMID: 21593210 PMCID: PMC3135472 DOI: 10.1091/mbc.e11-03-0205] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In yeast, CDKs and the NDR kinase Cbk1 are regulators of polarized growth. It is found that the CDK Cdc28 regulates the function of Cbk1 in response to hypha-inducing conditions by direct phosphorylation of Mob2, a conserved regulatory subunit of Cbk1. Nuclear Dbf2-related (NDR) protein kinases are essential components of regulatory pathways involved in cell morphogenesis, cell cycle control, and viability in eukaryotic cells. For their activity and function, these kinases require interaction with Mob proteins. However, little is known about how the Mob proteins are regulated. In Candida albicans, the cyclin-dependent kinase (CDK) Cdc28 and the NDR kinase Cbk1 are required for hyphal growth. Here we demonstrate that Mob2, the Cbk1 activator, undergoes a Cdc28-dependent differential phosphorylation on hyphal induction. Mutations in the four CDK consensus sites in Mob2 to Ala significantly impaired hyphal development. The mutant cells produced short hyphae with enlarged tips that displayed an illicit activation of cell separation. We also show that Cdc28 phosphorylation of Mob2 is essential for the maintenance of polarisome components at hyphal tips but not at bud tips during yeast growth. Thus we have found a novel signaling pathway by which Cdc28 controls Cbk1 through the regulatory phosphorylation of Mob2, which is crucial for normal hyphal development.
Collapse
|
6
|
Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob Agents Chemother 2010; 54:2096-111. [PMID: 20194705 DOI: 10.1128/aac.01638-09] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans can form biofilms that exhibit elevated intrinsic resistance to various antifungal agents, in particular azoles and polyenes. The molecular mechanisms involved in the antifungal resistance of biofilms remain poorly understood. We have used transcript profiling to explore the early transcriptional responses of mature C. albicans biofilms exposed to various antifungal agents. Mature C. albicans biofilms grown under continuous flow were exposed for as long as 2 h to concentrations of fluconazole (FLU), amphotericin B (AMB), and caspofungin (CAS) that, while lethal for planktonic cells, were not lethal for biofilms. Interestingly, FLU-exposed biofilms showed no significant changes in gene expression over the course of the experiment. In AMB-exposed biofilms, 2.7% of the genes showed altered expression, while in CAS-exposed biofilms, 13.0% of the genes had their expression modified. In particular, exposure to CAS resulted in the upregulation of hypha-specific genes known to play a role in biofilm formation, such as ALS3 and HWP1. There was little overlap between AMB- or CAS-responsive genes in biofilms and those that have been identified as AMB, FLU, or CAS responsive in C. albicans planktonic cultures. These results suggested that the resistance of C. albicans biofilms to azoles or polyenes was due not to the activation of specific mechanisms in response to exposure to these antifungals but rather to the intrinsic properties of the mature biofilms. In this regard, our study led us to observe that AMB physically bound C. albicans biofilms and beta-glucans, which have been proposed to be major constituents of the biofilm extracellular matrix and to prevent azoles from reaching biofilm cells. Thus, enhanced extracellular matrix or beta-glucan synthesis during biofilm growth might prevent antifungals, such as azoles and polyenes, from reaching biofilm cells, thus limiting their toxicity to these cells and the associated transcriptional responses.
Collapse
|
7
|
Wang Y. CDKs and the yeast-hyphal decision. Curr Opin Microbiol 2009; 12:644-9. [DOI: 10.1016/j.mib.2009.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
|
8
|
Abstract
AbstractSeptins are a conserved family of GTP-binding proteins found in living organisms ranging from yeasts to mammals. They are able to polymerize and form hetero-oligomers that assemble into higher-order structures whose detailed molecular architecture has recently been described in different organisms. In Saccharomyces cerevisiae, septins exert numerous functions throughout the cell cycle, serving as scaffolds for many different proteins or as diffusion barriers at the bud neck. In other fungi, septins are required for the proper completion of diverse functions such as polarized growth or pathogenesis. Recent results from several fungi have revealed important differences in septin organization and regulation as compared with S. cerevisiae, especially during Candida albicans hyphal growth and in Ashbya gossypii. Here we focus on these recent findings, their relevance in the biology of these eukaryotes and in consequence the “renaissance” of the study of septin structures in cells showing a different kind of morphological behaviour.
Collapse
|
9
|
|