1
|
Kim T, Alvarez JC, Rana D, Preciado J, Liu T, Begcy K. Evolution of NAC transcription factors from early land plants to domesticated crops. PLANT & CELL PHYSIOLOGY 2025; 66:566-580. [PMID: 39720999 PMCID: PMC12085091 DOI: 10.1093/pcp/pcae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 12/26/2024]
Abstract
NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATOR FACTOR 1/2 (ATAF1/2), and CUP-SHAPED COTYLEDON (CUC2)] transcription factors are key regulators of plant growth, development, and stress responses but were also crucial players during land plant adaptation and crop domestication. Using representative members of green algae, bryophytes, lycophytes, gymnosperms, and angiosperms, we expanded the evolutionary history of NAC transcription factors to unveil the relationships among members of this gene family. We found a massive increase in the number of NAC transcription factors from green algae to lycophytes and an even larger increase in flowering plants. Many of the NAC clades arose later during evolution since we found eudicot- and monocot-specific clades. Cis-elements analysis in NAC promoters showed the presence of abiotic and biotic stress as well as hormonal response elements, which indicate the ancestral function of NAC transcription factor genes in response to environmental stimuli and in plant development. At the transcriptional level, the expression of NAC transcription factors was low or absent in male reproduction, particularly mature pollen, across the plant kingdom. We also identified NAC genes with conserved expression patterns in response to heat stress in Marchantia polymorpha and Oryza sativa. Our study provides further evidence that transcriptional mechanisms associated with stress responses and development emerged early during plant land adaptation and are still conserved in flowering plants and domesticated crops.
Collapse
Affiliation(s)
- Taehoon Kim
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| | - Javier C Alvarez
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
- School of Applied Sciences and Engineering, EAFIT University, PO Box 98873, Medellin 050022, Colombia
| | - Divya Rana
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| | - Jesus Preciado
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| | - Tie Liu
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
- Horticultural Sciences Department, University of Florida, PO Box 110690, Gainesville, FL 32611, USA
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Aljedaani F, Luo Y, Deng Y, Smet W, Nasim Z, Xu X, Shahul Hameed UF, Xiao TT, Gonzalez-Kise JK, Arold S, Blilou I. The dual function of EMB1579 in transcription and splicing governs tissue patterning in the Arabidopsis root meristem. Cell Rep 2025; 44:115660. [PMID: 40333181 DOI: 10.1016/j.celrep.2025.115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/24/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
In the root meristem of Arabidopsis, stem cell maintenance depends on the coordinated action of transcription factor networks. The transcriptional regulator EMBRYO DEFECTIVE 1579 (EMB1579), a protein that forms nuclear condensates, regulates plant growth. However, the molecular mechanisms through which it functions in the root meristem remain largely unclear. Here, we show that EMB1579 is required for stem cell maintenance and proper cell division orientation. EMB1579 modulates the function of two root stem cell regulatory modules, PLETHORAs and SCARECROW-SHORT-ROOT, through a process involving transcriptional regulation and RNA splicing. We show that EMB1579 acts as a catalyst for stem cell gene expression, and its activity is fine-tuned by its physical association with RNA splicing factors. The formation of nuclear condensates is essential for EMB1579 function in the root meristem. Our findings reveal a mechanism by which EMB1579 regulates stem cell determinants in the root meristem and expand the understanding of gene regulation complexity in plant development.
Collapse
Affiliation(s)
- Fatimah Aljedaani
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yinghui Luo
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yanming Deng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Wouter Smet
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Xinjing Xu
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Umar F Shahul Hameed
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ting Ting Xiao
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jose Kenyi Gonzalez-Kise
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Stefan Arold
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ikram Blilou
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
3
|
Liu L, Gong W, Stöckl R, Denninger P, Schwartz U, Johnson MA, Dresselhaus T. Mago nashi controls auxin-mediated embryo patterning in Arabidopsis by regulating transcript abundance. THE NEW PHYTOLOGIST 2025. [PMID: 40251862 DOI: 10.1111/nph.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/22/2025] [Indexed: 04/21/2025]
Affiliation(s)
- Liping Liu
- Cell Biology and Plant Biochemistry, Institute of Plant Sciences, University of Regensburg, Regensburg, D-93053, Germany
| | - Wen Gong
- Cell Biology and Plant Biochemistry, Institute of Plant Sciences, University of Regensburg, Regensburg, D-93053, Germany
| | - Regina Stöckl
- Cell Biology and Plant Biochemistry, Institute of Plant Sciences, University of Regensburg, Regensburg, D-93053, Germany
| | - Philipp Denninger
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising, 85354, Germany
| | - Uwe Schwartz
- NGS Analysis Center, Biology and Pre-ClinicalMedicine, University of Regensburg, Regensburg, D-93053, Germany
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Institute of Plant Sciences, University of Regensburg, Regensburg, D-93053, Germany
| |
Collapse
|
4
|
Konstantinova N, von der Mark C, De Rybel B. Intrinsic cues guiding changes in division orientation in the Arabidopsis root meristem: a formative experience. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1546-1552. [PMID: 39688908 DOI: 10.1093/jxb/erae509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
The orientation of cell division is crucial for normal development of all plant organs throughout their life cycle. Despite the importance of understanding the intricate molecular mechanisms guiding this process, relatively few pathways have been characterized to date. Here we want to outline what is known about the molecular regulation guiding changes in division orientation in the root apical meristem of the model plant Arabidopsis thaliana, from the upstream transcriptional modules to the downstream executors that lead to division plane establishment. We specifically focus on the gaps in our knowledge about this highly coordinated process and propose that a new approach should be taken to characterize how changes in division orientation are controlled in more holistic detail.
Collapse
Affiliation(s)
- Nataliia Konstantinova
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Claudia von der Mark
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
5
|
Xiong H, He H, Chang Y, Miao B, Liu Z, Wang Q, Dong F, Xiong L. Multiple roles of NAC transcription factors in plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:510-538. [PMID: 39950532 DOI: 10.1111/jipb.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 03/29/2025]
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are a family of plant-specific TFs that play crucial roles in various aspects of plant development and stress responses. Here, we provide an in-depth review of the structural characteristics, regulatory mechanisms, and functional roles of NACs in different plant species. One of the key features of NACs is their ability to regulate gene expression through a variety of mechanisms, including binding to DNA sequences in the promoter regions of target genes, interacting with other TFs, and modulating chromatin structure. We discuss these mechanisms in detail, providing insights into the complex regulatory networks that govern the activity of NACs. We explore the diverse functions of these TFs in plant growth and development processes, including embryogenesis, seed development, root and shoot development, floral development and fruit ripening, secondary cell wall formation, and senescence. We also discuss the diverse regulatory roles of NACs in response to various stresses, including drought, flooding, heat, cold, salinity, nutrient deficit, and diseases. Lastly, we emphasize the crosstalk role of NACs between developmental processes and stress responses. This integrated perspective highlights how NACs orchestrate plant growth and resilience. Overall, this review provides a comprehensive overview of the pivotal roles of NACs in plant development and stress responses, emphasizing their potential for engineering stress-resistant crops and enhancing agricultural productivity.
Collapse
Affiliation(s)
- Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haidong He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Binbin Miao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianqian Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faming Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Marasco R, Mosqueira MJ, Seferji KA, Al Romaih SM, Michoud G, Xu J, Bez C, Castillo Hernandez T, Venturi V, Blilou I, Daffonchio D. Desert-adapted plant growth-promoting pseudomonads modulate plant auxin homeostasis and mitigate salinity stress. Microb Biotechnol 2024; 17:e70043. [PMID: 39692704 PMCID: PMC11653947 DOI: 10.1111/1751-7915.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/17/2024] [Indexed: 12/19/2024] Open
Abstract
By providing adaptive advantages to plants, desert microorganisms are emerging as promising solutions to mitigate the negative and abrupt effects of climate change in agriculture. Among these, pseudomonads, commonly found in soil and in association with plants' root system, have been shown to enhance plant tolerance to salinity and drought, primarily affecting root system architecture in various hosts. However, a comprehensive understanding of how these bacteria affect plant responses at the cellular, physiological and molecular levels is still lacking. In this study, we investigated the effects of two Pseudomonas spp. strains, E102 and E141, which were previously isolated from date palm roots and have demonstrated efficacy in promoting drought tolerance in their hosts. These strains colonize plant roots, influencing root architecture by inhibiting primary root growth while promoting root hair elongation and lateral root formation. Strains E102 and E141 increased auxin levels in Arabidopsis, whereas this effect was diminished in IAA-defective mutant strains, which exhibited reduced IAA production. In all cases, the effectiveness of the bacteria relies on the functioning of the plant auxin response and transport machinery. Notably, such physiological and morphological changes provide an adaptive advantage to the plant, specifically under stress conditions such as salinity. Collectively, this study demonstrates that by leveraging the host's auxin signalling machinery, strains E102 and E141 significantly improve plant resilience to abiotic stresses, positioning them as potential biopromoters/bioprotectors for crop production and ecosystem restoration in alignment with Nature-based Solution approaches.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Maria J. Mosqueira
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Kholoud A. Seferji
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Sarah M. Al Romaih
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Jian Xu
- Plant Systems PhysiologyRadboud UniversityNijmegenThe Netherlands
| | - Cristina Bez
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Tatiana Castillo Hernandez
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
- African Genome CenterUniversity Mohammed VI PolytechnicBen GuerirMorocco
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
7
|
Chomicki G, Walker-Hale N, Etchells JP, Ritter EJ, Weber MG. Diversity and development of domatia: Symbiotic plant structures to host mutualistic ants or mites. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102647. [PMID: 39353261 DOI: 10.1016/j.pbi.2024.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Across the tree of life, specialized structures that offer nesting sites to ants or mites - known as domatia - have evolved independently hundreds of times, facilitating ecologically important defence and/or nutritional mutualisms. Domatia show remarkable diversity in morphology and developmental origin. Here we review the morpho-anatomical diversity of domatia, aiming to unveil the primary mechanisms governing their development. We propose hypotheses to explain the formation of these structures, based on anatomical studies of domatia and developmental genetic analyses in model species. While genes involved in domatium formation are so far unknown, domatia appear to originate via spatiotemporal shifts in the expression of common developmental genetic pathways. Our review paves the way to the genetic dissection of domatium development.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Biosciences, Durham University, South Rd, Durham, DH1 3LE, UK.
| | | | - J Peter Etchells
- Department of Biosciences, Durham University, South Rd, Durham, DH1 3LE, UK
| | - Eleanore J Ritter
- Department of Plant Biology, Michigan State University, Wilson Rd, East Lansing, MI, 48824-6406, USA
| | - Marjorie G Weber
- Department of Ecology and Evolutionary Biology, University of Michigan, 3034 Biological Sciences Building 1105 North University Ave., Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
8
|
Charura N, Llamas E, De Quattro C, Vilchez D, Nowack MK, Zuccaro A. Root cap cell corpse clearance limits microbial colonization in Arabidopsis thaliana. eLife 2024; 13:RP96266. [PMID: 39531016 PMCID: PMC11556792 DOI: 10.7554/elife.96266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Programmed cell death occurring during plant development (dPCD) is a fundamental process integral for plant growth and reproduction. Here, we investigate the connection between developmentally controlled PCD and fungal accommodation in Arabidopsis thaliana roots, focusing on the root cap-specific transcription factor ANAC033/SOMBRERO (SMB) and the senescence-associated nuclease BFN1. Mutations of both dPCD regulators increase colonization by the beneficial fungus Serendipita indica, primarily in the differentiation zone. smb-3 mutants additionally exhibit hypercolonization around the meristematic zone and a delay of S. indica-induced root-growth promotion. This demonstrates that root cap dPCD and rapid post-mortem clearance of cellular corpses represent a physical defense mechanism restricting microbial invasion of the root. Additionally, reporter lines and transcriptional analysis revealed that BFN1 expression is downregulated during S. indica colonization in mature root epidermal cells, suggesting a transcriptional control mechanism that facilitates the accommodation of beneficial microbes in the roots.
