1
|
Verma D, Sarkar B, Singh J, Singh A, Mutsuddi M, Mukherjee A. Loss of non-muscle myosin II Zipper leads to apoptosis-induced compensatory proliferation in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119939. [PMID: 40157509 DOI: 10.1016/j.bbamcr.2025.119939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Drosophila Non-muscle myosin II Zipper (Zip) belongs to a functionally divergent class of molecular motors that play a vital role in various cellular processes including cell adhesion, cell migration, cell protrusion, and maintenance of polarity via its cross-linking property with actin. To further determine its role in cell proliferation and apoptosis, we carried out Zip loss of function studies that led to compromised epithelial integrity in Drosophila wing imaginal discs as evident from the perturbed expression pattern of cell-cell junction proteins Cadherin, Actin, and Armadillo. Disruption of these adhesion proteins resulted in the cells undergoing apoptosis as evident from the increased level of effector caspase, cDcp-1. The induction of cell death due to the loss of function of Zip was accompanied by proliferation as apparent from increased PH3 staining. The control of apoptosis-induced compensatory proliferation lies under the caspase cascade. We carried out experiments that suggested that the apical caspase Dronc is responsible for the apoptosis-induced compensatory proliferation due to the loss of Zip function and not the effector caspase Drice/Dcp-1. Further, it was observed that Dronc leads to the subsequent activation of Jun N-terminal kinase pathway (JNK) pathway and Wingless (Wg) mitogen that diffuse to the neighboring cells and prompt them to undergo cell division. Taken together, our results suggest that loss of function of Zip leads to apoptosis-induced compensatory proliferation.
Collapse
Affiliation(s)
- Dipti Verma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Bappi Sarkar
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jyoti Singh
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ankita Singh
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Hounsell C, Fan Y. Death fuels growth: Emerging players bridging apoptosis and cell proliferation in Drosophila and beyond. Semin Cell Dev Biol 2025; 169:103602. [PMID: 40081300 DOI: 10.1016/j.semcdb.2025.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
Tissue homeostasis relies on a delicate balance between cell death and proliferation. Apoptosis plays a key role not only in removing damaged cells but also in promoting tissue recovery through a process known as apoptosis-induced proliferation (AiP). This review highlights how caspases, c-Jun N-terminal Kinase (JNK), and Reactive Oxygen Species (ROS) bridge cell death and proliferation, as revealed through studies using Drosophila as a model organism. We also compare these findings with advances in other model systems and discuss their broader implications for tissue regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Caitlin Hounsell
- University of Birmingham, School of Biosciences, Birmingham, B15 2TT, UK
| | - Yun Fan
- University of Birmingham, School of Biosciences, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Novikova EL, Starunova ZI, Shunkina KV, Chava AI, Khabibulina VR, Barmasova GA, Aster CZ, Starunov VV. Comparative Regeneration Dynamics of Platynereis dumerilii and Pygospio elegans (Annelida): Morphological and Cellular Events. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025. [PMID: 40296561 DOI: 10.1002/jez.b.23298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 03/16/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
In this paper we compared the morphological and histological events during the regeneration process of two annelids-Platynereis dumerilii and Pygospio elegans. P. dumerilii is an errantial annelid capable of tail regrowth. P. elegans belongs to the Sedentaria clade and can regenerate both head and tail after amputation. To elucidate when the failure of anterior regeneration in P. dumerilii occurs we explored the wound closure, the proliferation and apoptotic events at the regeneration sites of both species. Our findings indicate that P. dumerilii fails to regenerate the head structures at the very early stages of the restoration process.
Collapse
Affiliation(s)
- Elena L Novikova
- Zoological Institute RAS, Saint Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, Saint Petersburg, Russia
| | | | | | - Alexandra I Chava
- Zoological Institute RAS, Saint Petersburg, Russia
- Shirshov Institute of Oceanology, Laboratory of Ecology of Coastal Benthic Communities, Moscow, Russia
| | | | | | - Clementine Z Aster
- Faculty of Biology, St. Petersburg State University, Saint Petersburg, Russia
| | | |
Collapse
|
4
|
Klemm JW, Van Hazel C, Harris RE. Regeneration following tissue necrosis is mediated by non-apoptotic caspase activity. eLife 2025; 13:RP101114. [PMID: 40042383 PMCID: PMC11882144 DOI: 10.7554/elife.101114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Tissue necrosis is a devastating complication for many human diseases and injuries. Unfortunately, our understanding of necrosis and how it impacts surrounding healthy tissue - an essential consideration when developing effective methods to treat such injuries - has been limited by a lack of robust genetically tractable models. Our lab previously established a method to study necrosis-induced regeneration in the Drosophila wing imaginal disc, which revealed a unique phenomenon whereby cells at a distance from the injury upregulate caspase activity in a process called Necrosis-induced Apoptosis (NiA) that is vital for regeneration. Here, we have further investigated this phenomenon, showing that NiA is predominantly associated with the highly regenerative pouch region of the disc, shaped by genetic factors present in the presumptive hinge. Furthermore, we find that a proportion of NiA fail to undergo apoptosis, instead surviving effector caspase activation to persist within the tissue and stimulate reparative proliferation late in regeneration. This proliferation relies on the initiator caspase Dronc, and occurs independent of JNK, ROS or mitogens associated with the previously characterized Apoptosis-induced Proliferation (AiP) mechanism. These data reveal a new means by which non-apoptotic Dronc signaling promotes regenerative proliferation in response to necrotic damage.
Collapse
|
5
|
Moreno-Blas D, Adell T, González-Estévez C. Autophagy in Tissue Repair and Regeneration. Cells 2025; 14:282. [PMID: 39996754 PMCID: PMC11853389 DOI: 10.3390/cells14040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Autophagy is a cellular recycling system that, through the sequestration and degradation of intracellular components regulates multiple cellular functions to maintain cellular homeostasis and survival. Dysregulation of autophagy is closely associated with the development of physiological alterations and human diseases, including the loss of regenerative capacity. Tissue regeneration is a highly complex process that relies on the coordinated interplay of several cellular processes, such as injury sensing, defense responses, cell proliferation, differentiation, migration, and cellular senescence. These processes act synergistically to repair or replace damaged tissues and restore their morphology and function. In this review, we examine the evidence supporting the involvement of the autophagy pathway in the different cellular mechanisms comprising the processes of regeneration and repair across different regenerative contexts. Additionally, we explore how modulating autophagy can enhance or accelerate regeneration and repair, highlighting autophagy as a promising therapeutic target in regenerative medicine for the development of autophagy-based treatments for human diseases.
Collapse
Affiliation(s)
| | | | - Cristina González-Estévez
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain; (D.M.-B.); (T.A.)
| |
Collapse
|
6
|
Galliot B, Wenger Y. Organizer formation, organizer maintenance and epithelial cell plasticity in Hydra: Role of the Wnt3/β-catenin/TCF/Sp5/Zic4 gene network. Cells Dev 2025:204002. [PMID: 39929422 DOI: 10.1016/j.cdev.2025.204002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
The experimental and conceptual knowledge in 1909 led to the discovery of the Hydra head organizer through transplantation experiments between pigmented and non-pigmented animals; a discovery followed by numerous transplantations demonstrating cross-regulation between activating and inhibiting components distributed along the body axis. This experimental work inspired mathematicians, engineers, physicists and computer scientists to develop theoretical models predicting the principles of developmental mechanisms. Today, we know that the Wnt/β-catenin/Sp5/Zic4 gene regulatory network (GRN) links organizer activity, morphogenesis and cellular identity in Hydra, with variable conformations depending on the region or epithelial layer, and varied phenotypes depending on which GRN element is misregulated. In intact animals, Wnt/β-catenin signaling acts as the head activator at the tip of the hypostome, restricted by Sp5 in the other regions of the animal. Moreover, in the tentacle ring, Sp5 and Zic4 act epistatically to support tentacle differentiation and prevent basal disc differentiation. Along the body column, Sp5 is self-repressed in the epidermis and acts as a head inhibitor along the gastrodermis. Other players modulate these activities, such as TSP and Margin/RAX apically, Notch signaling in the tentacle zone, Dkk1/2/4 and HAS-7 in the body column. In the developmental context of regeneration, cells below the amputation zone switch from repressed to locally de novo activated head organizer status, a transition driven by immediate symmetrical and asymmetrical metabolic changes that lead to gene expression regulations involving components and modulators of Wnt/β-catenin signaling, early-pulse and early-late transient both often symmetrical, together with sustained ones, specific to head regeneration.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.
| | - Yvan Wenger
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Vullien A, Amiel AR, Baduel L, Diken D, Renaud C, Krasovec G, Vervoort M, Röttinger E, Gazave E. The Rich Evolutionary History of the Reactive Oxygen Species Metabolic Arsenal Shapes Its Mechanistic Plasticity at the Onset of Metazoan Regeneration. Mol Biol Evol 2025; 42:msae254. [PMID: 39673176 PMCID: PMC11721785 DOI: 10.1093/molbev/msae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/14/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024] Open
Abstract
Regeneration, the ability to restore body parts after injury, is widespread in metazoans; however, the underlying molecular and cellular mechanisms involved in this process remain largely unknown, and its evolutionary history is consequently unresolved. Recently, reactive oxygen species (ROS) have been shown in several metazoan models to be triggers of apoptosis and cell proliferation that drive regenerative success. However, it is not known whether the contribution of ROS to regeneration relies on conserved mechanisms. Here we performed a comparative genomic analysis of ROS metabolism actors across metazoans, and carried out a comparative study of the deployment and roles of ROS during regeneration in two different metazoan models: the annelid Platynereis dumerilii and the cnidarian Nematostella vectensis. We established that the vast majority of metazoans encode a core redox kit allowing for the production and detoxification of ROS, and overall regulation of ROS levels. However, the precise composition of the redox arsenal can vary significantly from species to species, suggesting that evolutionary constraints apply to ROS metabolism functions rather than precise actors. We found that while ROS are necessary for regeneration in both Platynereis and Nematostella, the two species deploy different enzymatic activities controlling ROS dynamics, and display distinct effects of ROS signaling on injury-induced apoptosis and cell proliferation. We conclude that, while ROS are a common feature of metazoan regeneration, their production and contribution to this phenomenon may depend on different molecular mechanisms highlighting the overall plasticity of the machinery.
