1
|
Wang C, Wang W, Liu Y, Yong M, Yang Y, Zhou H. Rac GTPase activating protein 1 promotes oncogenic progression of epithelial ovarian cancer. Cancer Sci 2017; 109:84-93. [PMID: 29095547 PMCID: PMC5765294 DOI: 10.1111/cas.13434] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/27/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022] Open
Abstract
Rac GTPase activating protein 1 (RacGAP1) can regulate cytokinesis and cell differentiation. The oncogenic role of RacGAP1 has been partially studied in gastric cancer, colorectal cancer, and breast cancer. In the present study, we endeavor to evaluate its expression and functions in epithelial ovarian cancer (EOC). We retrospectively collected the clinicopathological information of 117 patients who underwent curative surgery for EOC. Expression of RacGAP1 protein in primary tumor tissues was evaluated by immunohistochemistry, which was significantly associated with tumor pathological grade, tumor stage, and lymph node metastasis. Patients with lower RacGAP1 level had a longer survival time and lower recurrence risk. Multivariate results identified the independent prognostic role of RacGAP1 for both recurrence and survival in EOC patients. Cellular studies showed that RacGAP1 can positively regulate the activation of RhoA and Erk proteins. In addition, wound healing assay and Transwell assay found that RacGAP1 can up-regulate the migration and invasion process of EOC cells, respectively. In all, our results not only confirmed the prognostic role of RacGAP1 for recurrence and survival in EOC patients, but also highlighted its possible potency for drug development.
Collapse
Affiliation(s)
- Chuanjiang Wang
- Department of Reproductive Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wenxia Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yujuan Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Min Yong
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yamei Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Honggui Zhou
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
2
|
Schill EM, Lake JI, Tusheva OA, Nagy N, Bery SK, Foster L, Avetisyan M, Johnson SL, Stenson WF, Goldstein AM, Heuckeroth RO. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev Biol 2016; 409:473-88. [PMID: 26586201 PMCID: PMC4862364 DOI: 10.1016/j.ydbio.2015.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 12/17/2022]
Abstract
Hirschsprung Disease (HSCR) is a potentially deadly birth defect characterized by the absence of the enteric nervous system (ENS) in distal bowel. Although HSCR has clear genetic causes, no HSCR-associated mutation is 100% penetrant, suggesting gene-gene and gene-environment interactions determine HSCR occurrence. To test the hypothesis that certain medicines might alter HSCR risk we treated zebrafish with medications commonly used during early human pregnancy and discovered that ibuprofen caused HSCR-like absence of enteric neurons in distal bowel. Using fetal CF-1 mouse gut slice cultures, we found that ibuprofen treated enteric neural crest-derived cells (ENCDC) had reduced migration, fewer lamellipodia and lower levels of active RAC1/CDC42. Additionally, inhibiting ROCK, a RHOA effector and known RAC1 antagonist, reversed ibuprofen effects on migrating mouse ENCDC in culture. Ibuprofen also inhibited colonization of Ret+/- mouse bowel by ENCDC in vivo and dramatically reduced bowel colonization by chick ENCDC in culture. Interestingly, ibuprofen did not affect ENCDC migration until after at least three hours of exposure. Furthermore, mice deficient in Ptgs1 (COX 1) and Ptgs2 (COX 2) had normal bowel colonization by ENCDC and normal ENCDC migration in vitro suggesting COX-independent effects. Consistent with selective and strain specific effects on ENCDC, ibuprofen did not affect migration of gut mesenchymal cells, NIH3T3, or WT C57BL/6 ENCDC, and did not affect dorsal root ganglion cell precursor migration in zebrafish. Thus, ibuprofen inhibits ENCDC migration in vitro and bowel colonization by ENCDC in vivo in zebrafish, mouse and chick, but there are cell type and strain specific responses. These data raise concern that ibuprofen may increase Hirschsprung disease risk in some genetically susceptible children.
Collapse
Affiliation(s)
- Ellen Merrick Schill
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jonathan I Lake
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Olga A Tusheva
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA; Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Saya K Bery
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Lynne Foster
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Marina Avetisyan
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Stephen L Johnson
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - William F Stenson
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
A phosphorylation switch controls the spatiotemporal activation of Rho GTPases in directional cell migration. Nat Commun 2015; 6:7721. [PMID: 26166433 PMCID: PMC4510974 DOI: 10.1038/ncomms8721] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/04/2015] [Indexed: 12/15/2022] Open
Abstract
Although cell migration plays a central role in development and disease, the underlying molecular mechanism is not fully understood. Here we report that a phosphorylation-mediated molecular switch comprising deleted in liver cancer 1 (DLC1), tensin-3 (TNS3), phosphatase and tensin homologue (PTEN) and phosphoinositide-3-kinase (PI3K) controls the spatiotemporal activation of the small GTPases, Rac1 and RhoA, thereby initiating directional cell migration induced by growth factors. On epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) stimulation, TNS3 and PTEN are phosphorylated at specific Thr residues, which trigger the rearrangement of the TNS3–DLC1 and PTEN–PI3K complexes into the TNS3–PI3K and PTEN–DLC1 complexes. Subsequently, the TNS3–PI3K complex translocates to the leading edge of a migrating cell to promote Rac1 activation, whereas PTEN–DLC1 translocates to the posterior for localized RhoA activation. Our work identifies a core signalling mechanism by which an external motility stimulus is coupled to the spatiotemporal activation of Rac1 and RhoA to drive directional cell migration. Directed cell migration requires spatially regulated activity of GTPases Rac1 and RhoA. Here Cao et al. show that growth factor stimulation promotes phosphorylation of tensin-3 and phosphatase and tensin homologue (PTEN) and their association with PI 3-kinase and deleted in liver cancer 1 (DLC1) to regulate GTPase activity.