Collapse
Affiliation(s)
- Nyasha Charura
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of CologneCologneGermany
| | - Ernesto Llamas
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of CologneCologneGermany
| | - Concetta De Quattro
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of CologneCologneGermany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC), University of CologneCologneGermany
- Faculty of Medicine, University Hospital CologneCologneGermany
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Alga Zuccaro
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of CologneCologneGermany
| |
Collapse
|
9
|
Lamb A, Kurtz E, Glenn P, McKinley BA, Mullet J. Bioenergy sorghum nodal root bud development: morphometric, transcriptomic and gene regulatory network analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1456627. [PMID: 39498396 PMCID: PMC11532172 DOI: 10.3389/fpls.2024.1456627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024]
Abstract
Bioenergy sorghum's large and deep nodal root system and associated microbiome enables uptake of water and nutrients from and deposition of soil organic carbon into soil profiles, key contributors to the crop's resilience and sustainability. The goal of this study was to increase our understanding of bioenergy sorghum nodal root bud development. Sorghum nodal root bud initiation was first observed on the stem node of the 7th phytomer below the shoot apex. Buds were initiated near the upper end of the stem node pulvinus on the side of the stem opposite the tiller bud, then additional buds were added over the next 6-8 days forming a ring of 10-15 nascent nodal root buds around the stem. Later in plant development, a second ring of nodal root buds began forming on the 17th stem node immediately above the first ring of buds. Overall, nodal root bud development can take ~40 days from initiation to onset of nodal root outgrowth. Nodal root buds were initiated in close association with vascular bundles in the rind of the pulvinus. Stem tissue forming nascent nodal root buds expressed sorghum homologs of genes associated with root initiation (WOX4), auxin transport (LAX2, PIN4), meristem activation (NGAL2), and genes involved in cell proliferation. Expression of WOX11 and WOX5, genes involved in root stem niche formation, increased early in nodal root bud development followed by genes encoding PLTs, LBDs (LBD29), LRP1, SMB, RGF1 and root cap LEAs later in development. A nodal root bud gene regulatory network module expressed during nodal root bud initiation predicted connections linking PFA5, SPL9 and WOX4 to genes involved in hormone signaling, meristem activation, and cell proliferation. A network module expressed later in development predicted connections among SOMBRERO, a gene involved in root cap formation, and GATA19, BBM, LBD29 and RITF1/RGF1 signaling. Overall, this study provides a detailed description of bioenergy sorghum nodal root bud development and transcriptome information useful for understanding the regulation of sorghum nodal root bud formation and development.
Collapse
Affiliation(s)
| | | | | | | | - John Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Yalamanchili K, Vermeer JEM, Scheres B, Willemsen V. Shaping root architecture: towards understanding the mechanisms involved in lateral root development. Biol Direct 2024; 19:87. [PMID: 39358783 PMCID: PMC11447941 DOI: 10.1186/s13062-024-00535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Plants have an amazing ability to adapt to their environment, and this extends beyond biochemical responses and includes developmental changes that help them better exploit resources and survive. The plasticity observed in individual plant morphology is associated with robust developmental pathways that are influenced by environmental factors. However, there is still much to learn about the mechanisms behind the formation of the root system. In Arabidopsis thaliana, the root system displays a hierarchical structure with primary and secondary roots. The process of lateral root (LR) organogenesis involves multiple steps, including LR pre-patterning, LR initiation, LR outgrowth, and LR emergence. The study of root developmental plasticity in Arabidopsis has led to significant progress in understanding the mechanisms governing lateral root formation. The importance of root system architecture lies in its ability to shape the distribution of roots in the soil, which affects the plant's ability to acquire nutrients and water. In Arabidopsis, lateral roots originate from pericycle cells adjacent to the xylem poles known as the xylem-pole-pericycle (XPP). The positioning of LRs along the primary root is underpinned by a repetitive pre-patterning mechanism that establishes primed sites for future lateral root formation. In a subset of primed cells, the memory of a transient priming stimulus leads to the formation of stable pre-branch sites and the establishment of founder cell identity. These founder cells undergo a series of highly organized periclinal and anticlinal cell divisions and expansion to form lateral root primordia. Subsequently, LRP emerges through three overlying cell layers of the primary root, giving rise to fully developed LRs. In addition to LRs Arabidopsis can also develop adventitious lateral roots from the primary root in response to specific stress signals such as wounding or environmental cues. Overall, this review creates an overview of the mechanisms governing root lateral root formation which can be a stepping stone to improved crop yields and a better understanding of plant adaptation to changing environments.
Collapse
Affiliation(s)
- Kavya Yalamanchili
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Joop E M Vermeer
- Laboratory of Molecular and Cellular Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Ben Scheres
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Viola Willemsen
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Hoermayer L, Montesinos JC, Trozzi N, Spona L, Yoshida S, Marhava P, Caballero-Mancebo S, Benková E, Heisenberg CP, Dagdas Y, Majda M, Friml J. Mechanical forces in plant tissue matrix orient cell divisions via microtubule stabilization. Dev Cell 2024; 59:1333-1344.e4. [PMID: 38579717 DOI: 10.1016/j.devcel.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/13/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Plant morphogenesis relies exclusively on oriented cell expansion and division. Nonetheless, the mechanism(s) determining division plane orientation remain elusive. Here, we studied tissue healing after laser-assisted wounding in roots of Arabidopsis thaliana and uncovered how mechanical forces stabilize and reorient the microtubule cytoskeleton for the orientation of cell division. We identified that root tissue functions as an interconnected cell matrix, with a radial gradient of tissue extendibility causing predictable tissue deformation after wounding. This deformation causes instant redirection of expansion in the surrounding cells and reorientation of microtubule arrays, ultimately predicting cell division orientation. Microtubules are destabilized under low tension, whereas stretching of cells, either through wounding or external aspiration, immediately induces their polymerization. The higher microtubule abundance in the stretched cell parts leads to the reorientation of microtubule arrays and, ultimately, informs cell division planes. This provides a long-sought mechanism for flexible re-arrangement of cell divisions by mechanical forces for tissue reconstruction and plant architecture.
Collapse
Affiliation(s)
- Lukas Hoermayer
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Department of Plant Molecular Biology (DMBV), University of Lausanne, 1015 Lausanne, Switzerland; Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Juan Carlos Montesinos
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain
| | - Nicola Trozzi
- Department of Plant Molecular Biology (DMBV), University of Lausanne, 1015 Lausanne, Switzerland
| | - Leonhard Spona
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Saiko Yoshida
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Max Planck Institute for Plant Breeding Research, 50829 Carl-von-Linné-Weg 10, Cologne, Germany
| | - Petra Marhava
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, University of Agricultural Sciences (SLU), 90183 Umeå, Sweden
| | | | - Eva Benková
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | | | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Mateusz Majda
- Department of Plant Molecular Biology (DMBV), University of Lausanne, 1015 Lausanne, Switzerland
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria.
| |
Collapse
|
12
|
Possenti M, Sessa G, Alfè A, Turchi L, Ruzza V, Sassi M, Morelli G, Ruberti I. HD-Zip II transcription factors control distal stem cell fate in Arabidopsis roots by linking auxin signaling to the FEZ/SOMBRERO pathway. Development 2024; 151:dev202586. [PMID: 38563568 DOI: 10.1242/dev.202586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
In multicellular organisms, specialized tissues are generated by specific populations of stem cells through cycles of asymmetric cell divisions, where one daughter undergoes differentiation and the other maintains proliferative properties. In Arabidopsis thaliana roots, the columella - a gravity-sensing tissue that protects and defines the position of the stem cell niche - represents a typical example of a tissue whose organization is exclusively determined by the balance between proliferation and differentiation. The columella derives from a single layer of stem cells through a binary cell fate switch that is precisely controlled by multiple, independent regulatory inputs. Here, we show that the HD-Zip II transcription factors (TFs) HAT3, ATHB4 and AHTB2 redundantly regulate columella stem cell fate and patterning in the Arabidopsis root. The HD-Zip II TFs promote columella stem cell proliferation by acting as effectors of the FEZ/SMB circuit and, at the same time, by interfering with auxin signaling to counteract hormone-induced differentiation. Overall, our work shows that HD-Zip II TFs connect two opposing parallel inputs to fine-tune the balance between proliferation and differentiation in columella stem cells.
Collapse
Affiliation(s)
- Marco Possenti
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), Rome 00178, Italy
| | - Giovanna Sessa
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Altea Alfè
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Luana Turchi
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Valentino Ruzza
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Massimiliano Sassi
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Giorgio Morelli
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), Rome 00178, Italy
| | - Ida Ruberti
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| |
Collapse
|
13
|
Wang J, Bollier N, Buono RA, Vahldick H, Lin Z, Feng Q, Hudecek R, Jiang Q, Mylle E, Van Damme D, Nowack MK. A developmentally controlled cellular decompartmentalization process executes programmed cell death in the Arabidopsis root cap. THE PLANT CELL 2024; 36:941-962. [PMID: 38085063 PMCID: PMC7615778 DOI: 10.1093/plcell/koad308] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024]
Abstract
Programmed cell death (PCD) is a fundamental cellular process crucial to development, homeostasis, and immunity in multicellular eukaryotes. In contrast to our knowledge on the regulation of diverse animal cell death subroutines, information on execution of PCD in plants remains fragmentary. Here, we make use of the accessibility of the Arabidopsis (Arabidopsis thaliana) root cap to visualize the execution process of developmentally controlled PCD. We identify a succession of selective decompartmentalization events and ion fluxes as part of the terminal differentiation program that is orchestrated by the NO APICAL MERISTEM, ARABIDOPSIS THALIANA ACTIVATING FACTOR, CUP-SHAPED COTYLEDON (NAC) transcription factor SOMBRERO. Surprisingly, the breakdown of the large central vacuole is a relatively late and variable event, preceded by an increase of intracellular calcium levels and acidification, release of mitochondrial matrix proteins, leakage of nuclear and endoplasmic reticulum lumina, and release of fluorescent membrane reporters into the cytosol. In analogy to animal apoptosis, the plasma membrane remains impermeable for proteins during and after PCD execution. Elevated intracellular calcium levels and acidification are sufficient to trigger cell death execution specifically in terminally differentiated root cap cells, suggesting that these ion fluxes act as PCD-triggering signals. This detailed information on the cellular processes occurring during developmental PCD in plants is a pivotal prerequisite for future research into the molecular mechanisms of cell death execution.