Collapse
Affiliation(s)
- Aurore Vullien
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Université Côte d’Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Aldine R Amiel
- Université Côte d’Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Loeiza Baduel
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Dilara Diken
- Université Côte d’Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Cécile Renaud
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Gabriel Krasovec
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Michel Vervoort
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Eric Röttinger
- Université Côte d’Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Eve Gazave
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
8
|
Klemm JW, Van Hazel C, Harris RE. Regeneration following tissue necrosis is mediated by non-apoptotic caspase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605350. [PMID: 39091851 PMCID: PMC11291143 DOI: 10.1101/2024.07.26.605350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tissue necrosis is a devastating complication for many human diseases and injuries. Unfortunately, our understanding of necrosis and how it impacts surrounding healthy tissue - an essential consideration when developing effective methods to treat such injuries - has been limited by a lack of robust genetically tractable models. Our lab previously established a method to study necrosis-induced regeneration in the Drosophila wing imaginal disc, which revealed a unique phenomenon whereby cells at a distance from the injury upregulate caspase activity in a process called Necrosis-induced Apoptosis (NiA) that is vital for regeneration. Here we have further investigated this phenomenon, showing that NiA is predominantly associated with the highly regenerative pouch region of the disc, shaped by genetic factors present in the presumptive hinge. Furthermore, we find that a proportion of NiA fail to undergo apoptosis, instead surviving effector caspase activation to persist within the tissue and stimulate reparative proliferation late in regeneration. This proliferation relies on the initiator caspase Dronc, and occurs independent of JNK, ROS or mitogens associated with the previously characterized Apoptosis-induced Proliferation (AiP) mechanism. These data reveal a new means by which non-apoptotic Dronc signaling promotes regenerative proliferation in response to necrotic damage.
Collapse
Affiliation(s)
- Jacob W Klemm
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| | - Chloe Van Hazel
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| | - Robin E Harris
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| |
Collapse
|
9
|
Krasovec G, Frank U. Apoptosis-dependent head development during metamorphosis of the cnidarian Hydractinia symbiolongicarpus. Dev Biol 2024; 516:148-157. [PMID: 39163924 PMCID: PMC7617490 DOI: 10.1016/j.ydbio.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Apoptosis is a regulated cell death that depends on caspases. It has mainly been studied as a mechanism for the removal of unwanted cells. However, apoptotic cells can induce fate or behavior changes of their neighbors and thereby participate in development. Here, we address the functions of apoptosis during metamorphosis of the cnidarian Hydractinia symbiolongicarpus. We describe the apoptotic profile during metamorphosis of the larva and identify Caspase3/7a, but no other executioner caspases, as essential for apoptosis in this context. Using pharmacological and genetic approaches, we find that apoptosis is required for normal head development. Inhibition of apoptosis resulted in defects in head morphogenesis. Neurogenesis was compromised in the body column of apoptosis-inhibited animals but there was no effect on the survival or proliferation of stem cells, suggesting that apoptosis is required for cellular commitment rather than for the maintenance of their progenitors. Differential transcriptomic analysis identifies TRAF genes as downregulated in apoptosis-inhibited larvae and functional experiments provide evidence that they are essential for head development. Finally, we find no major role for apoptosis in head regeneration in this animal, in contrast to the significance of apoptosis in Hydra head regeneration.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
| | - Uri Frank
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
| |
Collapse
|
10
|
Tian G, Yin H, Zheng J, Yu R, Ding Z, Yan Z, Tang Y, Wu J, Ning C, Yuan X, Liao C, Sui X, Zhao Z, Liu S, Guo W, Guo Q. Promotion of osteochondral repair through immune microenvironment regulation and activation of endogenous chondrogenesis via the release of apoptotic vesicles from donor MSCs. Bioact Mater 2024; 41:455-470. [PMID: 39188379 PMCID: PMC11347043 DOI: 10.1016/j.bioactmat.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Utilizing transplanted human umbilical cord mesenchymal stem cells (HUMSCs) for cartilage defects yielded advanced tissue regeneration, but the underlying mechanism remain elucidated. Early after HUMSCs delivery to the defects, we observed substantial apoptosis. The released apoptotic vesicles (apoVs) of HUMSCs promoted cartilage regeneration by alleviating the chondro-immune microenvironment. ApoVs triggered M2 polarization in macrophages while simultaneously facilitating the chondrogenic differentiation of endogenous MSCs. Mechanistically, in macrophages, miR-100-5p delivered by apoVs activated the MAPK/ERK signaling pathway to promote M2 polarization. In MSCs, let-7i-5p delivered by apoVs promoted chondrogenic differentiation by targeting the eEF2K/p38 MAPK axis. Consequently, a cell-free cartilage regeneration strategy using apoVs combined with a decellularized cartilage extracellular matrix (DCM) scaffold effectively promoted the regeneration of osteochondral defects. Overall, new mechanisms of cartilage regeneration by transplanted MSCs were unconcealed in this study. Moreover, we provided a novel experimental basis for cell-free tissue engineering-based cartilage regeneration utilizing apoVs.
Collapse
Affiliation(s)
- Guangzhao Tian
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Han Yin
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinxuan Zheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Rongcheng Yu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Zhengang Ding
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zineng Yan
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yiqi Tang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jiang Wu
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chao Ning
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xun Yuan
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chenxi Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xiang Sui
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zhe Zhao
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Shuyun Liu
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Weimin Guo
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510080, China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| |
Collapse
|
11
|
Poss KD, Tanaka EM. Hallmarks of regeneration. Cell Stem Cell 2024; 31:1244-1261. [PMID: 39163854 PMCID: PMC11410156 DOI: 10.1016/j.stem.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Regeneration is a heroic biological process that restores tissue architecture and function in the face of day-to-day cell loss or the aftershock of injury. Capacities and mechanisms for regeneration can vary widely among species, organs, and injury contexts. Here, we describe "hallmarks" of regeneration found in diverse settings of the animal kingdom, including activation of a cell source, initiation of regenerative programs in the source, interplay with supporting cell types, and control of tissue size and function. We discuss these hallmarks with an eye toward major challenges and applications of regenerative biology.
Collapse
Affiliation(s)
- Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Elly M Tanaka
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
12
|
Aztekin C. Mechanisms of regeneration: to what extent do they recapitulate development? Development 2024; 151:dev202541. [PMID: 39045847 DOI: 10.1242/dev.202541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
One of the enduring debates in regeneration biology is the degree to which regeneration mirrors development. Recent technical advances, such as single-cell transcriptomics and the broad applicability of CRISPR systems, coupled with new model organisms in research, have led to the exploration of this longstanding concept from a broader perspective. In this Review, I outline the historical parallels between development and regeneration before focusing on recent research that highlights how dissecting the divergence between these processes can uncover previously unreported biological mechanisms. Finally, I discuss how these advances position regeneration as a more dynamic and variable process with expanded possibilities for morphogenesis compared with development. Collectively, these insights into mechanisms that orchestrate morphogenesis may reshape our understanding of the evolution of regeneration, reveal hidden biology activated by injury, and offer non-developmental strategies for restoring lost or damaged organs and tissues.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Iglesias Ollé L, Perruchoud C, Sanchez PGL, Vogg MC, Galliot B. The Wnt/β-catenin/TCF/Sp5/Zic4 Gene Network That Regulates Head Organizer Activity in Hydra Is Differentially Regulated in Epidermis and Gastrodermis. Biomedicines 2024; 12:1274. [PMID: 38927481 PMCID: PMC11201823 DOI: 10.3390/biomedicines12061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Hydra head formation depends on an organizing center in which Wnt/β-catenin signaling, that plays an inductive role, positively regulates Sp5 and Zic4, with Sp5 limiting Wnt3/β-catenin expression and Zic4 triggering tentacle formation. Using transgenic lines in which the HySp5 promoter drives eGFP expression in either the epidermis or gastrodermis, we show that Sp5 promoter activity is differentially regulated in each epithelial layer. In intact animals, epidermal HySp5:GFP activity is strong apically and weak along the body column, while in the gastrodermis, it is maximal in the tentacle ring region and maintained at a high level along the upper body column. During apical regeneration, HySp5:GFP is activated early in the gastrodermis and later in the epidermis. Alsterpaullone treatment induces a shift in apical HySp5:GFP expression towards the body column where it forms transient circular figures in the epidermis. Upon β-catenin(RNAi), HySp5:GFP activity is down-regulated in the epidermis while bud-like structures expressing HySp5:GFP in the gastrodermis develop. Sp5(RNAi) reveals a negative Sp5 autoregulation in the epidermis, but not in the gastrodermis. These differential regulations in the epidermis and gastrodermis highlight the distinct architectures of the Wnt/β-catenin/TCF/Sp5/Zic4 network in the hypostome, tentacle base and body column of intact animals, as well as in the buds and apical and basal regenerating tips.