Collapse
|
4
|
Cheng PL, Lu H, Shelly M, Gao H, Poo MM. Phosphorylation of E3 ligase Smurf1 switches its substrate preference in support of axon development. Neuron 2011; 69:231-43. [PMID: 21262463 DOI: 10.1016/j.neuron.2010.12.021] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2010] [Indexed: 12/19/2022]
Abstract
Ubiquitin E3 ligases serve for ubiquitination of specific substrates, and its ligase efficacy is regulated by interacting proteins or substrate modifications. Whether and how the ligases themselves are modified by cellular signaling is unclear. Here we report that protein kinase A (PKA)-dependent phosphorylation of Smad Ubiquitin Regulatory Factor 1 (Smurf1) can switch its substrate preference between two proteins of opposing actions on axon development. Extracellular factors that promote axon formation elevated Smurf1 phosphorylation at a PKA site Thr³⁰⁶, and preventing this phosphorylation reduced axon formation in cultured hippocampal neurons and impaired polarization of cortical neurons in vivo. Thr³⁰⁶-phosphorylation changed the relative affinities of Smurf1 for its substrates, leading to reduced degradation of polarity protein Par6 and increased degradation of growth-inhibiting RhoA. Thus, PKA-dependent phosphorylation of the E3 ligase could switch its substrate preference, contributing to selective protein degradation required for localized cellular function.
Collapse
Affiliation(s)
- Pei-lin Cheng
- Division of Neurobiology, Department of Molecular and Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
RhoA and Rac play key and opposite roles during neuronal polarization. We now show that Lfc, a guanosine nucleotide exchange factor (GEF), localizes to the Golgi apparatus and growth cones of developing neurons and negatively regulates neurite sprouting and axon formation through a Rho signaling pathway. Tctex-1, a dynein light chain implicated in axon outgrowth by modulating actin dynamics and Rac activity, colocalizes and physically interacts with Lfc, thus inhibiting its GEF activity, decreasing Rho-GTP levels, and functionally antagonizing Lfc during neurite formation.
Collapse
|
6
|
Yang Y, Qin W, Tian G, Jian W. Expression and functional characterization of a Rho-family small GTPase CDC42 from Trichinella spiralis. Parasitol Res 2010; 107:153-62. [PMID: 20369253 DOI: 10.1007/s00436-010-1851-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 03/12/2010] [Indexed: 12/31/2022]
Abstract
A full-length cDNA encoding a Rho-family small GTPase gene cdc42 of Trichinella spiralis was expressed in E. coli. The recombinant protein of TsCDC42 was purified and used to raise the polyclonal antibodies. The expression of TsCDC42 in different stages of parasite was investigated. The western blot showed that TsCDC42 was expressed in all stages of T. spiralis, including newborn larvae, muscle larvae and adult worms. The immuno-localization revealed that TsCDC42 was ubiquitously distributed in the newborn larvae, muscle larvae and adult worm. Cross-species RNAi was done by knockdown Tscdc42 RNAi in C. elegans. The results revealed that endogenous expression level of CDC42 was decreased by knockdown Tscdc42 RNAi in C. elegans, and this knockdown reduced the progeny of C. elegans. It suggested that Tscdc42 might play the same roles in the early development of T. spiralis.
Collapse
Affiliation(s)
- Yurong Yang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, Fujian 361005, People's Republic of China.
| | | | | | | |
Collapse
|
7
|
Damoiseaux R, Sherman SP, Alva JA, Peterson C, Pyle AD. Integrated chemical genomics reveals modifiers of survival in human embryonic stem cells. Stem Cells 2009; 27:533-542. [PMID: 19074420 DOI: 10.1634/stemcells.2008-0596] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding how survival is regulated in human embryonic stem cells (hESCs) could improve expansion of stem cells for production of cells for regenerative therapy. There is great variability in comparing the differentiation potential of multiple hESC lines. One reason for this is poor survival upon dissociation, which limits selection of homogeneous populations of cells. Understanding the complexity of survival signals has been hindered by the lack of a reproducible system to identify modulators of survival in pluripotent cells. We therefore developed a high-content screening approach with small molecules to examine hESC survival. We have identified novel small molecules that improve survival by inhibiting either Rho-kinase or protein kinase C. Importantly, small molecule targets were verified using short hairpin RNA. Rescreening with stable hESCs that were genetically altered to have increased survival enabled us to identify groups of pathway targets that are important for modifying survival. Understanding how survival is regulated in hESCs could overcome severe technical difficulties in the field, namely expansion of stem cells to improve production of cells and tissues for regenerative therapy.
Collapse
Affiliation(s)
- Robert Damoiseaux
- Molecular Screening Shared Resource, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - Sean P Sherman
- Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - Jackelyn A Alva
- Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - Cory Peterson
- Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - April D Pyle
- Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|