Collapse
Affiliation(s)
- Jie Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Norbert Bollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hannah Vahldick
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Zongcheng Lin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Qiangnan Feng
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Roman Hudecek
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Qihang Jiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
14
|
Zheng L, Hu Y, Yang T, Wang Z, Wang D, Jia L, Xie Y, Luo L, Qi W, Lv Y, Beeckman T, Xuan W, Han Y. A root cap-localized NAC transcription factor controls root halotropic response to salt stress in Arabidopsis. Nat Commun 2024; 15:2061. [PMID: 38448433 PMCID: PMC10917740 DOI: 10.1038/s41467-024-46482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Plants are capable of altering root growth direction to curtail exposure to a saline environment (termed halotropism). The root cap that surrounds root tip meristematic stem cells plays crucial roles in perceiving and responding to environmental stimuli. However, how the root cap mediates root halotropism remains undetermined. Here, we identified a root cap-localized NAC transcription factor, SOMBRERO (SMB), that is required for root halotropism. Its effect on root halotropism is attributable to the establishment of asymmetric auxin distribution in the lateral root cap (LRC) rather than to the alteration of cellular sodium equilibrium or amyloplast statoliths. Furthermore, SMB is essential for basal expression of the auxin influx carrier gene AUX1 in LRC and for auxin redistribution in a spatiotemporally-regulated manner, thereby leading to directional bending of roots away from higher salinity. Our findings uncover an SMB-AUX1-auxin module linking the role of the root cap to the activation of root halotropism.
Collapse
Affiliation(s)
- Lulu Zheng
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Tianzhao Yang
- National Engineering Laboratory of Crop Stress Resistence Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Daoyuan Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Letian Jia
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuanming Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Long Luo
- National Engineering Laboratory of Crop Stress Resistence Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Weicong Qi
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Wei Xuan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistence Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
15
|
Zhang H, Huang Y. Genome-wide identification and characterization of greenbug-inducible NAC transcription factors in sorghum. Mol Biol Rep 2024; 51:207. [PMID: 38270755 DOI: 10.1007/s11033-023-09158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Sorghum (Sorghum bicolor) is an important cereal crop grown worldwide because of its multipurpose uses such as food, forage, and bioenergy feedstock and its wide range of adaption even in marginal environments. Greenbug can cause severe damage to sorghum plants and yield loss. Plant NAC transcription factors (TFs) have been reported to have diverse functions in plant development and plant defense but has not been studied in sorghum yet. METHODS AND RESULTS In this study, a comprehensive analysis of the sorghum NAC (SbNAC) gene family was conducted through genome-wide analysis. A total of 112 NAC genes has been identified in the sorghum genome. These SbNAC genes are phylogenetically clustered into 15 distinct subfamilies and unevenly distribute in clusters at the telomeric ends of each chromosome. Twelve pairs of SbNAC genes are possibly involved in the segmental duplication among nine chromosomes except chromosome 10. Structure analysis showed the diverse structures with a highly variable number of exons in the SbNAC genes. Furthermore, most of the SbNAC genes showed specific temporal and spatial expression patterns according to the results of RNA-seq analysis, suggesting their diverse functions during sorghum growth and development. We have also identified nine greenbug-inducible SbNAC genes by comparing the expression profiles between two sorghum genotypes (susceptible BTx623 and resistant PI607900) in response to greenbug infestation. CONCLUSIONS Our systematic analysis of the NAC gene expression profiles provides both a preliminary survey into their roles in plant defense against insect pests and a useful reference for in-depth characterization of the SbNAC genes and the regulatory network that contributes genetic resistance to aphids.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yinghua Huang
- USDA-ARS Plant Science Research Laboratory, 1301 N. Western Road, Stillwater, OK, 74075, USA.
| |
Collapse
|
16
|
Takahashi G, Kiyosue T, Hirakawa Y. Control of stem cell behavior by CLE-JINGASA signaling in the shoot apical meristem in Marchantia polymorpha. Curr Biol 2023; 33:5121-5131.e6. [PMID: 37977139 DOI: 10.1016/j.cub.2023.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Land plants undergo indeterminate growth by the activity of meristems in both gametophyte (haploid) and sporophyte (diploid) generations. In the sporophyte of the flowering plant Arabidopsis thaliana, the apical meristems are located at the shoot and root tips in which a number of regulatory gene homologs are shared for their development, implying deep evolutionary origins. However, little is known about their functional conservation with gametophytic meristems in distantly related land plants such as bryophytes, even though genomic studies have revealed that the subfamily-level diversity of regulatory genes is mostly conserved throughout land plants. Here, we show that a NAM/ATAF/CUC (NAC) domain transcription factor, JINGASA (MpJIN), acts downstream of CLAVATA3 (CLV3)/ESR-related (CLE) peptide signaling and controls stem cell behavior in the gametophytic shoot apical meristem of the liverwort Marchantia polymorpha. In the meristem, strong MpJIN expression was associated with the periclinal cell division at the periphery of the stem cell zone (SCZ), whereas faint MpJIN expression was found at the center of the SCZ. Time course observation indicates that the MpJIN-negative cells are lost from the SCZ and respecified de novo at two separate positions during the dichotomous branching event. Consistently, the induction of MpJIN results in ectopic periclinal cell division in the SCZ and meristem termination. Based on the comparative expression data, we speculate that the function of JIN/FEZ subfamily genes was shared among the shoot apical meristems in the gametophyte and sporophyte generations in early land plants but was lost in certain lineages, including the flowering plant A. thaliana.
Collapse
Affiliation(s)
- Go Takahashi
- Department of Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Tokyo 171-8588, Japan
| | - Tomohiro Kiyosue
- Department of Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Tokyo 171-8588, Japan
| | - Yuki Hirakawa
- Department of Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Tokyo 171-8588, Japan.
| |
Collapse
|
17
|
Liu W, Cai G, Zhai N, Wang H, Tang T, Zhang Y, Zhang Z, Sun L, Zhang Y, Beeckman T, Xu L. Genome and transcriptome of Selaginella kraussiana reveal evolution of root apical meristems in vascular plants. Curr Biol 2023; 33:4085-4097.e5. [PMID: 37716350 DOI: 10.1016/j.cub.2023.08.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/30/2023] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
The evolution of roots allowed vascular plants to adapt to land environments. Fossil evidence indicates that roots evolved independently in euphyllophytes (ferns and seed plants) and lycophytes, the two lineages of extant vascular plants. Based on a high-quality genome assembly, mRNA sequencing (mRNA-seq) data, and single-cell RNA-seq data for the lycophyte Selaginella kraussiana, we show that the two root origin events in lycophytes and euphyllophytes adopted partially similar molecular modules in the regulation of root apical meristem (RAM) development. In S. kraussiana, the RAM initiates from the rhizophore primordium guided by auxin and duplicates itself by dichotomous branching. The auxin signaling pathway directly upregulates euAINTEGUMENTAb (SkeuANTb), and then SkeuANTb directly promotes the expression of SkeuANTa and the WUSCHEL-RELATED HOMEOBOX13b (SkWOX13b) for RAM maintenance, partially similar to the molecular pathway involving the euANT-branch PLETHORA (AtPLT) genes and AtWOX5 in root initiation in the seed plant Arabidopsis thaliana. Other molecular modules, e.g., SHORT-ROOT and SCARECROW, also have partially similar expression patterns in the RAMs of S. kraussiana and A. thaliana. Overall, our study not only provides genome and transcriptome tools of S. kraussiana but also indicates the employment of some common molecular modules in RAMs during root origins in lycophytes and euphyllophytes.
Collapse
Affiliation(s)
- Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Gui Cai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ning Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Hua Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Tengfei Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yuyun Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhiyao Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Lijun Sun
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
18
|
Yang X, Poelmans W, Grones C, Lakehal A, Pevernagie J, Van Bel M, Njo M, Xu L, Nelissen H, De Rybel B, Motte H, Beeckman T. Spatial transcriptomics of a lycophyte root sheds light on root evolution. Curr Biol 2023; 33:4069-4084.e8. [PMID: 37683643 DOI: 10.1016/j.cub.2023.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/15/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Plant roots originated independently in lycophytes and euphyllophytes, whereas early vascular plants were rootless. The organization of the root apical meristem in euphyllophytes is well documented, especially in the model plant Arabidopsis. However, little is known about lycophyte roots and their molecular innovations during evolution. In this study, spatial transcriptomics was used to detect 97 root-related genes in the roots of the lycophyte Selaginella moellendorffii. A high number of genes showed expression patterns similar to what has been reported for seed plants, supporting the idea of a highly convergent evolution of mechanisms to control root development. Interaction and complementation data of SHORTROOT (SHR) and SCARECROW (SCR) homologs, furthermore, support a comparable regulation of the ground tissue (GT) between euphyllophytes and lycophytes. Root cap formation, in contrast, appears to be differently regulated. Several experiments indicated an important role of the WUSCHEL-RELATED HOMEOBOX13 gene SmWOX13a in Selaginella root cap formation. In contrast to multiple Arabidopsis WOX paralogs, SmWOX13a is able to induce root cap cells in Arabidopsis and has functionally conserved homologs in the fern Ceratopteris richardii. Lycophytes and a part of the euphyllophytes, therefore, may share a common mechanism regulating root cap formation, which was diversified or lost during seed plant evolution. In summary, we here provide a new spatial data resource for the Selaginella root, which in general advocates for conserved mechanisms to regulate root development but shows a clear divergence in the control of root cap formation, with a novel putative role of WOX genes in root cap formation in non-seed plants.
Collapse
Affiliation(s)
- Xilan Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ward Poelmans
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Carolin Grones
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Abdellah Lakehal
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Julie Pevernagie
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Michiel Van Bel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Maria Njo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lin Xu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hilde Nelissen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Hans Motte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
19
|
Wang L, Tian T, Liang J, Li R, Xin X, Qi Y, Zhou Y, Fan Q, Ning G, Becana M, Duanmu D. A transcription factor of the NAC family regulates nitrate-induced legume nodule senescence. THE NEW PHYTOLOGIST 2023; 238:2113-2129. [PMID: 36945893 DOI: 10.1111/nph.18896] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/12/2023] [Indexed: 05/04/2023]
Abstract
Legumes establish symbioses with rhizobia by forming nitrogen-fixing nodules. Nitrate is a major environmental factor that affects symbiotic functioning. However, the molecular mechanism of nitrate-induced nodule senescence is poorly understood. Comparative transcriptomic analysis reveals an NAC-type transcription factor in Lotus japonicus, LjNAC094, that acts as a positive regulator in nitrate-induced nodule senescence. Stable overexpression and mutant lines of NAC094 were constructed and used for phenotypic characterization. DNA-affinity purification sequencing was performed to identify NAC094 targeting genes and results were confirmed by electrophoretic mobility shift and transactivation assays. Overexpression of NAC094 induces premature nodule senescence. Knocking out NAC094 partially relieves nitrate-induced degradation of leghemoglobins and abolishes nodule expression of senescence-associated genes (SAGs) that contain a conserved binding motif for NAC094. Nitrate-triggered metabolic changes in wild-type nodules are largely affected in nac094 mutant nodules. Induction of NAC094 and its targeting SAGs was almost blocked in the nitrate-insensitive nlp1, nlp4, and nlp1 nlp4 mutants. We conclude that NAC094 functions downstream of NLP1 and NLP4 by regulating nitrate-induced expression of SAGs. Our study fills in a key gap between nitrate and the execution of nodule senescence, and provides a potential strategy to improve nitrogen fixation and stress tolerance of legumes.