Collapse
Affiliation(s)
| | | | | | | | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, 1205 Geneva, Switzerland (C.P.); (P.G.L.S.)
| |
Collapse
|
14
|
Silver BB, Kreutz A, Weick M, Gerrish K, Tokar EJ. Biomarkers of chemotherapy-induced cardiotoxicity: toward precision prevention using extracellular vesicles. Front Oncol 2024; 14:1393930. [PMID: 38706609 PMCID: PMC11066856 DOI: 10.3389/fonc.2024.1393930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Detrimental side effects of drugs like doxorubicin, which can cause cardiotoxicity, pose barriers for preventing cancer progression, or treating cancer early through molecular interception. Extracellular vesicles (EVs) are valued for their potential as biomarkers of human health, chemical and molecular carcinogenesis, and therapeutics to treat disease at the cellular level. EVs are released both during normal growth and in response to toxicity and cellular death, playing key roles in cellular communication. Consequently, EVs may hold promise as precision biomarkers and therapeutics to prevent or offset damaging off-target effects of chemotherapeutics. EVs have promise as biomarkers of impending cardiotoxicity induced by chemotherapies and as cardioprotective therapeutic agents. However, EVs can also mediate cardiotoxic cues, depending on the identity and past events of their parent cells. Understanding how EVs mediate signaling is critical toward implementing EVs as therapeutic agents to mitigate cardiotoxic effects of chemotherapies. For example, it remains unclear how mixtures of EV populations from cells exposed to toxins or undergoing different stages of cell death contribute to signaling across cardiac tissues. Here, we present our perspective on the outlook of EVs as future clinical tools to mitigate chemotherapy-induced cardiotoxicity, both as biomarkers of impending cardiotoxicity and as cardioprotective agents. Also, we discuss how heterogeneous mixtures of EVs and transient exposures to toxicants may add complexity to predicting outcomes of exogenously applied EVs. Elucidating how EV cargo and signaling properties change during dynamic cellular events may aid precision prevention of cardiotoxicity in anticancer treatments and development of safer chemotherapeutics.
Collapse
Affiliation(s)
- Brian B. Silver
- Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
- Molecular Genomics Core, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| | - Anna Kreutz
- Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
- Epigenetics & Stem Cell Biology Laboratory, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
- Inotiv, Durham, NC, United States
| | - Madeleine Weick
- Molecular Genomics Core, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| | - Kevin Gerrish
- Molecular Genomics Core, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| | - Erik J. Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| |
Collapse
|
15
|
Rajagopalan K, Selvan Christyraj JD, Chelladurai KS, Kalimuthu K, Das P, Chandrasekar M, Balamurugan N, Murugan K. Understanding the molecular mechanism of regeneration through apoptosis-induced compensatory proliferation studies - updates and future aspects. Apoptosis 2024:10.1007/s10495-024-01958-1. [PMID: 38581530 DOI: 10.1007/s10495-024-01958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/08/2024]
Abstract
AICP is a crucial process that maintaining tissue homeostasis and regeneration. In the past, cell death was perceived merely as a means to discard cells without functional consequences. However, during regeneration, effector caspases orchestrate apoptosis, releasing signals that activate stem cells, thereby compensating for tissue loss across various animal models. Despite significant progress, the activation of Wnt3a by caspase-3 remains a focal point of research gaps in AICP mechanisms, spanning from lower to higher regenerative animals. This inquiry into the molecular intricacies of caspase-3-induced Wnt3a activation contributes to a deeper understanding of the links between regeneration and cancer mechanisms. Our report provides current updates on AICP pathways, delineating research gaps and highlighting the potential for future investigations aimed at enhancing our comprehension of this intricate process.
Collapse
Affiliation(s)
- Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India.
| | - Karthikeyan Subbiahanadar Chelladurai
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | | | - Puja Das
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Meikandan Chandrasekar
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Nivedha Balamurugan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Karthikeyan Murugan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, Tamil Nadu, India
| |
Collapse
|
16
|
Nano M, Montell DJ. Apoptotic signaling: Beyond cell death. Semin Cell Dev Biol 2024; 156:22-34. [PMID: 37988794 DOI: 10.1016/j.semcdb.2023.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Apoptosis is the best described form of regulated cell death, and was, until relatively recently, considered irreversible once particular biochemical points-of-no-return were activated. In this manuscript, we examine the mechanisms cells use to escape from a self-amplifying death signaling module. We discuss the role of feedback, dynamics, propagation, and noise in apoptotic signaling. We conclude with a revised model for the role of apoptosis in animal development, homeostasis, and disease.
Collapse
Affiliation(s)
- Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
17
|
Sun G. Death and survival from executioner caspase activation. Semin Cell Dev Biol 2024; 156:66-73. [PMID: 37468421 DOI: 10.1016/j.semcdb.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Executioner caspases are evolutionarily conserved regulators of cell death under apoptotic stress. Activated executioner caspases drive apoptotic cell death through cleavage of diverse protein substrates or pyroptotic cell death in the presence of gasdermin E. On the other hand, activation of executioner caspases can also trigger pro-survival and pro-proliferation signals. In recent years, a growing body of studies have demonstrated that cells can survive from executioner caspase activation in response to stress and that the survivors undergo molecular and phenotypic alterations. This review focuses on death and survival from executioner caspase activation, summarizing the role of executioner caspases in apoptotic and pyroptotic cell death and discussing the potential mechanism and consequences of survival from stress-induced executioner caspase activation.
Collapse
Affiliation(s)
- Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
18
|
Rajagopalan K, Christyraj JDS, Chelladurai KS, Christyraj JRSS, Das P, Roy A, Vrushali C, Chemmet NSM. The molecular mechanisms underlying the regeneration process in the earthworm, Perionyx excavatus exhibit indications of apoptosis-induced compensatory proliferation (AICP). In Vitro Cell Dev Biol Anim 2024; 60:222-235. [PMID: 38504086 DOI: 10.1007/s11626-023-00843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/16/2023] [Indexed: 03/21/2024]
Abstract
Regeneration is a multifaceted biological phenomenon that necessitates the intricate orchestration of apoptosis, stem cells, and immune responses, culminating in the regulation of apoptosis-induced compensatory proliferation (AICP). The AICP context of research is observed in many animal models like in Hydra, Xenopus, newt, Drosophila, and mouse but so far not reported in earthworm. The earthworm Perionyx excavatus is used in the present study to understand the relationship between AICP-related protein expression and regeneration success in different conditions (normal regeneration and abnormal multiple bud formation). Initially, the worms are amputated into five equal portions and it is revealed that regeneration in P. excavatus is clitellum independent and it gives more preference for anterior regeneration (regrowth of head portion) than for posterior regeneration (regrowth of tail portion). The posterior segments of the worm possess enormous regeneration ability but this is lacking in anterior segments. Alkaline phosphate, a stem cell marker, shows strong signals throughout all the posterior segments but it decreases in the initial 1st to 15th anterior segments which lack the regeneration ability. While regenerating normally, it was suggested that the worm follow AICP principles. This is because there was increased expression of apoptosis signals throughout the regeneration process along with constant expression of stem cell proliferation response together with cellular proliferation. In amputated posterior segments maintained in vitro, the apoptosis signals were extensively detected on the 1st day. However, on the 4th and 6th days, caspase-3 and H2AX expression are significantly suppressed, which may eventually alter the Wnt3a and histone H3 patterns that impair the AICP and result in multiple bud formation. Our results suggest that AICP-related protein expression pattern is crucial for initiating proper regeneration.
Collapse
Affiliation(s)
- Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to Be University), Jeppiaar Nagar, SH 49A, Chennai, Tamil Nadu, 621306, India
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to Be University), Jeppiaar Nagar, SH 49A, Chennai, Tamil Nadu, 621306, India.
| | - Karthikeyan Subbiahanadar Chelladurai
- Molecular Biology and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to Be University), Jeppiaar Nagar, SH 49A, Chennai, Tamil Nadu, 621306, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Molecular Biology and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to Be University), Jeppiaar Nagar, SH 49A, Chennai, Tamil Nadu, 621306, India.
| | - Puja Das
- Molecular Biology and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to Be University), Jeppiaar Nagar, SH 49A, Chennai, Tamil Nadu, 621306, India
| | - Apoorva Roy
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Chaughule Vrushali
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | |
Collapse
|
19
|
Mitchell DG, Edgar A, Mateu JR, Ryan JF, Martindale MQ. The ctenophore Mnemiopsis leidyi deploys a rapid injury response dating back to the last common animal ancestor. Commun Biol 2024; 7:203. [PMID: 38374160 PMCID: PMC10876535 DOI: 10.1038/s42003-024-05901-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Regenerative potential is widespread but unevenly distributed across animals. However, our understanding of the molecular mechanisms underlying regenerative processes is limited to a handful of model organisms, restricting robust comparative analyses. Here, we conduct a time course of RNA-seq during whole body regeneration in Mnemiopsis leidyi (Ctenophora) to uncover gene expression changes that correspond with key events during the regenerative timeline of this species. We identified several genes highly enriched in this dataset beginning as early as 10 minutes after surgical bisection including transcription factors in the early timepoints, peptidases in the middle timepoints, and cytoskeletal genes in the later timepoints. We validated the expression of early response transcription factors by whole mount in situ hybridization, showing that these genes exhibited high expression in tissues surrounding the wound site. These genes exhibit a pattern of transient upregulation as seen in a variety of other organisms, suggesting that they may be initiators of an ancient gene regulatory network linking wound healing to the initiation of a regenerative response.
Collapse
Affiliation(s)
- Dorothy G Mitchell
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Allison Edgar
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
| | - Júlia Ramon Mateu
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA.