Collapse
Affiliation(s)
- Longlong Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Tian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianjun Liang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xian Xin
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Yongmei Qi
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yumiao Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiuling Fan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manuel Becana
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avenida Montañana 1005, 50059, Zaragoza, Spain
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
20
|
Feng Q, Cubría-Radío M, Vavrdová T, De Winter F, Schilling N, Huysmans M, Nanda AK, Melnyk CW, Nowack MK. Repressive ZINC FINGER OF ARABIDOPSIS THALIANA proteins promote programmed cell death in the Arabidopsis columella root cap. PLANT PHYSIOLOGY 2023; 192:1151-1167. [PMID: 36852889 PMCID: PMC10231456 DOI: 10.1093/plphys/kiad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
Developmental programmed cell death (dPCD) controls a plethora of functions in plant growth and reproduction. In the root cap of Arabidopsis (Arabidopsis thaliana), dPCD functions to control organ size in balance with the continuous stem cell activity in the root meristem. Key regulators of root cap dPCD including SOMBRERO/ANAC033 (SMB) belong to the NAC family of transcription factors. Here, we identify the C2H2 zinc finger protein ZINC FINGER OF ARABIDOPSIS THALIANA 14 ZAT14 as part of the gene regulatory network of root cap dPCD acting downstream of SMB. Similar to SMB, ZAT14-inducible misexpression leads to extensive ectopic cell death. Both the canonical EAR motif and a conserved L-box motif of ZAT14 act as transcriptional repression motifs and are required to trigger cell death. While a single zat14 mutant does not show a cell death-related phenotype, a quintuple mutant knocking out 5 related ZAT paralogs shows a delayed onset of dPCD execution in the columella and the adjacent lateral root cap. While ZAT14 is co-expressed with established dPCD-associated genes, it does not activate their expression. Our results suggest that ZAT14 acts as a transcriptional repressor controlling a so far uncharacterized subsection of the dPCD gene regulatory network active in specific root cap tissues.
Collapse
Affiliation(s)
- Qiangnan Feng
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Marta Cubría-Radío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Tereza Vavrdová
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Freya De Winter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Neeltje Schilling
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam OT Golm, Germany
| | - Marlies Huysmans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Amrit K Nanda
- Department of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Charles W Melnyk
- Department of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
21
|
Xu K, Jourquin J, Xu X, De Smet I, Fernandez AI, Beeckman T. Dynamic GOLVEN-ROOT GROWTH FACTOR 1 INSENSITIVE signaling in the root cap mediates root gravitropism. PLANT PHYSIOLOGY 2023; 192:256-273. [PMID: 36747317 PMCID: PMC10152645 DOI: 10.1093/plphys/kiad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 05/03/2023]
Abstract
Throughout the exploration of the soil, roots interact with their environment and adapt to different conditions. Directional root growth is guided by asymmetric molecular patterns but how these become established or are dynamically regulated is poorly understood. Asymmetric gradients of the phytohormone auxin are established during root gravitropism, mainly through directional transport mediated by polarized auxin transporters. Upon gravistimulation, PIN-FORMED2 (PIN2) is differentially distributed and accumulates at the lower root side to facilitate asymmetric auxin transport up to the elongation zone where it inhibits cell elongation. GOLVEN (GLV) peptides function in gravitropism by affecting PIN2 abundance in epidermal cells. In addition, GLV signaling through ROOT GROWTH FACTOR 1 INSENSITIVE (RGI) receptors regulates root apical meristem maintenance. Here, we show that GLV-RGI signaling in these 2 processes in Arabidopsis (Arabidopsis thaliana) can be mapped to different cells in the root tip and that, in the case of gravitropism, it operates mainly in the lateral root cap (LRC) to maintain PIN2 levels at the plasma membrane (PM). Furthermore, we found that GLV signaling upregulates the phosphorylation level of PIN2 in an RGI-dependent manner. In addition, we demonstrated that the RGI5 receptor is asymmetrically distributed in the LRC and accumulates in the lower side of the LRC after gravistimulation. Asymmetric GLV-RGI signaling in the root cap likely accounts for differential PIN2 abundance at the PM to temporarily support auxin transport up to the elongation zone, thereby representing an additional level of control on the asymmetrical auxin flux to mediate differential growth of the root.
Collapse
Affiliation(s)
- Ke Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Ana I Fernandez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| |
Collapse
|
22
|
Zhang Y, Xu T, Dong J. Asymmetric cell division in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:343-370. [PMID: 36610013 PMCID: PMC9975081 DOI: 10.1111/jipb.13446] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 05/03/2023]
Abstract
Asymmetric cell division (ACD) is a fundamental process that generates new cell types during development in eukaryotic species. In plant development, post-embryonic organogenesis driven by ACD is universal and more important than in animals, in which organ pattern is preset during embryogenesis. Thus, plant development provides a powerful system to study molecular mechanisms underlying ACD. During the past decade, tremendous progress has been made in our understanding of the key components and mechanisms involved in this important process in plants. Here, we present an overview of how ACD is determined and regulated in multiple biological processes in plant development and compare their conservation and specificity among different model cell systems. We also summarize the molecular roles and mechanisms of the phytohormones in the regulation of plant ACD. Finally, we conclude with the overarching paradigms and principles that govern plant ACD and consider how new technologies can be exploited to fill the knowledge gaps and make new advances in the field.
Collapse
Affiliation(s)
- Yi Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tongda Xu
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08891, USA
| |
Collapse
|
23
|
Friero I, Larriba E, Martínez-Melgarejo PA, Justamante MS, Alarcón MV, Albacete A, Salguero J, Pérez-Pérez JM. Transcriptomic and hormonal analysis of the roots of maize seedlings grown hydroponically at low temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111525. [PMID: 36328179 DOI: 10.1016/j.plantsci.2022.111525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Prolonged cold stress has a strong effect on plant growth and development, especially in subtropical crops such as maize. Soil temperature limits primary root elongation, mainly during early seedling establishment. However, little is known about how moderate temperature fluctuations affect root growth at the molecular and physiological levels. We have studied root tips of young maize seedlings grown hydroponically at 30 ºC and after a short period (up to 24 h) of moderate cooling (20 ºC). We found that both cell division and cell elongation in the root apical meristem are affected by temperature. Time-course analyses of hormonal and transcriptomic profiles were achieved after temperature reduction from 30 ºC to 20 ºC. Our results highlighted a complex regulation of endogenous pathways leading to adaptive root responses to moderate cooling conditions.
Collapse
Affiliation(s)
- Iván Friero
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, 06006 Badajoz, Spain.
| | - Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain.
| | | | | | - M Victoria Alarcón
- Área de Agronomía de Cultivos Leñosos y Hortícolas, Instituto de Investigaciones Agrarias "La Orden-Valdesequera" (CICYTEX), Junta de Extremadura, 06187 Badajoz, Spain.
| | - Alfonso Albacete
- Departamento de Nutrición Vegetal, CEBAS-CSIC, 30100 Murcia, Spain.
| | - Julio Salguero
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, 06006 Badajoz, Spain.
| | | |
Collapse
|
24
|
Saleem A, Roldán-Ruiz I, Aper J, Muylle H. Genetic control of tolerance to drought stress in soybean. BMC PLANT BIOLOGY 2022; 22:615. [PMID: 36575367 PMCID: PMC9795773 DOI: 10.1186/s12870-022-03996-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Drought stress limits the production of soybean [Glycine max (L.) Merr.], which is the most grown high-value legume crop worldwide. Breeding for drought tolerance is a difficult endeavor and understanding the genetic basis of drought tolerance in soybean is therefore crucial for harnessing the genomic regions involved in the tolerance mechanisms. A genome-wide association study (GWAS) analysis was applied in a soybean germplasm collection (the EUCLEG collection) of 359 accessions relevant for breeding in Europe, to identify genomic regions and candidate genes involved in the response to short duration and long duration drought stress (SDS and LDS respectively) in soybean. RESULTS The phenotypic response to drought was stronger in the long duration drought (LDS) than in the short duration drought (SDS) experiment. Over the four traits considered (canopy wilting, leaf senescence, maximum absolute growth rate and maximum plant height) the variation was in the range of 8.4-25.2% in the SDS, and 14.7-29.7% in the LDS experiments. The GWAS analysis identified a total of 17 and 22 significant marker-trait associations for four traits in the SDS and LDS experiments, respectively. In the genomic regions delimited by these markers we identified a total of 12 and 16 genes with putative functions that are of particular relevance for drought stress responses including stomatal movement, root formation, photosynthesis, ABA signaling, cellular protection and cellular repair mechanisms. Some of these genomic regions co-localized with previously known QTLs for drought tolerance traits including water use efficiency, chlorophyll content and photosynthesis. CONCLUSION Our results indicate that the mechanism of slow wilting in the SDS might be associated with the characteristics of the root system, whereas in the LDS, slow wilting could be due to low stomatal conductance and transpiration rates enabling a high WUE. Drought-induced leaf senescence was found to be associated to ABA and ROS responses. The QTLs related to WUE contributed to growth rate and canopy height maintenance under drought stress. Co-localization of several previously known QTLs for multiple agronomic traits with the SNPs identified in this study, highlights the importance of the identified genomic regions for the improvement of agronomic performance in addition to drought tolerance in the EUCLEG collection.
Collapse
Affiliation(s)
- Aamir Saleem
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Isabel Roldán-Ruiz
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Jonas Aper
- Protealis, Technologiepark-Zwijnaarde, Ghent, Belgium
| | - Hilde Muylle
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium.
| |
Collapse
|
25
|
Dang X, Zhang B, Li C, Nagawa S. FvNST1b NAC Protein Induces Secondary Cell Wall Formation in Strawberry. Int J Mol Sci 2022; 23:ijms232113212. [PMID: 36361997 PMCID: PMC9654860 DOI: 10.3390/ijms232113212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
Abstract
Secondary cell wall thickening plays a crucial role in plant growth and development. Diploid woodland strawberry (Fragaria vesca) is an excellent model for studying fruit development, but its molecular control of secondary wall thickening is largely unknown. Previous studies have shown that Arabidopsis NAC secondary wall thickening promoting factor1 (AtNST1) and related proteins are master regulators of xylem fiber cell differentiation in multiple plant species. In this study, a NST1-like gene, FvNST1b, was isolated and characterized from strawberry. Sequence alignment and phylogenetic analysis showed that the FvNST1b protein contains a highly conserved NAC domain, and it belongs to the same family as AtNST1. Overexpression of FvNST1b in wild-type Arabidopsis caused extreme dwarfism, induced ectopic thickening of secondary walls in various tissues, and upregulated the expression of genes related to secondary cell wall synthesis. In addition, transient overexpression of FvNST1b in wild-type Fragaria vesca fruit produced cells resembling tracheary elements. These results suggest that FvNST1b positively regulates secondary cell wall formation as orthologous genes from other species.
Collapse
Affiliation(s)
- Xiaofei Dang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bei Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shingo Nagawa
- Fujian Agriculture and Forestry University–University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
26
|
Ye X, Li Q, Liu C, Wu Q, Wan Y, Wu X, Zhao G, Zou L, Xiang D. Transcriptomic, cytological, and physiological analyses reveal the potential regulatory mechanism in Tartary buckwheat under cadmium stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1004802. [PMID: 36311101 PMCID: PMC9597304 DOI: 10.3389/fpls.2022.1004802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Rapid industrialization and urbanization have caused serious cadmium (Cd) pollution in soil. Tartary buckwheat is an important pseudocereal crop with the potential ability to tolerate various stresses. However, the responses to Cd stress in this species are unclear. In this study, we assessed the phenotypic, cytological, physiological, and transcriptomic characteristics of Tartary buckwheat under the various concentrations of Cd treatments to investigate the responses and their regulatory pathways for the first time. The results showed Tartary buckwheat could tolerate the high Cd concentration of 50 mg/L under Cd stress. The average root diameters increased as a result of more cell layers of the endodermis and the bigger size of the pericycle. Cd primarily accumulated in roots and relatively less transferred to leaves. Antioxidant activities and malondialdehyde (MDA) accumulation varied in different tissues and different Cd concentrations of treatments. Meanwhile, Cd stress led to the formation of Casparian strips in roots and damaged the cytoderm and organelles. The weighted gene co-expression and interaction network analyses revealed that 9 core genes induced by Cd stress were involved in metal ion binding, Ca signal transduction, cell wall organization, antioxidant activities, carbohydrate metabolic process, DNA catabolic process, and plant senescence, which regulated a series of phenotypic, cytological, and physiological changes above. These results laid the foundation for a deep understanding of the responses to Cd toxicity in Tartary buckwheat. It's also a critical reference for the functional characterization of genes for Cd tolerance.
Collapse
|
27
|
Glanc M. Plant cell division from the perspective of polarity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5361-5371. [PMID: 35604840 DOI: 10.1093/jxb/erac227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The orientation of cell division is a major determinant of plant morphogenesis. In spite of considerable efforts over the past decades, the precise mechanism of division plane selection remains elusive. The majority of studies on the topic have addressed division orientation from either a predominantly developmental or a cell biological perspective. Thus, mechanistic insights into the links between developmental and cellular factors affecting division orientation are particularly lacking. Here, I review recent progress in the understanding of cell division orientation in the embryo and primary root meristem of Arabidopsis from both developmental and cell biological standpoints. I offer a view of multilevel polarity as a central aspect of cell division: on the one hand, the division plane is a readout of tissue- and organism-wide polarities; on the other hand, the cortical division zone can be seen as a transient polar subcellular plasma membrane domain. Finally, I argue that a polarity-focused conceptual framework and the integration of developmental and cell biological approaches hold great promise to unravel the mechanistic basis of plant cell division orientation in the near future.
Collapse
Affiliation(s)
- Matouš Glanc
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
28
|
Aragón-Raygoza A, Herrera-Estrella L, Cruz-Ramírez A. Transcriptional analysis of Ceratopteris richardii young sporophyte reveals conservation of stem cell factors in the root apical meristem. FRONTIERS IN PLANT SCIENCE 2022; 13:924660. [PMID: 36035690 PMCID: PMC9413220 DOI: 10.3389/fpls.2022.924660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Gene expression in roots has been assessed in different plant species in studies ranging from complete organs to specific cell layers, and more recently at the single cell level. While certain genes or functional categories are expressed in the root of all or most plant species, lineage-specific genes have also been discovered. An increasing amount of transcriptomic data is available for angiosperms, while a limited amount of data is available for ferns, and few studies have focused on fern roots. Here, we present a de novo transcriptome assembly from three different parts of the Ceratopteris richardii young sporophyte. Differential gene expression analysis of the root tip transcriptional program showed an enrichment of functional categories related to histogenesis and cell division, indicating an active apical meristem. Analysis of a diverse set of orthologous genes revealed conserved expression in the root meristem, suggesting a preserved role for different developmental roles in this tissue, including stem cell maintenance. The reconstruction of evolutionary trajectories for ground tissue specification genes suggests a high degree of conservation in vascular plants, but not for genes involved in root cap development, showing that certain genes are absent in Ceratopteris or have intricate evolutionary paths difficult to track. Overall, our results suggest different processes of conservation and divergence of genes involved in root development.
Collapse
Affiliation(s)
- Alejandro Aragón-Raygoza
- Molecular and Developmental Complexity Group, Unidad De Genómica Avanzada, Laboratorio Nacional De Genómica Para la Biodiversidad, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, Mexico
- Metabolic Engineering Group, Unidad De Genómica Avanzada, Laboratorio Nacional De Genómica Para la Biodiversidad, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Luis Herrera-Estrella
- Metabolic Engineering Group, Unidad De Genómica Avanzada, Laboratorio Nacional De Genómica Para la Biodiversidad, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, Mexico
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, United States
| | - Alfredo Cruz-Ramírez
- Molecular and Developmental Complexity Group, Unidad De Genómica Avanzada, Laboratorio Nacional De Genómica Para la Biodiversidad, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
29
|
Ghate T, Soneji K, Barvkar V, Ramakrishnan P, Prusty D, Islam SR, Manna SK, Srivastava AK. Thiourea mediated ROS-metabolites reprogramming restores root system architecture under arsenic stress in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129020. [PMID: 35650738 DOI: 10.1016/j.jhazmat.2022.129020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is a ubiquitous carcinogenic metalloid that enters into human food chain, through rice consumption. To unravel the conundrum of oxidative vs. reductive stress, the differential root-system architecture (RSA) was studied under As (a ROS producer) and thiourea (TU; a ROS scavenger) alone treatments, which indicated 0.80- and 0.74-fold reduction in the number of lateral roots (NLR), respectively compared with those of control. In case of As+TU treatment, NLR was increased by 4.35-fold compared with those of As-stress, which coincided with partial restoration of redox-status and auxin transport towards the root-tip. The expression levels of 16 ROS related genes, including RBOHC, UPB-1 C, SHR1, PUCHI, were quantified which provided the molecular fingerprint, in accordance with endogenous ROS signature. LC-MS based untargeted and targeted metabolomics data revealed that As-induced oxidative stress was metabolically more challenging than TU alone-induced reductive stress. Cis/trans-ferruloyl putrescine and γ-glutamyl leucine were identified as novel As-responsive metabolites whose levels were decreased and increased, respectively under As+TU than As-treated roots. In addition, the overall amino acid accumulation was increased in As+TU than As-treated roots, indicating the improved nutritional availability. Thus, the study revealed dynamic interplay between "ROS-metabolites-RSA", to the broader context of TU-mediated amelioration of As-stress in rice.
Collapse
Affiliation(s)
- Tejashree Ghate
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; School of Biological sciencesUM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari 400098, Mumbai
| | - Kanchan Soneji
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Division of crop production, ICAR- Indian Institute of Soybean Research, Khandwa Road, Indore 452001, (M.P), India
| | - Vitthal Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India
| | - Padma Ramakrishnan
- Centre for Cellular and Molecular Platforms, GKVK Post, Bengaluru 560065, India
| | - Debasish Prusty
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Sk Ramiz Islam
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Soumen Kanti Manna
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
30
|
Tariq R, Hussain A, Tariq A, Khalid MHB, Khan I, Basim H, Ingvarsson PK. Genome-wide analyses of the mung bean NAC gene family reveals orthologs, co-expression networking and expression profiling under abiotic and biotic stresses. BMC PLANT BIOLOGY 2022; 22:343. [PMID: 35836131 PMCID: PMC9284730 DOI: 10.1186/s12870-022-03716-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mung bean is a short-duration and essential food crop owing to its cash prominence in Asia. Mung bean seeds are rich in protein, fiber, antioxidants, and phytonutrients. The NAC transcription factors (TFs) family is a large plant-specific family, participating in tissue development regulation and abiotic and biotic stresses. RESULTS In this study, we perform genome-wide comparisons of VrNAC with their homologs from Arabidopsis. We identified 81 NAC transcription factors (TFs) in mung bean genome and named as per their chromosome location. A phylogenetic analysis revealed that VrNACs are broadly distributed in nine groups. Moreover, we identified 20 conserved motifs across the VrNACs highlighting their roles in different biological process. Based on the gene structure of the putative VrNAC and segmental duplication events might be playing a vital role in the expansion of mung bean genome. A comparative phylogenetic analysis of mung bean NAC together with homologs from Arabidopsis allowed us to classify NAC genes into 13 groups, each containing several orthologs and paralogs. Gene ontology (GO) analysis categorized the VrNACs into biological process, cellular components and molecular functions, explaining the functions in different plant physiology processes. A gene co-expression network analysis identified 173 genes involved in the transcriptional network of putative VrNAC genes. We also investigated how miRNAs potentially target VrNACs and shape their interactions with proteins. VrNAC1.4 (Vradi01g03390.1) was targeted by the Vra-miR165 family, including 9 miRNAs. Vra-miR165 contributes to leaf development and drought tolerance. We also performed qRT-PCR on 22 randomly selected VrNAC genes to assess their expression patterns in the NM-98 genotype, widely known for being tolerant to drought and bacterial leaf spot disease. CONCLUSIONS This genome-wide investigation of VrNACs provides a unique resource for further detailed investigations aimed at predicting orthologs functions and what role the play under abiotic and biotic stress, with the ultimate aim to improve mung bean production under diverse environmental conditions.