- Department of Biology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
20
|
Hamley M, Leyk S, Casar C, Liebold I, Jawazneh AA, Lanzloth C, Böttcher M, Haas H, Richardt U, Rothlin CV, Jacobs T, Huber S, Adlung L, Pelczar P, Henao-Mejia J, Bosurgi L. Nmes1 is a novel regulator of mucosal response influencing intestinal healing potential. Eur J Immunol 2024; 54:e2350434. [PMID: 37971166 DOI: 10.1002/eji.202350434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
The initiation of tissue remodeling following damage is a critical step in preventing the development of immune-mediated diseases. Several factors contribute to mucosal healing, leading to innovative therapeutic approaches for managing intestinal disorders. However, uncovering alternative targets and gaining mechanistic insights are imperative to enhance therapy efficacy and broaden its applicability across different intestinal diseases. Here we demonstrate that Nmes1, encoding for Normal Mucosa of Esophagus-Specific gene 1, also known as Aa467197, is a novel regulator of mucosal healing. Nmes1 influences the macrophage response to the tissue remodeling cytokine IL-4 in vitro. In addition, using two murine models of intestinal damage, each characterized by a type 2-dominated environment with contrasting functions, the ablation of Nmes1 results in decreased intestinal regeneration during the recovery phase of colitis, while enhancing parasitic egg clearance and reducing fibrosis during the advanced stages of Schistosoma mansoni infection. These outcomes are associated with alterations in CX3CR1+ macrophages, cells known for their wound-healing potential in the inflamed colon, hence promising candidates for cell therapies. All in all, our data indicate Nmes1 as a novel contributor to mucosal healing, setting the basis for further investigation into its potential as a new target for the treatment of colon-associated inflammation.
Collapse
Affiliation(s)
- Madeleine Hamley
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephanie Leyk
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Imke Liebold
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Amirah Al Jawazneh
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Clarissa Lanzloth
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marius Böttcher
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ulricke Richardt
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lorenz Adlung
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Penelope Pelczar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jorge Henao-Mejia
- The Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Fujita S, Takahashi M, Kumano G, Kuranaga E, Miura M, Nakajima YI. Distinct stem-like cell populations facilitate functional regeneration of the Cladonema medusa tentacle. PLoS Biol 2023; 21:e3002435. [PMID: 38127832 PMCID: PMC10734932 DOI: 10.1371/journal.pbio.3002435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Blastema formation is a crucial process that provides a cellular source for regenerating tissues and organs. While bilaterians have diversified blastema formation methods, its mechanisms in non-bilaterians remain poorly understood. Cnidarian jellyfish, or medusae, represent early-branching metazoans that exhibit complex morphology and possess defined appendage structures highlighted by tentacles with stinging cells (nematocytes). Here, we investigate the mechanisms of tentacle regeneration, using the hydrozoan jellyfish Cladonema pacificum. We show that proliferative cells accumulate at the tentacle amputation site and form a blastema composed of cells with stem cell morphology. Nucleoside pulse-chase experiments indicate that most repair-specific proliferative cells (RSPCs) in the blastema are distinct from resident stem cells. We further demonstrate that resident stem cells control nematogenesis and tentacle elongation during both homeostasis and regeneration as homeostatic stem cells, while RSPCs preferentially differentiate into epithelial cells in the newly formed tentacle, analogous to lineage-restricted stem/progenitor cells observed in salamander limbs. Taken together, our findings propose a regeneration mechanism that utilizes both resident homeostatic stem cells (RHSCs) and RSPCs, which in conjunction efficiently enable functional appendage regeneration, and provide novel insight into the diversification of blastema formation across animal evolution.
Collapse
Affiliation(s)
- Sosuke Fujita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mako Takahashi
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Aomori, Japan
| | - Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Aomori, Japan
| | - Erina Kuranaga
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masayuki Miura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu-ichiro Nakajima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Li S, Tao G. Perish in the Attempt: Regulated Cell Death in Regenerative and Nonregenerative Tissue. Antioxid Redox Signal 2023; 39:1053-1069. [PMID: 37218435 PMCID: PMC10715443 DOI: 10.1089/ars.2022.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Significance: A cell plays its roles throughout its life span, even during its demise. Regulated cell death (RCD) is one of the key topics in modern biomedical studies. It is considered the main approach for removing stressed and/or damaged cells. Research during the past two decades revealed more roles of RCD, such as coordinating tissue development and driving compensatory proliferation during tissue repair. Recent Advances: Compensatory proliferation, initially identified in primitive organisms during the regeneration of lost tissue, is an evolutionarily conserved process that also functions in mammals. Among various types of RCD, apoptosis is considered the top candidate to induce compensatory proliferation in damaged tissue. Critical Issues: The roles of apoptosis in the recovery of nonregenerative tissue are still vague. The roles of other types of RCD, such as necroptosis and ferroptosis, have not been well characterized in the context of tissue regeneration. Future Directions: In this review article, we attempt to summarize the recent insights on the role of RCD in tissue repair. We focus on apoptosis, with expansion to ferroptosis and necroptosis, in primitive organisms with significant regenerative capacity as well as common mammalian research models. After gathering hints from regenerative tissue, in the second half of the review, we take a notoriously nonregenerative tissue, the myocardium, as an example to discuss the role of RCD in terminally differentiated quiescent cells. Antioxid. Redox Signal. 39, 1053-1069.
Collapse
Affiliation(s)
- Shuang Li
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
23
|
Chen S, Gong Y, Li S, Yang D, Zhang Y, Liu Q. Hydra gasdermin-gated pyroptosis signalling regulates tissue regeneration. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:104904. [PMID: 37543221 DOI: 10.1016/j.dci.2023.104904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Pyroptosis, an inflammatory form of programmed cell death, is directly executed by gasdermin (GSDM) depending on its N-terminal pore-forming fragment-mediated membrane-disrupting, triggering intracellular contents release, which plays important roles in mammalian anti-infection and anti-tumor immune responses. However, whether pyroptosis engages in the regulation of tissue regeneration remains largely unknown. Here, utilizing Hydra vulgaris as the research model, we found that an HyCARD2-HyGSDME-mediated pyroptosis signalling is activated in both head and foot regenerated tips after amputation. Impeding pyroptosis by knocking down the expression of either HyGSDME or HyCARD2 significantly hampered both head and foot regeneration in Hydra. Mechanistically, the activation of HyCARD2-HyGSDME axis at wound sites is dependent of intracellular mitochondrial reactive oxygen species (mtROS), the removing of which hindered Hydra head regeneration. Moreover, the HyCARD2-HyGSDME axis-gated pyroptosis was found to enhance the initial secretion and upregulated expression of Wnt3. Collectively, these findings indicate that gasdermin-gated pyroptosis is critical for the evoking of Wnt signalling to facilitate Hydra tissue regeneration, which provides insights into functional diversification within the gasdermin family in the animal kingdom.
Collapse
Affiliation(s)
- Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuxin Gong
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuxin Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
24
|
An J, Yang L, Hu Y, Lu W, Wu J, Yang G, Jian S, Wen C, Hu B. Analysis of the immune function of Caspase-3 in Cristaria plicata. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109184. [PMID: 37884104 DOI: 10.1016/j.fsi.2023.109184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Caspase-3 is generally considered to be the most important terminal shear enzyme in the process of apoptosis, as well as an important part of cytotoxic T lymphocytes (CTL) killing mechanism, which is confirmed to play an important role in vertebrate cell apoptosis and immune system, and is poorly reported in invertebrates. In this paper, we used bioinformatics to perform amino acid multiple sequence alignment and protein structural domain analysis, and constructed a phylogenetic tree to identify the full-length cDNA of the cloned caspase-3 of Cristaria plicata (Named CpCaspase-3). The expression of caspase-1, caspase-7, caspase-8, and caspase-9 was found to be down-regulated by double-stranded RNA interference of CpCaspase-3 in C. plicata. Some degree of disruption of the caspase signaling pathway occurs. The expression of CpCaspase-3 was affected after injection of Lipopolysaccharide (LPS), Peptidoglycan (PGN), polyinosinic-polycytidylic acid (poly(I:C)), and Aeromonas hydrophila. These results were suggested that CpCaspase-3 was involved in the immune response of C. plicata. The wound recovery process of C. plicata was simulated and CpCaspase-3 was found to promote wound recovery. An autophagy inhibition and autophagy activation model of mussels was constructed, where apoptosis and autophagy undergo crosstalk, and inhibition of autophagy induces the onset of apoptosis, and similarly autophagy activation inhibits the process of apoptosis instead. In addition, a recombinant CpCaspase-3-pEGFP-C1 plasmid was constructed for subcellular localization experiments and found that CpCaspase-3 was distributed in both the nucleus and the cytoplasm. This paper aims to unveil the immune mechanism of C. plicata and provide a theoretical basis for the healthy culture of shellfish.
Collapse
Affiliation(s)
- Jinhua An
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| | - Lang Yang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| | - Yile Hu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| | - Wuting Lu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| | - Jielian Wu
- Science&Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Gang Yang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| | - Shaoqing Jian
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| | - Chungen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China.
| | - Baoqing Hu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
25
|
Hong J, Tan Y, Wang Y, Wang H, Li C, Jin W, Wu Y, Ni D, Peng X. Mechanism of Interaction between hsa_circ_0002854 and MAPK1 Protein in PM 2.5-Induced Apoptosis of Human Bronchial Epithelial Cells. TOXICS 2023; 11:906. [PMID: 37999558 PMCID: PMC10674430 DOI: 10.3390/toxics11110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Fine particulate matter (PM2.5) pollution increases the risk of respiratory diseases and death, and apoptosis is an important factor in the occurrence of respiratory diseases caused by PM2.5 exposure. In addition, circular RNAs (circRNAs) can interact with proteins and widely participate in physiological and pathological processes in the body. The aim of this study was to investigate the mechanism of circRNA and protein interaction on PM2.5-induced apoptosis of human bronchial epithelial cells (16HBE) in vitro. In this study, we exposed human bronchial epithelial cells to a PM2.5 suspension with different concentration gradients for 24 h. The results showed that apoptosis of 16HBE cells after PM2.5 treatment was accompanied by cell proliferation. After exposure of PM2.5 to 16HBE cells, circRNAs related to apoptosis were abnormally expressed. We further found that the expression of hsa_circ_0002854 increased with the increase in exposure concentration. Functional analysis showed that knocking down the expression of hsa_circ_0002854 could inhibit apoptosis induced by PM2.5 exposure. We then found that hsa_circ_0002854 could interact with MAPK1 protein and inhibit MAPK1 phosphorylation, thus promoting apoptosis. Our results suggest that hsa_circ_0002854 can promote 16HBE apoptosis due to PM2.5 exposure, which may provide a gene therapy target and scientific basis for PM2.5-induced respiratory diseases.