Collapse
Affiliation(s)
- Rezwan Tariq
- Department of Plant Protection, Akdeniz University, 07070, Antalya, Turkey
| | - Ammara Hussain
- Department of Biotechnology, University of Okara, Punjab, 56300, Pakistan
| | - Arslan Tariq
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Hayder Bin Khalid
- College of agronomy, Sichuan Agricultural University, Ya'an, China
- National Research Center of intercropping, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Imran Khan
- State Key Laboratory of Grassland Agro-Ecosystem, Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou, 730020, China
| | - Huseyin Basim
- Department of Plant Protection, Akdeniz University, 07070, Antalya, Turkey.
| | - Pär K Ingvarsson
- Linnean Centre for Plan Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, SE75007, Uppsala, Sweden.
| |
Collapse
|
31
|
Sugimura Y, Kawahara A, Maruyama H, Ezawa T. Plant Foraging Strategies Driven by Distinct Genetic Modules: Cross-Ecosystem Transcriptomics Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:903539. [PMID: 35860530 PMCID: PMC9290524 DOI: 10.3389/fpls.2022.903539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved diverse strategies for foraging, e.g., mycorrhizae, modification of root system architecture, and secretion of phosphatase. Despite extensive molecular/physiological studies on individual strategies under laboratory/greenhouse conditions, there is little information about how plants orchestrate these strategies in the field. We hypothesized that individual strategies are independently driven by corresponding genetic modules in response to deficiency/unbalance in nutrients. Roots colonized by mycorrhizal fungi, leaves, and root-zone soils were collected from 251 maize plants grown across the United States Corn Belt and Japan, which provided a large gradient of soil characteristics/agricultural practice and thus gene expression for foraging. RNA was extracted from the roots, sequenced, and subjected to gene coexpression network analysis. Nineteen genetic modules were defined and functionally characterized, from which three genetic modules, mycorrhiza formation, phosphate starvation response (PSR), and root development, were selected as those directly involved in foraging. The mycorrhizal module consists of genes responsible for mycorrhiza formation and was upregulated by both phosphorus and nitrogen deficiencies. The PSR module that consists of genes encoding phosphate transporter, secreted acid phosphatase, and enzymes involved in internal-phosphate recycling was regulated independent of the mycorrhizal module and strongly upregulated by phosphorus deficiency relative to nitrogen. The root development module that consists of regulatory genes for root development and cellulose biogenesis was upregulated by phosphorus and nitrogen enrichment. The expression of this module was negatively correlated with that of the mycorrhizal module, suggesting that root development is intrinsically an opposite strategy of mycorrhizae. Our approach provides new insights into understanding plant foraging strategies in complex environments at the molecular level.
Collapse
Affiliation(s)
- Yusaku Sugimura
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ai Kawahara
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical, Co., Ltd., Takarazuka, Japan
| | - Hayato Maruyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tatsuhiro Ezawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
32
|
Goh T, Sakamoto K, Wang P, Kozono S, Ueno K, Miyashima S, Toyokura K, Fukaki H, Kang BH, Nakajima K. Autophagy promotes organelle clearance and organized cell separation of living root cap cells in Arabidopsis thaliana. Development 2022; 149:275183. [PMID: 35485417 PMCID: PMC9245187 DOI: 10.1242/dev.200593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
The root cap is a multilayered tissue covering the tip of a plant root that directs root growth through its unique functions, such as gravity sensing and rhizosphere interaction. To maintain the structure and function of the root cap, its constituent cells are constantly turned over through balanced cell division and cell detachment in the inner and outer cell layers, respectively. Upon displacement toward the outermost layer, columella cells at the central root cap domain functionally transition from gravity-sensing cells to secretory cells, but the mechanisms underlying this drastic cell fate transition are largely unknown. Here, using live-cell tracking microscopy, we show that organelles in the outermost cell layer undergo dramatic rearrangements. This rearrangement depends, at least partially, on spatiotemporally regulated activation of autophagy. Notably, this root cap autophagy does not lead to immediate cell death, but is instead necessary for organized separation of living root cap cells, highlighting a previously undescribed role of developmentally regulated autophagy in plants. This article has an associated ‘The people behind the papers’ interview. Summary: Time-lapse microscopy reveals the spatiotemporal dynamics of intracellular reorganization associated with the functional transition and cell separation in Arabidopsis root caps, and the roles of autophagy in these processes.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Kaoru Sakamoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Pengfei Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Saki Kozono
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Koki Ueno
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shunsuke Miyashima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Koichi Toyokura
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai, Kobe 657-8501, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai, Kobe 657-8501, Japan
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
33
|
Leal AR, Sapeta H, Beeckman T, Barros PM, Oliveira MM. Spatiotemporal development of suberized barriers in cork oak taproots. TREE PHYSIOLOGY 2022; 42:1269-1285. [PMID: 34970982 DOI: 10.1093/treephys/tpab176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The longevity and high activity of the cork cambium (or phellogen) from Quercus suber L. (cork oak) are the cornerstones for the sustainable exploitation of a unique raw material. Cork oak is a symbolic model to study cork development and cell wall suberization, yet most genetic and molecular studies on these topics have targeted other model plants. In this study, we explored the potential of taproots as a model system to study phellem development and suberization in cork oak, thereby avoiding the time constraints imposed when studying whole plants. In roots, suberin deposition is found in mature endodermis cells during primary development and in phellem cells during secondary development. By investigating the spatiotemporal characteristics of both endodermis and phellem suberization in young seedling taproots, we demonstrated that secondary growth and phellogen activity are initiated very early in cork oak taproots (approx. 8 days after sowing). We further compared the transcriptomic profile of root segments undergoing primary (PD) and secondary development (SD) and identified multiple candidate genes with predicted roles in cell wall modifications, mainly lignification and suberization, in addition to several regulatory genes, particularly transcription factor- and hormone-related genes. Our results indicate that the molecular regulation of suberization and secondary development in cork oak roots is relatively conserved with other species. The provided morphological characterization creates new opportunities to allow a faster assessment of phellogen activity (as compared with studies using stem tissues) and to tackle fundamental questions regarding its regulation.
Collapse
Affiliation(s)
- Ana Rita Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent B-9052, Belgium
| | - Helena Sapeta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent B-9052, Belgium
| | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| |
Collapse
|
34
|
Bose R, Sengupta M, Basu D, Jha S. The rolB-transgenic Nicotiana tabacum plants exhibit upregulated ARF7 and ARF19 gene expression. PLANT DIRECT 2022; 6:e414. [PMID: 35774625 PMCID: PMC9219009 DOI: 10.1002/pld3.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 05/08/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Agrobacterium rhizogenes root oncogenic locus B (rolB) is known to induce hairy roots along with triggering several physiological and morphological changes when present as a transgene. However, it is still unknown how this gene triggers these changes within the plant system. In this study, the effect of rolB in-planta, when present as a transgene, was assessed on the gene expression levels of auxin response factors (ARFs)-transcription factors which are key players in auxin-mediated responses. The goal was to uncover Auxin/ARF-driven transcriptional networks potentially active and working selectively, if any, in rolB transgenic background, which might potentially be associated with hairy root development. Hence, the approach involved establishing rolB-transgenic Nicotiana tabacum plants, selecting ARFs (NtARFs) for context-relevance using bioinformatics followed by gene expression profiling. It was observed that out of the chosen NtARFs, NtARF7 and NtARF19 exhibited a consistent pattern of gene upregulation across organ types. In order to understand the significance of these selective gene upregulation, ontology-based transcriptional network maps of the differentially and nondifferentially expressed ARFs were constructed, guided by co-expression databases. The network maps suggested that NtARF7-NtARF19 might have major deterministic, underappreciated roles to play in root development in a rolB-transgenic background-as observed by higher number of "root-related" biological processes present as nodes compared to network maps for similarly constructed other non-differentially expressed ARFs. Based on the inferences drawn, it is hypothesized that rolB, when present as a transgene, might drive hairy root development by selective induction of NtARF7 and NtARF19, suggesting a functional link between the two, leading to the specialized and characteristic rolB-associated traits.
Collapse
Affiliation(s)
- Rahul Bose
- Department of GeneticsUniversity of CalcuttaKolkataWest BengalIndia
| | - Mainak Sengupta
- Department of GeneticsUniversity of CalcuttaKolkataWest BengalIndia
| | - Debabrata Basu
- Division of Plant BiologyBose InstituteKolkataWest BengalIndia
| | - Sumita Jha
- Department of BotanyUniversity of CalcuttaKolkataWest BengalIndia
| |
Collapse
|
35
|
Du Y, Roldan MVG, Haraghi A, Haili N, Izhaq F, Verdenaud M, Boualem A, Bendahmane A. Spatially expressed WIP genes control Arabidopsis embryonic root development. NATURE PLANTS 2022; 8:635-645. [PMID: 35710883 DOI: 10.1038/s41477-022-01172-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Development of plant organs is a highly organized process. In Arabidopsis, proper root development requires that distinct cell types and tissue layers are specified and formed in a restricted manner in space and over time. Despite its importance, genetic controls underlying such regularity remain elusive. Here we found that WIP genes expressed in the embryo and suspensor functionally oppose those expressed in the surrounding maternal tissues to orchestrate cell division orientation and cell fate specification in the embryonic root, thereby promoting regular root formation. The maternal WIPs act non-cell autonomously to repress root cell fate specification through SIMILAR TO RADICAL-INDUCED CELL DEATH ONE (SRO) family members. When losing all WIPs, root cells divide irregularly in the early embryo, but this barely alters their fate specification and the morphology of post-embryonic roots. Our results reveal cross-communication between the embryonic and maternal WIPs in controlling root development.
Collapse
Affiliation(s)
- Yujuan Du
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France.
| | - Maria Victoria Gomez Roldan
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Aimen Haraghi
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Nawel Haili
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Farhaj Izhaq
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Marion Verdenaud
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France.
| |
Collapse
|
36
|
Li C, Zhang J, Zhang Q, Dong A, Wu Q, Zhu X, Zhu X. Genome-Wide Identification and Analysis of the NAC Transcription Factor Gene Family in Garden Asparagus (Asparagus officinalis). Genes (Basel) 2022; 13:genes13060976. [PMID: 35741738 PMCID: PMC9222252 DOI: 10.3390/genes13060976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
As a large plant-specific gene family, the NAC (NAM, ATAF1/2, and CUC2) transcription factor is related to plant growth, development, and response to abiotic stresses. Although the draft genome of garden asparagus (Asparagus officinalis) has been released, the genome-wide investigation of the NAC gene family is still unavailable. In this study, a total of 85 A. officinalis NAC genes were identified, and a comprehensive analysis of the gene family was performed, including physicochemical properties, phylogenetic relationship, chromosome localization, gene structure, conserved motifs, intron/exon, cis-acting elements, gene duplication, syntenic analysis, and differential gene expression analysis. The phylogenetic analysis demonstrated that there were 14 subgroups in both A. officinalis and Arabidopsis thaliana, and the genes with a similar gene structure and motif distribution were clustered in the same group. The cis-acting regulatory analysis of AoNAC genes indicated four types of cis-acting elements were present in the promoter regions, including light-responsive, hormone-responsive, plant-growth-and-development-related, and stress-responsive elements. The chromosomal localization analysis found that 81 NAC genes in A. officinalis were unevenly distributed on nine chromosomes, and the gene duplication analysis showed three pairs of tandem duplicated genes and five pairs of segmental duplications, suggesting that gene duplication is possibly associated with the amplification of the A. officinalis NAC gene family. The differential gene expression analysis revealed one and three AoNAC genes that were upregulated and downregulated under different types of salinity stress, respectively. This study provides insight into the evolution, diversity, and characterization of NAC genes in garden asparagus and will be helpful for future understanding of their biological roles and molecular mechanisms in plants.
Collapse
Affiliation(s)
- Caifeng Li
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.L.); (Q.Z.); (A.D.); (Q.W.); (X.Z.)
| | - Jingyang Zhang
- Tandon School of Engineering, New York University, New York, NY 11201, USA;
| | - Qianqian Zhang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.L.); (Q.Z.); (A.D.); (Q.W.); (X.Z.)
| | - Ang Dong
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.L.); (Q.Z.); (A.D.); (Q.W.); (X.Z.)
| | - Qiuhong Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.L.); (Q.Z.); (A.D.); (Q.W.); (X.Z.)
| | - Xingyu Zhu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.L.); (Q.Z.); (A.D.); (Q.W.); (X.Z.)
| | - Xuli Zhu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.L.); (Q.Z.); (A.D.); (Q.W.); (X.Z.)
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Ministry of Education, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
37
|
Li M, Wang M, Lin Q, Wang M, Niu X, Cheng J, Xu M, Qin Y, Liao X, Xu J, Wu S. Symplastic communication in the root cap directs auxin distribution to modulate root development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:859-870. [PMID: 35199475 DOI: 10.1111/jipb.13237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Root cap not only protects root meristem, but also detects and transduces the signals of environmental changes to affect root development. The symplastic communication is an important way for plants to transduce signals to coordinate the development and physiology in response to the changing enviroments. However, it is unclear how the symplastic communication between root cap cells affects root growth. Here we exploit an inducible system to specifically block the symplastic communication in the root cap. Transient blockage of plasmodesmata (PD) in differentiated collumella cells severely impairs the root development in Arabidopsis, in particular in the stem cell niche and the proximal meristem. The neighboring stem cell niche is the region that is most sensitive to the disrupted symplastic communication and responds rapidly via the alteration of auxin distribution. In the later stage, the cell division in proximal meristem is inhibited, presumably due to the reduced auxin level in the root cap. Our results reveal the essential role of the differentiated collumella cells in the root cap mediated signaling system that directs root development.
Collapse
Affiliation(s)
- Meng Li
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengxue Wang
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qingyun Lin
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengyao Wang
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xufang Niu
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meizhi Xu
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaxin Qin
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinyi Liao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian Xu
- The Department of Plant Systems Physiology, Radboud University, Nijmegen, 6500, The Netherlands
| | - Shuang Wu
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
38
|
Interplay between Arabidopsis thaliana Genotype, Plant Growth and Rhizosphere Colonization by Phytobeneficial Phenazine-Producing Pseudomonas chlororaphis. Microorganisms 2022; 10:microorganisms10030660. [PMID: 35336236 PMCID: PMC8950391 DOI: 10.3390/microorganisms10030660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Rhizosphere colonization by phytobeneficial Pseudomonas spp. is pivotal in triggering their positive effects on plant health. Many Pseudomonas spp. Determinants, involved in rhizosphere colonization, have already been deciphered. However, few studies have explored the role played by specific plant genes in rhizosphere colonization by these bacteria. Using isogenic Arabidopsis thaliana mutants, we studied the effect of 20 distinct plant genes on rhizosphere colonization by two phenazine-producing P. chlororaphis strains of biocontrol interest, differing in their colonization abilities: DTR133, a strong rhizosphere colonizer and ToZa7, which displays lower rhizocompetence. The investigated plant mutations were related to root exudation, immunity, and root system architecture. Mutations in smb and shv3, both involved in root architecture, were shown to positively affect rhizosphere colonization by ToZa7, but not DTR133. While these strains were not promoting plant growth in wild-type plants, increased plant biomass was measured in inoculated plants lacking fez, wrky70, cbp60g, pft1 and rlp30, genes mostly involved in plant immunity. These results point to an interplay between plant genotype, plant growth and rhizosphere colonization by phytobeneficial Pseudomonas spp. Some of the studied genes could become targets for plant breeding programs to improve plant-beneficial Pseudomonas rhizocompetence and biocontrol efficiency in the field.
Collapse
|
39
|
Ortigosa F, Lobato-Fernández C, Shikano H, Ávila C, Taira S, Cánovas FM, Cañas RA. Ammonium regulates the development of pine roots through hormonal crosstalk and differential expression of transcription factors in the apex. PLANT, CELL & ENVIRONMENT 2022; 45:915-935. [PMID: 34724238 DOI: 10.1111/pce.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Ammonium is a prominent source of inorganic nitrogen for plant nutrition, but excessive amounts can be toxic for many species. However, most conifers are tolerant to ammonium, a relevant physiological feature of this ancient evolutionary lineage. For a better understanding of the molecular basis of this trait, ammonium-induced changes in the transcriptome of maritime pine (Pinus pinaster Ait.) root apex have been determined by laser capture microdissection and RNA sequencing. Ammonium promoted changes in the transcriptional profiles of multiple transcription factors, such as SHORT-ROOT, and phytohormone-related transcripts, such as ACO, involved in the development of the root meristem. Nano-PALDI-MSI and transcriptomic analyses showed that the distributions of IAA and CKs were altered in the root apex in response to ammonium nutrition. Taken together, the data suggest that this early response is involved in the increased lateral root branching and principal root growth, which characterize the long-term response to ammonium supply in pine. All these results suggest that ammonium induces changes in the root system architecture through the IAA-CK-ET phytohormone crosstalk and transcriptional regulation.
Collapse
Affiliation(s)
- Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - César Lobato-Fernández
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Hitomi Shikano
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Francisco M Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Rafael A Cañas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
- Integrative Molecular Biology Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| |
Collapse
|
40
|
Ravelo-Ortega G, Pelagio-Flores R, López-Bucio J, Campos-García J, Reyes de la Cruz H, López-Bucio JS. Early sensing of phosphate deprivation triggers the formation of extra root cap cell layers via SOMBRERO through a process antagonized by auxin signaling. PLANT MOLECULAR BIOLOGY 2022; 108:77-91. [PMID: 34855067 DOI: 10.1007/s11103-021-01224-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The role of the root cap in the plant response to phosphate deprivation has been scarcely investigated. Here we describe early structural, physiological and molecular changes prior to the determinate growth program of the primary roots under low Pi and unveil a critical function of the transcription factor SOMBRERO in low Pi sensing. Mineral nutrient distribution in the soil is uneven and roots efficiently adapt to improve uptake and assimilation of sparingly available resources. Phosphate (Pi) accumulates in the upper layers and thus short and branched root systems proliferate to better exploit organic and inorganic Pi patches. Here we report an early adaptive response of the Arabidopsis primary root that precedes the entrance of the meristem into the determinate developmental program that is a hallmark of the low Pi sensing mechanism. In wild-type seedlings transferred to low Pi medium, the quiescent center domain in primary root tips increases as an early response, as revealed by WOX5:GFP expression and this correlates with a thicker root tip with extra root cap cell layers. The halted primary root growth in WT seedlings could be reversed upon transfer to medium supplemented with 250 µM Pi. Mutant and gene expression analysis indicates that auxin signaling negatively affects the cellular re-specification at the root tip and enabled identification of the transcription factor SOMBRERO as a critical element that orchestrates both the formation of extra root cap layers and primary root growth under Pi scarcity. Moreover, we provide evidence that low Pi-induced root thickening or the loss-of-function of SOMBRERO is associated with expression of phosphate transporters at the root tip. Our data uncover a developmental window where the root tip senses deprivation of a critical macronutrient to improve adaptation and surveillance.
Collapse
Affiliation(s)
- Gustavo Ravelo-Ortega
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México
| | - Ramón Pelagio-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México
| | - Jesús Campos-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México
| | - Jesús Salvador López-Bucio
- CONACYT-Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México.
| |
Collapse
|
41
|
Akiyoshi N, Ihara A, Matsumoto T, Takebayashi A, Hiroyama R, Kikuchi J, Demura T, Ohtani M. Functional Analysis of Poplar Sombrero-Type NAC Transcription Factors Yields a Strategy to Modify Woody Cell Wall Properties. PLANT & CELL PHYSIOLOGY 2021; 62:1963-1974. [PMID: 34226939 DOI: 10.1093/pcp/pcab102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 05/22/2023]
Abstract
Woody cells generate lignocellulosic biomass, which is a promising sustainable bioresource for wide industrial applications. Woody cell differentiation in vascular plants, including the model plant poplar (Populus trichocarpa), is regulated by a set of NAC family transcription factors, the VASCULAR-RELATED NAC-DOMAIN (VND), NAC SECONDARY CELL WALL THICKENING PROMOTING FACTOR (NST)/SND, and SOMBRERO (SMB) (VNS)-related proteins, but the precise contributions of each VNS protein to wood quality are unknown. Here, we performed a detailed functional analysis of the poplar SMB-type VNS proteins PtVNS13-PtVNS16. PtVNS13-PtVNS16 were preferentially expressed in the roots of young poplar plantlets, similar to the Arabidopsis thalianaSMB gene. PtVNS13 and PtVNS14, as well as the NST-type PtVNS11, suppressed the abnormal root cap phenotype of the Arabidopsis sombrero-3 mutant, whereas the VND-type PtVNS07 gene did not, suggesting a functional gap between SMB- or NST-type VNS proteins and VND-type VNS proteins. Overexpressing PtVNS13-PtVNS16 in Arabidopsis seedlings and poplar leaves induced ectopic xylem-vessel-like cells with secondary wall deposition, and a transient expression assay showed that PtVNS13-16 transactivated woody-cell-related genes. Interestingly, although any VNS protein rescued the pendant stem phenotype of the Arabidopsis nst1-1 nst3-1 mutant, the resulting inflorescence stems exhibited distinct cell wall properties: poplar VNS genes generated woody cell walls with higher enzymatic saccharification efficiencies compared with Arabidopsis VNS genes. Together, our data reveal clear functional diversity among VNS proteins in woody cell differentiation and demonstrate a novel VNS-based strategy for modifying woody cell wall properties toward enhanced utilization of woody biomass.
Collapse
Affiliation(s)
- Nobuhiro Akiyoshi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Ayumi Ihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomoko Matsumoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Arika Takebayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ryoko Hiroyama
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Taku Demura
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8915-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Misato Ohtani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8915-5 Takayama-cho, Ikoma 630-0192, Japan
| |
Collapse
|
42
|
Song XF, Hou XL, Liu CM. CLE peptides: critical regulators for stem cell maintenance in plants. PLANTA 2021; 255:5. [PMID: 34841457 DOI: 10.1007/s00425-021-03791-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Plant CLE peptides, which regulate stem cell maintenance in shoot and root meristems and in vascular bundles through LRR family receptor kinases, are novel, complex, and to some extent conserved. Over the past two decades, peptide ligands of the CLAVATA3 (CLV3) /Embryo Surrounding Region (CLE) family have been recognized as critical short- and long-distance communication signals in plants, especially for stem cell homeostasis, cell fate determination and physiological responses. Stem cells located at the shoot apical meristem (SAM), the root apical meristem (RAM) and the procambium divide and differentiate into specialized cells that form a variety of tissues such as epidermis, ground tissues, xylem and phloem. In the SAM of Arabidopsis (Arabidopsis thaliana), the CLV3 peptide restricts the number of stem cells via leucine-rich repeat (LRR)-type receptor kinases. In the RAM, root-active CLE peptides are critical negative regulators, while ROOT GROWTH FACTOR (RGF) peptides are positive regulators in stem cell maintenance. Among those root-active CLE peptides, CLE25 promotes, while CLE45 inhibits phloem differentiation. In vascular bundles, TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)/CLE41/CLE44 promotes procambium cell division, and prevents xylem differentiation. Orthologs of CLV3 have been identified in liverwort (Marchantia polymorpha), tomato (Solanum lycopersicum), rice (Oryza sativa), maize (Zea mays) and lotus (Lotus japonicas), suggesting that CLV3 is an evolutionarily conserved signal in stem cell maintenance. However, functional characterization of endogenous CLE peptides and corresponding receptor kinases, and the downstream signal transduction has been challenging due to their genome-wide redundancies and rapid evolution.