Collapse
Affiliation(s)
- Jinchang Hong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; (J.H.); (Y.T.); (Y.W.)
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yi Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; (J.H.); (Y.T.); (Y.W.)
| | - Yuyu Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; (J.H.); (Y.T.); (Y.W.)
| | - Hongjie Wang
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Caixia Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; (J.H.); (Y.T.); (Y.W.)
| | - Wenjia Jin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; (J.H.); (Y.T.); (Y.W.)
| | - Yi Wu
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Dechun Ni
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; (J.H.); (Y.T.); (Y.W.)
| | - Xiaowu Peng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; (J.H.); (Y.T.); (Y.W.)
| |
Collapse
|
26
|
Gregory CD. Hijacking homeostasis: Regulation of the tumor microenvironment by apoptosis. Immunol Rev 2023; 319:100-127. [PMID: 37553811 PMCID: PMC10952466 DOI: 10.1111/imr.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Cancers are genetically driven, rogue tissues which generate dysfunctional, obdurate organs by hijacking normal, homeostatic programs. Apoptosis is an evolutionarily conserved regulated cell death program and a profoundly important homeostatic mechanism that is common (alongside tumor cell proliferation) in actively growing cancers, as well as in tumors responding to cytotoxic anti-cancer therapies. Although well known for its cell-autonomous tumor-suppressive qualities, apoptosis harbors pro-oncogenic properties which are deployed through non-cell-autonomous mechanisms and which generally remain poorly defined. Here, the roles of apoptosis in tumor biology are reviewed, with particular focus on the secreted and fragmentation products of apoptotic tumor cells and their effects on tumor-associated macrophages, key supportive cells in the aberrant homeostasis of the tumor microenvironment. Historical aspects of cell loss in tumor growth kinetics are considered and the impact (and potential impact) on tumor growth of apoptotic-cell clearance (efferocytosis) as well as released soluble and extracellular vesicle-associated factors are discussed from the perspectives of inflammation, tissue repair, and regeneration programs. An "apoptosis-centric" view is proposed in which dying tumor cells provide an important platform for intricate intercellular communication networks in growing cancers. The perspective has implications for future research and for improving cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Christopher D. Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarterEdinburghUK
| |
Collapse
|
27
|
Mashanov V, Ademiluyi S, Jacob Machado D, Reid R, Janies D. Echinoderm radial glia in adult cell renewal, indeterminate growth, and regeneration. Front Neural Circuits 2023; 17:1258370. [PMID: 37841894 PMCID: PMC10570448 DOI: 10.3389/fncir.2023.1258370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Echinoderms are a phylum of marine deterostomes with a range of interesting biological features. One remarkable ability is their impressive capacity to regenerate most of their adult tissues, including the central nervous system (CNS). The research community has accumulated data that demonstrates that, in spite of the pentaradial adult body plan, echinoderms share deep similarities with their bilateral sister taxa such as hemichordates and chordates. Some of the new data reveal the complexity of the nervous system in echinoderms. In terms of the cellular architecture, one of the traits that is shared between the CNS of echinoderms and chordates is the presence of radial glia. In chordates, these cells act as the main progenitor population in CNS development. In mammals, radial glia are spent in embryogenesis and are no longer present in adults, being replaced with other neural cell types. In non-mammalian chordates, they are still detected in the mature CNS along with other types of glia. In echinoderms, radial glia also persist into the adulthood, but unlike in chordates, it is the only known glial cell type that is present in the fully developed CNS. The echinoderm radial glia is a multifunctional cell type. Radial glia forms the supporting scaffold of the neuroepithelium, exhibits secretory activity, clears up dying or damaged cells by phagocytosis, and, most importantly, acts as a major progenitor cell population. The latter function is critical for the outstanding developmental plasticity of the adult echinoderm CNS, including physiological cell turnover, indeterminate growth, and a remarkable capacity to regenerate major parts following autotomy or traumatic injury. In this review we summarize the current knowledge on the organization and function of the echinoderm radial glia, with a focus on the role of this cell type in adult neurogenesis.
Collapse
Affiliation(s)
- Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Soji Ademiluyi
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Denis Jacob Machado
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Robert Reid
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Daniel Janies
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
28
|
Kashio S, Masuda S, Miura M. Involvement of neuronal tachykinin-like receptor at 86C in Drosophila disc repair via regulation of kynurenine metabolism. iScience 2023; 26:107553. [PMID: 37636053 PMCID: PMC10457576 DOI: 10.1016/j.isci.2023.107553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Neurons contribute to the regeneration of projected tissues; however, it remains unclear whether they are involved in the non-innervated tissue regeneration. Herein, we showed that a neuronal tachykinin-like receptor at 86C (TkR86C) is required for the repair of non-innervated wing discs in Drosophila. Using a genetic tissue repair system in Drosophila larvae, we performed genetic screening for G protein-coupled receptors to search for signal mediatory systems for remote tissue repair. An evolutionarily conserved neuroinflammatory receptor, TkR86C, was identified as the candidate receptor. Neuron-specific knockdown of TkR86C impaired disc repair without affecting normal development. We investigated the humoral metabolites of the kynurenine (Kyn) pathway regulated in the fat body because of their role as tissue repair-mediating factors. Neuronal knockdown of TkR86C hampered injury-dependent changes in the expression of vermillion in the fat body and humoral Kyn metabolites. Our data indicate the involvement of TkR86C neurons upstream of Kyn metabolism in non-autonomous tissue regeneration.
Collapse
Affiliation(s)
- Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Masuda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
29
|
Lavalle NG, Chara O, Grigera TS. Fluctuations in tissue growth portray homeostasis as a critical state and long-time non-Markovian cell proliferation as Markovian. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230871. [PMID: 37711142 PMCID: PMC10498046 DOI: 10.1098/rsos.230871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
Tissue growth is an emerging phenomenon that results from the cell-level interplay between proliferation and apoptosis, which is crucial during embryonic development, tissue regeneration, as well as in pathological conditions such as cancer. In this theoretical article, we address the problem of stochasticity in tissue growth by first considering a minimal Markovian model of tissue size, quantified as the number of cells in a simulated tissue, subjected to both proliferation and apoptosis. We find two dynamic phases, growth and decay, separated by a critical state representing a homeostatic tissue. Since the main limitation of the Markovian model is its neglect of the cell cycle, we incorporated a refractory period that temporarily prevents proliferation immediately following cell division, as a minimal proxy for the cell cycle, and studied the model in the growth phase. Importantly, we obtained from this last model an effective Markovian rate, which accurately describes general trends of tissue size. This study shows that the dynamics of tissue growth can be theoretically conceptualized as a Markovian process where homeostasis is a critical state flanked by decay and growth phases. Notably, in the growing non-Markovian model, a Markovian-like growth process emerges at large time scales.
Collapse
Affiliation(s)
- Natalia G. Lavalle
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB), Universidad Nacional de La Plata and CONICET, Calle 59 n. 789, La Plata B1900BTE, Argentina
| | - Osvaldo Chara
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UK
- Instituto de Tecnología, Universidad Argentina de la Empresa, Buenos Aires C1073AAO, Argentina
| | - Tomás S. Grigera
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB), Universidad Nacional de La Plata and CONICET, Calle 59 n. 789, La Plata B1900BTE, Argentina
- CCT CONICET La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via dei Taurini 19, Rome 00185, Italy
| |
Collapse
|
30
|
Fan Y, Chai C, Li P, Zou X, Ferrell JE, Wang B. Ultrafast distant wound response is essential for whole-body regeneration. Cell 2023; 186:3606-3618.e16. [PMID: 37480850 PMCID: PMC10957142 DOI: 10.1016/j.cell.2023.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/11/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Injury induces systemic responses, but their functions remain elusive. Mechanisms that can rapidly synchronize wound responses through long distances are also mostly unknown. Using planarian flatworms capable of whole-body regeneration, we report that injury induces extracellular signal-regulated kinase (Erk) activity waves to travel at a speed 10-100 times faster than those in other multicellular tissues. This ultrafast propagation requires longitudinal body-wall muscles, elongated cells forming dense parallel tracks running the length of the organism. The morphological properties of muscles allow them to act as superhighways for propagating and disseminating wound signals. Inhibiting Erk propagation prevents tissues distant to the wound from responding and blocks regeneration, which can be rescued by a second injury to distal tissues shortly after the first injury. Our findings provide a mechanism for long-range signal propagation in large, complex tissues to coordinate responses across cell types and highlight the function of feedback between spatially separated tissues during whole-body regeneration.