Collapse
Affiliation(s)
- Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu-Li Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
43
|
Pu Y, Naikatini A, Pérez‐Escobar OA, Silber M, Renner SS, Chomicki G. Genome-wide transcriptome signatures of ant-farmed Squamellaria epiphytes reveal key functions in a unique symbiosis. Ecol Evol 2021; 11:15882-15895. [PMID: 34824797 PMCID: PMC8601933 DOI: 10.1002/ece3.8258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Farming of fungi by ants, termites, or beetles has led to ecologically successful societies fueled by industrial-scale food production. Another type of obligate insect agriculture in Fiji involves the symbiosis between the ant Philidris nagasau and epiphytes in the genus Squamellaria (Rubiaceae) that the ants fertilize, defend, harvest, and depend on for nesting. All farmed Squamellaria form tubers (domatia) with preformed entrance holes and complex cavity networks occupied by P. nagasau. The inner surface of the domatia consists of smooth-surfaced walls where the ants nest and rear their brood, and warty-surfaced walls where they fertilize their crop by defecation. Here, we use RNA sequencing to identify gene expression patterns associated with the smooth versus warty wall types. Since wall differentiation occurred in the most recent common ancestor of all farmed species of Squamellaria, our study also identifies genetic pathways co-opted following the emergence of agriculture. Warty-surfaced walls show many upregulated genes linked to auxin transport, root development, and nitrogen transport consistent with their root-like function; their defense-related genes are also upregulated, probably to protect these permeable areas from pathogen entry. In smooth-surfaced walls, genes functioning in suberin and wax biosynthesis are upregulated, contributing to the formation of an impermeable ant-nesting area in the domatium. This study throws light on a number of functional characteristics of plant farming by ants and illustrates the power of genomic studies of symbiosis.
Collapse
Affiliation(s)
- Yuanshu Pu
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Alivereti Naikatini
- South Pacific Regional HerbariumInstitute of Applied SciencesThe University of the South PacificSuvaFiji
| | | | - Martina Silber
- Systematic Botany and MycologyDepartment of BiologyUniversity of Munich (LMU)MunichGermany
| | | | - Guillaume Chomicki
- Ecology and Evolutionary BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
44
|
Ubogoeva EV, Zemlyanskaya EV, Xu J, Mironova V. Mechanisms of stress response in the root stem cell niche. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6746-6754. [PMID: 34111279 PMCID: PMC8513250 DOI: 10.1093/jxb/erab274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 05/25/2023]
Abstract
As plants are sessile organisms unable to escape from environmental hazards, they need to adapt for survival. The stem cell niche in the root apical meristem is particularly sensitive to DNA damage induced by environmental stresses such as chilling, flooding, wounding, UV, and irradiation. DNA damage has been proven to cause stem cell death, with stele stem cells being the most vulnerable. Stress also induces the division of quiescent center cells. Both reactions disturb the structure and activity of the root stem cell niche temporarily; however, this preserves root meristem integrity and function in the long term. Plants have evolved many mechanisms that ensure stem cell niche maintenance, recovery, and acclimation, allowing them to survive in a changing environment. Here, we provide an overview of the cellular and molecular aspects of stress responses in the root stem cell niche.
Collapse
Affiliation(s)
| | - Elena V Zemlyanskaya
- Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Jian Xu
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Victoria Mironova
- Institute of Cytology and Genetics, Novosibirsk, Russia
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Uncovering Transcriptional Responses to Fractional Gravity in Arabidopsis Roots. Life (Basel) 2021; 11:life11101010. [PMID: 34685382 PMCID: PMC8539686 DOI: 10.3390/life11101010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Although many reports characterize the transcriptional response of Arabidopsis seedlings to microgravity, few investigate the effect of partial or fractional gravity on gene expression. Understanding plant responses to fractional gravity is relevant for plant growth on lunar and Martian surfaces. The plant signaling flight experiment utilized the European Modular Cultivation System (EMCS) onboard the International Space Station (ISS). The EMCS consisted of two rotors within a controlled chamber allowing for two experimental conditions, microgravity (stationary rotor) and simulated gravity in space. Seedlings were grown for 5 days under continuous light in seed cassettes. The arrangement of the seed cassettes within each experimental container results in a gradient of fractional g (in the spinning rotor). To investigate whether gene expression patterns are sensitive to fractional g, we carried out transcriptional profiling of root samples exposed to microgravity or partial g (ranging from 0.53 to 0.88 g). Data were analyzed using DESeq2 with fractional g as a continuous variable in the design model in order to query gene expression across the gravity continuum. We identified a subset of genes whose expression correlates with changes in fractional g. Interestingly, the most responsive genes include those encoding transcription factors, defense, and cell wall-related proteins and heat shock proteins.
Collapse
|
46
|
Ravazzolo L, Boutet-Mercey S, Perreau F, Forestan C, Varotto S, Ruperti B, Quaggiotti S. Strigolactones and Auxin Cooperate to Regulate Maize Root Development and Response to Nitrate. PLANT & CELL PHYSIOLOGY 2021; 62:610-623. [PMID: 33508105 DOI: 10.1093/pcp/pcab014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/20/2021] [Indexed: 05/12/2023]
Abstract
In maize, nitrate regulates root development thanks to the coordinated action of many players. In this study, the involvement of strigolactones (SLs) and auxin as putative components of the nitrate regulation of lateral root (LR) was investigated. To this aim, the endogenous SL content of maize root in response to nitrate was assessed by liquid chromatography with tandem mass Spectrometry (LC-MS/MS) and measurements of LR density in the presence of analogues or inhibitors of auxin and SLs were performed. Furthermore, an untargeted RNA-sequencing (RNA-seq)-based approach was used to better characterize the participation of auxin and SLs to the transcriptional signature of maize root response to nitrate. Our results suggested that N deprivation induces zealactone and carlactonoic acid biosynthesis in root, to a higher extent if compared to P-deprived roots. Moreover, data on LR density led to hypothesize that the induction of LR development early occurring upon nitrate supply involves the inhibition of SL biosynthesis, but that the downstream target of SL shutdown, besides auxin, also includes additional unknown players. Furthermore, RNA-seq results provided a set of putative markers for the auxin- or SL-dependent action of nitrate, meanwhile also allowing to identify novel components of the molecular regulation of maize root response to nitrate. Globally, the existence of at least four different pathways was hypothesized: one dependent on auxin, a second one mediated by SLs, a third deriving from the SL-auxin interplay, and a last one attributable to nitrate itself through further downstream signals. Further work will be necessary to better assess the reliability of the model proposed.
Collapse
Affiliation(s)
- Laura Ravazzolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| | - Stéphanie Boutet-Mercey
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78000, France
| | - François Perreau
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78000, France
| | - Cristian Forestan
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 44, Bologna 40127, Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| |
Collapse
|
47
|
Le Thanh T, Hufnagel B, Soriano A, Divol F, Brottier L, Casset C, Péret B, Doumas P, Marquès L. Dynamic Development of White Lupin Rootlets Along a Cluster Root. FRONTIERS IN PLANT SCIENCE 2021; 12:738172. [PMID: 34557216 PMCID: PMC8452988 DOI: 10.3389/fpls.2021.738172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/19/2021] [Indexed: 05/30/2023]
Abstract
White lupin produces cluster roots in response to phosphorus deficiency. Along the cluster root, numerous short rootlets successively appear, creating a spatial and temporal gradient of developmental stages that constitutes a powerful biological model to study the dynamics of the structural and functional evolution of these organs. The present study proposes a fine histochemical, transcriptomic and functional analysis of the rootlet development from its emergence to its final length. Between these two stages, the tissue structures of the rootlets were observed, the course of transcript expressions for the genes differentially expressed was monitored and some physiological events linked to Pi nutrition were followed. A switch between (i) a growing phase, in which a normal apical meristem is present and (ii) a specialized phase for nutrition, in which the rootlet is completely differentiated, was highlighted. In the final stage of its determinate growth, the rootlet is an organ with a very active metabolism, especially for the solubilization and absorption of several nutrients. This work discusses how the transition between a growing to a determinate state in response to nutritional stresses is found in other species and underlines the fundamental dilemma of roots between soil exploration and soil exploitation.
Collapse
|
48
|
Michael TP, Ernst E, Hartwick N, Chu P, Bryant D, Gilbert S, Ortleb S, Baggs EL, Sree KS, Appenroth KJ, Fuchs J, Jupe F, Sandoval JP, Krasileva KV, Borisjuk L, Mockler TC, Ecker JR, Martienssen RA, Lam E. Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control. Genome Res 2021; 31:225-238. [PMID: 33361111 PMCID: PMC7849404 DOI: 10.1101/gr.266429.120] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/16/2020] [Indexed: 11/24/2022]
Abstract
Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana, where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth.
Collapse
Affiliation(s)
- Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Evan Ernst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Nolan Hartwick
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Philomena Chu
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Douglas Bryant
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Sarah Gilbert
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
| | - Erin L Baggs
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye, Kerala 671316, India
| | | | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
| | - Florian Jupe
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Justin P Sandoval
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Ljudmylla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Joseph R Ecker
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Robert A Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| |
Collapse
|
49
|
Zluhan-Martínez E, López-Ruíz BA, García-Gómez ML, García-Ponce B, de la Paz Sánchez M, Álvarez-Buylla ER, Garay-Arroyo A. Integrative Roles of Phytohormones on Cell Proliferation, Elongation and Differentiation in the Arabidopsis thaliana Primary Root. FRONTIERS IN PLANT SCIENCE 2021; 12:659155. [PMID: 33981325 PMCID: PMC8107238 DOI: 10.3389/fpls.2021.659155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/24/2021] [Indexed: 05/17/2023]
Abstract
The growth of multicellular organisms relies on cell proliferation, elongation and differentiation that are tightly regulated throughout development by internal and external stimuli. The plasticity of a growth response largely depends on the capacity of the organism to adjust the ratio between cell proliferation and cell differentiation. The primary root of Arabidopsis thaliana offers many advantages toward understanding growth homeostasis as root cells are continuously produced and move from cell proliferation to elongation and differentiation that are processes spatially separated and could be studied along the longitudinal axis. Hormones fine tune plant growth responses and a huge amount of information has been recently generated on the role of these compounds in Arabidopsis primary root development. In this review, we summarized the participation of nine hormones in the regulation of the different zones and domains of the Arabidopsis primary root. In some cases, we found synergism between hormones that function either positively or negatively in proliferation, elongation or differentiation. Intriguingly, there are other cases where the interaction between hormones exhibits unexpected results. Future analysis on the molecular mechanisms underlying crosstalk hormone action in specific zones and domains will unravel their coordination over PR development.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Brenda Anabel López-Ruíz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mónica L. García-Gómez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Adriana Garay-Arroyo,
| |
Collapse
|
50
|
Chowdhury S, Ghosh S. Plant Stem Cell Biology. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|