Collapse
Affiliation(s)
- Yuhang Fan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Pengyang Li
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Xinzhi Zou
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
31
|
Salinas-Saavedra M, Febrimarsa, Krasovec G, Horkan HR, Baxevanis AD, Frank U. Senescence-induced cellular reprogramming drives cnidarian whole-body regeneration. Cell Rep 2023; 42:112687. [PMID: 37392741 PMCID: PMC7617468 DOI: 10.1016/j.celrep.2023.112687] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023] Open
Abstract
Cell fate stability is essential to maintaining "law and order" in complex animals. However, high stability comes at the cost of reduced plasticity and, by extension, poor regenerative ability. This evolutionary trade-off has resulted in most modern animals being rather simple and regenerative or complex and non-regenerative. The mechanisms mediating cellular plasticity and allowing for regeneration remain unknown. We show that signals emitted by senescent cells can destabilize the differentiated state of neighboring somatic cells, reprogramming them into stem cells that are capable of driving whole-body regeneration in the cnidarian Hydractinia symbiolongicarpus. Pharmacological or genetic inhibition of senescence prevents reprogramming and regeneration. Conversely, induction of transient ectopic senescence in a regenerative context results in supernumerary stem cells and faster regeneration. We propose that senescence signaling is an ancient mechanism mediating cellular plasticity. Understanding the senescence environment that promotes cellular reprogramming could provide an avenue to enhance regeneration.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Febrimarsa
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Gabriel Krasovec
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Helen R Horkan
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uri Frank
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
| |
Collapse
|
32
|
Yu L, Zhu G, Zhang Z, Yu Y, Zeng L, Xu Z, Weng J, Xia J, Li J, Pathak JL. Apoptotic bodies: bioactive treasure left behind by the dying cells with robust diagnostic and therapeutic application potentials. J Nanobiotechnology 2023; 21:218. [PMID: 37434199 DOI: 10.1186/s12951-023-01969-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Apoptosis, a form of programmed cell death, is essential for growth and tissue homeostasis. Apoptotic bodies (ApoBDs) are a form of extracellular vesicles (EVs) released by dying cells in the last stage of apoptosis and were previously regarded as debris of dead cells. Recent studies unraveled that ApoBDs are not cell debris but the bioactive treasure left behind by the dying cells with an important role in intercellular communications related to human health and various diseases. Defective clearance of ApoBDs and infected-cells-derived ApoBDs are possible etiology of some diseases. Therefore, it is necessary to explore the function and mechanism of the action of ApoBDs in different physiological and pathological conditions. Recent advances in ApoBDs have elucidated the immunomodulatory, virus removal, vascular protection, tissue regenerative, and disease diagnostic potential of ApoBDs. Moreover, ApoBDs can be used as drug carriers enhancing drug stability, cellular uptake, and targeted therapy efficacy. These reports from the literature indicate that ApoBDs hold promising potential for diagnosis, prognosis, and treatment of various diseases, including cancer, systemic inflammatory diseases, cardiovascular diseases, and tissue regeneration. This review summarizes the recent advances in ApoBDs-related research and discusses the role of ApoBDs in health and diseases as well as the challenges and prospects of ApoBDs-based diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Lina Yu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.
| | - Guanxiong Zhu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zeyu Zhang
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Yang Yu
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Liting Zeng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zidan Xu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Jinlong Weng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Junyi Xia
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Jiang Li
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.
| | - Janak L Pathak
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
33
|
Essien SA, Ahuja I, Eisenhoffer GT. Macrophage Migration Inhibitory Factor on Apoptotic Extracellular Vesicles Regulates Compensatory Proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544889. [PMID: 37398303 PMCID: PMC10312732 DOI: 10.1101/2023.06.14.544889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Apoptotic cells can signal to neighboring cells to stimulate proliferation and compensate for cell loss to maintain tissue homeostasis. While apoptotic cell-derived extracellular vesicles (AEVs) can transmit instructional cues to mediate communication with neighboring cells, the molecular mechanisms that induce cell division are not well understood. Here we show that macrophage migration inhibitory factor (MIF)-containing AEVs regulate compensatory proliferation via ERK signaling in epithelial stem cells of larval zebrafish. Time-lapse imaging showed efferocytosis of AEVs from dying epithelial stem cells by healthy neighboring stem cells. Proteomic and ultrastructure analysis of purified AEVs identified MIF localization on the AEV surface. Pharmacological inhibition or genetic mutation of MIF, or its cognate receptor CD74, decreased levels of phosphorylated ERK and compensatory proliferation in the neighboring epithelial stem cells. Disruption of MIF activity also caused decreased numbers of macrophages patrolling near AEVs, while depletion of the macrophage lineage resulted in a reduced proliferative response by the epithelial stem cells. We propose that AEVs carrying MIF directly stimulate epithelial stem cell repopulation and guide macrophages to cell non-autonomously induce localized proliferation to sustain overall cell numbers during tissue maintenance.
Collapse
Affiliation(s)
- Safia A. Essien
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, TX
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ivanshi Ahuja
- Department of Biosciences, Rice University, Houston TX
| | - George T. Eisenhoffer
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, TX
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
34
|
Holstein TW. The Hydra stem cell system - Revisited. Cells Dev 2023; 174:203846. [PMID: 37121433 DOI: 10.1016/j.cdev.2023.203846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Cnidarians are >600 million years old and are considered the sister group of Bilateria based on numerous molecular phylogenetic studies. Apart from Hydra, the genomes of all major clades of Cnidaria have been uncovered (e.g. Aurelia, Clytia, Nematostella and Acropora) and they reveal a remarkable completeness of the metazoan genomic toolbox. Of particular interest is Hydra, a model system of aging research, regenerative biology, and stem cell biology. With the knowledge gained from scRNA research, it is now possible to characterize the expression profiles of all cell types with great precision. In functional studies, our picture of the Hydra stem cell biology has changed, and we are in the process of obtaining a clear picture of the homeostasis and properties of the different stem cell populations. Even though Hydra is often compared to plant systems, the new data on germline and regeneration, but also on the dynamics and plasticity of the nervous system, show that Hydra with its simple body plan represents in a nutshell the prototype of an animal with stem cell lineages, whose properties correspond in many ways to Bilateria. This review provides an overview of the four stem cell lineages, the two epithelial lineages that constitute the ectoderm and the endoderm, as well as the multipotent somatic interstitial lineage (MPSC) and the germline stem cell lineage (GSC), also known as the interstitial cells of Hydra.
Collapse
Affiliation(s)
- Thomas W Holstein
- Heidelberg University, Centre for Organismal Studies (COS), Molecular Evolution and Genomics, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.
| |
Collapse
|
35
|
Fort L. Messenger functions of cell death during development and homeostasis. Biochem Soc Trans 2023; 51:759-769. [PMID: 37021685 PMCID: PMC11149382 DOI: 10.1042/bst20220925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/27/2023]
Abstract
In our human society, would you not want to know if your neighbor suddenly passed away? Tissues and cells are not that different. Cell death is an inevitable part of tissue homeostasis and comes in different flavors that can either be a consequence of an injury or a regulated phenomenon (such as programed cell death). Historically, cell death was viewed as a way to discard cells, without functional consequences. Today, this view has evolved and recognizes an extra layer of complexity: dying cells can provide physical or chemical signals to notify their neighbors. Like any type of communication, signals can only be read if surrounding tissues have evolved to recognize them and functionally adapt. This short review aims to provide a summary of recent work interrogating the messenger functions and consequences of cell death in various model organisms.
Collapse
Affiliation(s)
- Loic Fort
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, U.S.A
| |
Collapse
|
36
|
Yue Z, Yu Y, Gao B, Wang D, Sun H, Feng Y, Ma Z, Xie X. Advances in protein glycosylation and its role in tissue repair and regeneration. Glycoconj J 2023; 40:355-373. [PMID: 37097318 DOI: 10.1007/s10719-023-10117-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
After tissue damage, a series of molecular and cellular events are initiated to promote tissue repair and regeneration to restore its original structure and function. These events include inter-cell communication, cell proliferation, cell migration, extracellular matrix differentiation, and other critical biological processes. Glycosylation is the crucial conservative and universal post-translational modification in all eukaryotic cells [1], with influential roles in intercellular recognition, regulation, signaling, immune response, cellular transformation, and disease development. Studies have shown that abnormally glycosylation of proteins is a well-recognized feature of cancer cells, and specific glycan structures are considered markers of tumor development. There are many studies on gene expression and regulation during tissue repair and regeneration. Still, there needs to be more knowledge of complex carbohydrates' effects on tissue repair and regeneration, such as glycosylation. Here, we present a review of studies investigating protein glycosylation in the tissue repair and regeneration process.
Collapse
Affiliation(s)
- Zhongyu Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yajie Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Boyuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Du Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Hongxiao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yue Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Zihan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
| |
Collapse
|
37
|
Yang A, Yan S, Yin Y, Chen C, Tang X, Ran M, Chen B. FZD7, Regulated by Non-CpG Methylation, Plays an Important Role in Immature Porcine Sertoli Cell Proliferation. Int J Mol Sci 2023; 24:ijms24076179. [PMID: 37047150 PMCID: PMC10094452 DOI: 10.3390/ijms24076179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
The regulatory role of non-CpG methylation in mammals has been important in whole-genome bisulfite sequencing. It has also been suggested that non-CpG methylation regulates gene expression to affect the development and health of mammals. However, the dynamic regulatory mechanisms of genome-wide, non-CpG methylation during testicular development still require intensive study. In this study, we analyzed the dataset from the whole-genome bisulfite sequencing (WGBS) and the RNA-seq of precocious porcine testicular tissues across two developmental stages (1 and 75 days old) in order to explore the regulatory roles of non-CpG methylation. Our results showed that genes regulated by non-CpG methylation affect the development of testes in multiple pathways. Furthermore, several hub genes that are regulated by non-CpG methylation during testicular development-such as VEGFA, PECAM1, and FZD7-were also identified. We also found that the relative expression of FZD7 was downregulated by the zebularine-induced demethylation of the first exon of FZD7. This regulatory relationship was consistent with the results of the WGBS and RNA-seq analysis. The immature porcine Sertoli cells were transfected with RNAi to mimic the expression patterns of FZD7 during testicular development. The results of the simulation test showed that cell proliferation was significantly impeded and that cell cycle arrest at the G2 phase was caused by the siRNA-induced FZD7 inhibition. We also found that the percentage of early apoptotic Sertoli cells was decreased by transfecting them with the RNAi for FZD7. This indicates that FZD7 is an important factor in linking the proliferation and apoptosis of Sertoli cells. We further demonstrated that Sertoli cells that were treated with the medium collected from apoptotic cells could stimulate proliferation. These findings will contribute to the exploration of the regulatory mechanisms of non-CpG methylation in testicular development and of the relationship between the proliferation and apoptosis of normal somatic cells.
Collapse
Affiliation(s)
- Anqi Yang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Saina Yan
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Yanfei Yin
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Chujie Chen
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Xiangwei Tang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Maoliang Ran
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
38
|
Fan Y, Chai C, Li P, Zou X, Ferrell JE, Wang B. Ultrafast and long-range coordination of wound responses is essential for whole-body regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532844. [PMID: 36993633 PMCID: PMC10055111 DOI: 10.1101/2023.03.15.532844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Injury induces systemic, global responses whose functions remain elusive. In addition, mechanisms that rapidly synchronize wound responses through long distances across the organismal scale are mostly unknown. Using planarians, which have extreme regenerative ability, we report that injury induces Erk activity to travel in a wave-like manner at an unexpected speed (∼1 mm/h), 10-100 times faster than those measured in other multicellular tissues. This ultrafast signal propagation requires longitudinal body-wall muscles, elongated cells forming dense parallel tracks running the length of the organism. Combining experiments and computational models, we show that the morphological properties of muscles allow them to minimize the number of slow intercellular signaling steps and act as bidirectional superhighways for propagating wound signals and instructing responses in other cell types. Inhibiting Erk propagation prevents cells distant to the wound from responding and blocks regeneration, which can be rescued by a second injury to distal tissues within a narrow time window after the first injury. These results suggest that rapid responses in uninjured tissues far from wounds are essential for regeneration. Our findings provide a mechanism for long-range signal propagation in large and complex tissues to coordinate cellular responses across diverse cell types, and highlights the function of feedback between spatially separated tissues during whole-body regeneration.
Collapse
Affiliation(s)
- Yuhang Fan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Pengyang Li
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Xinzhi Zou
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - James E. Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
39
|
Wu Y, Lim YW, Stroud DA, Martel N, Hall TE, Lo HP, Ferguson C, Ryan MT, McMahon KA, Parton RG. Caveolae sense oxidative stress through membrane lipid peroxidation and cytosolic release of CAVIN1 to regulate NRF2. Dev Cell 2023; 58:376-397.e4. [PMID: 36858041 DOI: 10.1016/j.devcel.2023.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023]
Abstract
Caveolae have been linked to many biological functions, but their precise roles are unclear. Using quantitative whole-cell proteomics of genome-edited cells, we show that the oxidative stress response is the major pathway dysregulated in cells lacking the key caveola structural protein, CAVIN1. CAVIN1 deletion compromised sensitivity to oxidative stress in cultured cells and in animals. Wound-induced accumulation of reactive oxygen species and apoptosis were suppressed in Cavin1-null zebrafish, negatively affecting regeneration. Oxidative stress triggered lipid peroxidation and induced caveolar disassembly. The resulting release of CAVIN1 from caveolae allowed direct interaction between CAVIN1 and NRF2, a key regulator of the antioxidant response, facilitating NRF2 degradation. CAVIN1-null cells with impaired negative regulation of NRF2 showed resistance to lipid-peroxidation-induced ferroptosis. Thus, caveolae, via lipid peroxidation and CAVIN1 release, maintain cellular susceptibility to oxidative-stress-induced cell death, demonstrating a crucial role for this organelle in cellular homeostasis and wound response.
Collapse
Affiliation(s)
- Yeping Wu
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Ye-Wheen Lim
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, 3052, University of Melbourne, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, the Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Nick Martel
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Thomas E Hall
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Harriet P Lo
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Charles Ferguson
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Michael T Ryan
- Monash University, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Kerrie-Ann McMahon
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia.
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia; The University of Queensland, Centre for Microscopy and Microanalysis, Brisbane, QLD 4072, Australia.
| |
Collapse
|
40
|
de Lima FMR, Abrahão I, Pentagna N, Carneiro K. Gradual specialization of phagocytic ameboid cells may have impaired regenerative capacities in metazoan lineages. Dev Dyn 2023; 252:343-362. [PMID: 36205096 DOI: 10.1002/dvdy.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
Animal regeneration is a fascinating field of research that has captured the attention of many generations of scientists. Among the cellular mechanisms underlying tissue and organ regeneration, we highlight the role of phagocytic ameboid cells (PACs). Beyond their ability to engulf nutritional particles, microbes, and apoptotic cells, their involvement in regeneration has been widely documented. It has been extensively described that, at least in part, animal regenerative mechanisms rely on PACs that serve as a hub for a range of critical physiological functions, both in health and disease. Considering the phylogenetics of PAC evolution, and the loss and gain of nutritional, immunological, and regenerative potential across Metazoa, we aim to discuss when and how phagocytic activity was first co-opted to regenerative tissue repair. We propose that the gradual specialization of PACs during metazoan derivation may have contributed to the loss of regenerative potential in animals, with critical impacts on potential translational strategies for regenerative medicine.
Collapse
Affiliation(s)
- Felipe Matheus Ribeiro de Lima
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Developmental Biology, Postgraduate Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella Abrahão
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia Pentagna
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate Program in Medicine (Pathological Anatomy), Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia Carneiro
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Developmental Biology, Postgraduate Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate Program in Medicine (Pathological Anatomy), Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Amiel AR, Tsai SL, Wehner D. Embracing the diversity of model systems to deconstruct the basis of regeneration and tissue repair. Development 2023; 150:286821. [PMID: 36718794 DOI: 10.1242/dev.201579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The eighth EMBO conference in the series 'The Molecular and Cellular Basis of Regeneration and Tissue Repair' took place in Barcelona (Spain) in September 2022. A total of 173 researchers from across the globe shared their latest advances in deciphering the molecular and cellular basis of wound healing, tissue repair and regeneration, as well as their implications for future clinical applications. The conference showcased an ever-expanding diversity of model organisms used to identify mechanisms that promote regeneration. Over 25 species were discussed, ranging from invertebrates to humans. Here, we provide an overview of the exciting topics presented at the conference, highlighting novel discoveries in regeneration and perspectives for regenerative medicine.
Collapse
Affiliation(s)
- Aldine R Amiel
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), 06107 Nice, France
| | - Stephanie L Tsai
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel Wehner
- Max Planck Institute for the Science of Light, Erlangen 91058, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen 91058, Germany
| |
Collapse
|
42
|
Petersen CP. Wnt signaling in whole-body regeneration. Curr Top Dev Biol 2023; 153:347-380. [PMID: 36967200 DOI: 10.1016/bs.ctdb.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Regeneration abilities are widespread among animals and select species can restore any body parts removed by wounds that sever the major body axes. This capability of whole-body regeneration as exemplified in flatworm planarians, Acoels, and Cnidarians involves initial responses to injury, the assessment of wound site polarization, determination of missing tissue and programming of blastema fate, and patterned outgrowth to restore axis content and proportionality. Wnt signaling drives many shared and conserved aspects of the biology of whole-body regeneration in the planarian species Schmidtea mediterranea and Dugesia japonica, in the Acoel Hofstenia miamia, and in Cnidarians Hydra and Nematostella. These overlapping mechanisms suggest whole-body regeneration might be an ancestral property across diverse animal taxa.
Collapse
Affiliation(s)
- Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States; Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
43
|
Tursch A, Holstein TW. From injury to patterning—MAPKs and Wnt signaling in Hydra. Curr Top Dev Biol 2023; 153:381-417. [PMID: 36967201 DOI: 10.1016/bs.ctdb.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Hydra has a regenerative capacity that is not limited to individual organs but encompasses the entire body. Various global and integrative genome, transcriptome and proteome approaches have shown that many of the signaling pathways and transcription factors present in vertebrates are already present in Cnidaria, the sister group of Bilateria, and are also activated in regeneration. It is now possible to investigate one of the central questions of regeneration biology, i.e., how does the patterning system become activated by the injury signals that initiate regeneration. This review will present the current data obtained in Hydra and draw parallels with regeneration in Bilateria. Important findings of this global analysis are that the Wnt signaling pathway has a dual function in the regeneration process. In the early phase Wnt is activated generically and in a second phase of pattern formation it is activated in a position specific manner. Thus, Wnt signaling is part of the generic injury response, in which mitogen-activated protein kinases (MAPKs) are initially activated via calcium and reactive oxygen species (ROS). The MAPKs, p38, c-Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERK) are essential for Wnt activation in Hydra head and foot regenerates. Furthermore, the antagonism between the ERK signaling pathway and stress-induced MAPKs results in a balanced induction of apoptosis and mitosis. However, the early Wnt genes are activated by MAPK signaling rather than apoptosis. Early Wnt gene activity is differentially integrated with a stable, β-Catenin-based gradient along the primary body axis maintaining axial polarity and activating further Wnts in the regenerating head. Because MAPKs and Wnts are highly evolutionarily conserved, we hypothesize that this mechanism is also present in vertebrates but may be activated to different degrees at the level of early Wnt gene integration.
Collapse
|
44
|
Krasovec G, Horkan HR, Quéinnec É, Chambon JP. The constructive function of apoptosis: More than a dead-end job. Front Cell Dev Biol 2022; 10:1033645. [PMID: 36582468 PMCID: PMC9793947 DOI: 10.3389/fcell.2022.1033645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Gabriel Krasovec
- Centre for Chromosome Biology, School of Natural Sciences, University of Galway, Galway, Ireland
- ISYEB, Institut de Systématique, Evolution et Biodiversité, Sorbonne Université, CNRS, MNHN, Paris, France
| | - Helen R. Horkan
- Centre for Chromosome Biology, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Éric Quéinnec
- ISYEB, Institut de Systématique, Evolution et Biodiversité, Sorbonne Université, CNRS, MNHN, Paris, France
| | | |
Collapse
|
45
|
Actin remodeling mediates ROS production and JNK activation to drive apoptosis-induced proliferation. PLoS Genet 2022; 18:e1010533. [DOI: 10.1371/journal.pgen.1010533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/15/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Stress-induced cell death, mainly apoptosis, and its subsequent tissue repair is interlinked although our knowledge of this connection is still very limited. An intriguing finding is apoptosis-induced proliferation (AiP), an evolutionary conserved mechanism employed by apoptotic cells to trigger compensatory proliferation of their neighboring cells. Studies using Drosophila as a model organism have revealed that apoptotic caspases and c-Jun N-terminal kinase (JNK) signaling play critical roles to activate AiP. For example, the initiator caspase Dronc, the caspase-9 ortholog in Drosophila, promotes activation of JNK leading to release of mitogenic signals and AiP. Recent studies further revealed that Dronc relocates to the cell cortex via Myo1D, an unconventional myosin, and stimulates production of reactive oxygen species (ROS) to trigger AiP. During this process, ROS can attract hemocytes, the Drosophila macrophages, which further amplify JNK signaling cell non-autonomously. However, the intrinsic components connecting Dronc, ROS and JNK within the stressed signal-producing cells remain elusive. Here, we identified LIM domain kinase 1 (LIMK1), a kinase promoting cellular F-actin polymerization, as a novel regulator of AiP. F-actin accumulates in a Dronc-dependent manner in response to apoptotic stress. Suppression of F-actin polymerization in stressed cells by knocking down LIMK1 or expressing Cofilin, an inhibitor of F-actin elongation, blocks ROS production and JNK activation, hence AiP. Furthermore, Dronc and LIMK1 genetically interact. Co-expression of Dronc and LIMK1 drives F-actin accumulation, ROS production and JNK activation. Interestingly, these synergistic effects between Dronc and LIMK1 depend on Myo1D. Therefore, F-actin remodeling plays an important role mediating caspase-driven ROS production and JNK activation in the process of AiP.
Collapse
|
46
|
Li Z, Wu M, Liu S, Liu X, Huan Y, Ye Q, Yang X, Guo H, Liu A, Huang X, Yang X, Ding F, Xu H, Zhou J, Liu P, Liu S, Jin Y, Xuan K. Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration. Mol Ther 2022; 30:3193-3208. [PMID: 35538661 PMCID: PMC9552912 DOI: 10.1016/j.ymthe.2022.05.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/19/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) derived from living cells play important roles in donor cell-induced recipient tissue regeneration. Although numerous studies have found that cells undergo apoptosis after implantation in an ischemic-hypoxic environment, the roles played by the EVs released by apoptotic cells are largely unknown. In this study, we obtained apoptotic vesicles (apoVs) derived from human deciduous pulp stem cells and explored their effects on the dental pulp regeneration process. Our work showed that apoVs were ingested by endothelial cells (ECs) and elevated the expression of angiogenesis-related genes, leading to pulp revascularization and tissue regeneration. Furthermore, we found that, at the molecular level, apoV-carried mitochondrial Tu translation elongation factor was transported and regulated the angiogenic activation of ECs via the transcription factor EB-autophagy pathway. In a beagle model of dental pulp regeneration in situ, apoVs recruited endogenous ECs and facilitated the formation of dental-pulp-like tissue rich in blood vessels. These findings revealed the significance of apoptosis in tissue regeneration and demonstrated the potential of using apoVs to promote angiogenesis in clinical applications.
Collapse
Affiliation(s)
- Zihan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China; State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Meiling Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Siying Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Xuemei Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China; State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Yu Huan
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Qingyuan Ye
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China; State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxue Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Hao Guo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Xiaoyao Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Xiaoshan Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China; Stomatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Ding
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Haokun Xu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Jun Zhou
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Peisheng Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China.
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China.
| |
Collapse
|
47
|
Pascual-Torner M, Carrero D, Pérez-Silva JG, Álvarez-Puente D, Roiz-Valle D, Bretones G, Rodríguez D, Maeso D, Mateo-González E, Español Y, Mariño G, Acuña JL, Quesada V, López-Otín C. Comparative genomics of mortal and immortal cnidarians unveils novel keys behind rejuvenation. Proc Natl Acad Sci U S A 2022; 119:e2118763119. [PMID: 36037356 PMCID: PMC9459311 DOI: 10.1073/pnas.2118763119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Turritopsis dohrnii is the only metazoan able to rejuvenate repeatedly after its medusae reproduce, hinting at biological immortality and challenging our understanding of aging. We present and compare whole-genome assemblies of T. dohrnii and the nonimmortal Turritopsis rubra using automatic and manual annotations, together with the transcriptome of life cycle reversal (LCR) process of T. dohrnii. We have identified variants and expansions of genes associated with replication, DNA repair, telomere maintenance, redox environment, stem cell population, and intercellular communication. Moreover, we have found silencing of polycomb repressive complex 2 targets and activation of pluripotency targets during LCR, which points to these transcription factors as pluripotency inducers in T. dohrnii. Accordingly, we propose these factors as key elements in the ability of T. dohrnii to undergo rejuvenation.
Collapse
Affiliation(s)
- Maria Pascual-Torner
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, 33006, Spain
- Observatorio Marino de Asturias, Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, 33006, Spain
| | - Dido Carrero
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, 33006, Spain
| | - José G. Pérez-Silva
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, 33006, Spain
| | - Diana Álvarez-Puente
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, 33006, Spain
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, 33006, Spain
| | - Gabriel Bretones
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, 33006, Spain
| | - David Rodríguez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, 33006, Spain
| | - Daniel Maeso
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, 33006, Spain
| | - Elena Mateo-González
- Observatorio Marino de Asturias, Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, 33006, Spain
| | - Yaiza Español
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, 33006, Spain
| | - Guillermo Mariño
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Oviedo, 33006, Spain
- Autophagy and Metabolism Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, 33011, Spain
| | - José Luis Acuña
- Observatorio Marino de Asturias, Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, 33006, Spain
| | - Víctor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, 33006, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, 33006, Spain
| |
Collapse
|
48
|
IRES-mediated Wnt2 translation in apoptotic neurons triggers astrocyte dedifferentiation. NPJ Regen Med 2022; 7:42. [PMID: 36056026 PMCID: PMC9440034 DOI: 10.1038/s41536-022-00248-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Reactive astrogliosis usually bears some properties of neural progenitors. How injury triggers astrocyte dedifferentiation remains largely unclear. Here, we report that ischemia induces rapid up-regulation of Wnt2 protein in apoptotic neurons and activation of canonical Wnt signaling in reactive astrocytes in mice, primates and human. Local delivery of Wnt2 shRNA abolished the dedifferentiation of astrocytes while over-expressing Wnt2 promoted progenitor marker expression and neurogenesis. Both the activation of Wnt signaling and dedifferentiation of astrocytes was compromised in ischemic caspase-3−/− cortex. Over-expressing stabilized β-catenin not only facilitated neurogenesis but also promoted functional recovery in ischemic caspase-3−/− mice. Further analysis showed that apoptotic neurons up-regulated Wnt2 protein via internal ribosome entry site (IRES)-mediated translation. Knocking down death associated protein 5 (DAP5), a key protein in IRES-mediated protein translation, significantly diminished Wnt activation and astrocyte dedifferentiation. Our data demonstrated an apoptosis-initiated Wnt-activating mechanism which triggers astrocytic dedifferentiation and facilitates neuronal regeneration.
Collapse
|
49
|
Injury-induced MAPK activation triggers body axis formation in Hydra by default Wnt signaling. Proc Natl Acad Sci U S A 2022; 119:e2204122119. [PMID: 35994642 PMCID: PMC9436372 DOI: 10.1073/pnas.2204122119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydra's almost unlimited regenerative potential is based on Wnt signaling, but so far it is unknown how the injury stimulus is transmitted to discrete patterning fates in head and foot regenerates. We previously identified mitogen-activated protein kinases (MAPKs) among the earliest injury response molecules in Hydra head regeneration. Here, we show that three MAPKs-p38, c-Jun N-terminal kinases (JNKs), and extracellular signal-regulated kinases (ERKs)-are essential to initiate regeneration in Hydra, independent of the wound position. Their activation occurs in response to any injury and requires calcium and reactive oxygen species (ROS) signaling. Phosphorylated MAPKs hereby exhibit cross talk with mutual antagonism between the ERK pathway and stress-induced MAPKs, orchestrating a balance between cell survival and apoptosis. Importantly, Wnt3 and Wnt9/10c, which are induced by MAPK signaling, can partially rescue regeneration in tissues treated with MAPK inhibitors. Also, foot regenerates can be reverted to form head tissue by a pharmacological increase of β-catenin signaling or the application of recombinant Wnts. We propose a model in which a β-catenin-based stable gradient of head-forming capacity along the primary body axis, by differentially integrating an indiscriminate injury response, determines the fate of the regenerating tissue. Hereby, Wnt signaling acquires sustained activation in the head regenerate, while it is transient in the presumptive foot tissue. Given the high level of evolutionary conservation of MAPKs and Wnts, we assume that this mechanism is deeply embedded in our genome.
Collapse
|
50
|
A single WNT enhancer drives specification and regeneration of the Drosophila wing. Nat Commun 2022; 13:4794. [PMID: 35995781 PMCID: PMC9395397 DOI: 10.1038/s41467-022-32400-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
Wings have provided an evolutionary advantage to insects and have allowed them to diversify. Here, we have identified in Drosophila a highly robust regulatory mechanism that ensures the specification and growth of the wing not only during normal development but also under stress conditions. We present evidence that a single wing-specific enhancer in the wingless gene is used in two consecutive developmental stages to first drive wing specification and then contribute to mediating the remarkable regenerative capacity of the developing wing upon injury. We identify two evolutionary conserved cis-regulatory modules within this enhancer that are utilized in a redundant manner to mediate these two activities through the use of distinct molecular mechanisms. Whereas Hedgehog and EGFR signalling regulate Wingless expression in early primordia, thus inducing wing specification from body wall precursors, JNK activation in injured tissues induce Wingless expression to promote compensatory proliferation. These results point to evolutionarily linked conservation of wing specification and regeneration to ensure robust development of the wing, perhaps the most relevant evolutionary novelty in insects. The wing is a remarkable evolutionary novelty in insects. Here the authors demonstrate that the specification and regenerative capacity of the wing relies on a single wing-specific enhancer of the wingless gene in Drosophila.
Collapse
|