1
|
Hillan EJ, Roberts LE, Criswell KE, Head JJ. Conservation of rib skeleton regionalization in the homoplastic evolution of the snake-like body form in squamates. Proc Biol Sci 2024; 291:20241160. [PMID: 39379001 DOI: 10.1098/rspb.2024.1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Squamates have independently evolved an elongate, limb-reduced body form numerous times. This transition has been proposed to involve either changes to regulatory gene expression or downstream modification of target enhancers to produce a homogeneous, deregionalized axial skeleton. Analysis of vertebral morphology has suggested that regionalization is maintained in snake-like body forms, but morphological variation in the other primary component of the axial skeleton, the dorsal ribs, has not been previously examined. We quantified rib morphology along the anterior-posterior axis in limbed and snake-like squamates to test different regionalization models. We find that the relative position of regional boundaries remains consistent across taxa of differing body types, including in the homoplastic evolution of snake-like body forms. The consistent retention of regional boundaries in this primaxial domain is uncorrelated with more plastic abaxial region markers. Rather than loss of regions, rib shape at the anterior and posterior of the axis converges on those in the middle, resulting in axial regions being distinguishable by allometric shape changes rather than by discrete morphologies. This complexity challenges notions of deregionalization, revealing a nuanced evolutionary history shaped by shared functions.
Collapse
Affiliation(s)
- Emily J Hillan
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Lucy E Roberts
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
- The Natural History Museum, London, UK
| | - Katharine E Criswell
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
- Department of Biology, Saint Francis University, Loretto, PA, USA
| | - Jason J Head
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Ocieczek P, Oluonye N, Méjécase C, Schiff E, Tailor V, Moosajee M. Identification of a Novel Frameshift Variant in MYF5 Leading to External Ophthalmoplegia with Rib and Vertebral Anomalies. Genes (Basel) 2024; 15:699. [PMID: 38927634 PMCID: PMC11202668 DOI: 10.3390/genes15060699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Myogenic transcription factors with a basic helix-loop-helix (bHLH) such as MYOD, myogenin, MRF4, and MYF5 contribute to muscle differentiation and regulation. The MYF5 gene located on chromosome 12 encodes for myogenic factor 5 (MYF5), which has a role in skeletal and extraocular muscle development and rib formation. Variants in MYF5 were found to cause external ophthalmoplegia with rib and vertebral anomalies (EORVA), a rare recessive condition. To date, three homozygous variants in MYF5 have been reported to cause EORVA in six members of four unrelated families. Here, we present a novel homozygous MYF5 frameshift variant, c.596dupA p. (Asn199Lysfs*49), causing premature protein termination and presenting with external ophthalmoplegia, ptosis, and scoliosis in three siblings from a consanguineous family of Pakistani origin. With four MYF5 variants now discovered, genetic testing and paediatric assessment for extra-ocular features should be considered in all cases of congenital ophthalmoplegia.
Collapse
Affiliation(s)
- Paulina Ocieczek
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 9EL, UK; (P.O.)
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Ngozi Oluonye
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 9EL, UK; (P.O.)
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 9JH, UK
| | - Cécile Méjécase
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Francis Crick Institute, London NW1 1AT, UK
| | - Elena Schiff
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 9EL, UK; (P.O.)
| | - Vijay Tailor
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 9EL, UK; (P.O.)
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Mariya Moosajee
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 9EL, UK; (P.O.)
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 9JH, UK
- Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
3
|
Kahane N, Dahan-Barda Y, Kalcheim C. A Spatio-Temporal-Dependent Requirement of Sonic Hedgehog in the Early Development of Sclerotome-Derived Vertebrae and Ribs. Int J Mol Sci 2024; 25:5602. [PMID: 38891790 PMCID: PMC11171667 DOI: 10.3390/ijms25115602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations.
Collapse
Affiliation(s)
| | | | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 9112102, Israel; (N.K.); (Y.D.-B.)
| |
Collapse
|
4
|
Wellik DM. Hox genes and patterning the vertebrate body. Curr Top Dev Biol 2024; 159:1-27. [PMID: 38729674 DOI: 10.1016/bs.ctdb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The diversity of vertebrate body plans is dizzying, yet stunning for the many things they have in common. Vertebrates have inhabited virtually every part of the earth from its coldest to warmest climates. They locomote by swimming, flying, walking, slithering, or climbing, or combinations of these behaviors. And they exist in many different sizes, from the smallest of frogs, fish and lizards to giraffes, elephants, and blue whales. Despite these differences, vertebrates follow a remarkably similar blueprint for the establishment of their body plan. Within the relatively small amount of time required to complete gastrulation, the process through which the three germ layers, ectoderm, mesoderm, and endoderm are created, the embryo also generates its body axis and is simultaneously patterned. For the length of this axis, the genes that distinguish the neck from the rib cage or the trunk from the sacrum are the Hox genes. In vertebrates, there was evolutionary pressure to maintain this set of genes in the organism. Over the past decades, much has been learned regarding the regulatory mechanisms that ensure the appropriate expression of these genes along the main body axes. Genetic functions continue to be explored though much has been learned. Much less has been discerned on the identity of co-factors used by Hox proteins for the specificity of transcriptional regulation or what downstream targets and pathways are critical for patterning events, though there are notable exceptions. Current work in the field is demonstrating that Hox genes continue to function in many organs long after directing early patterning events. It is hopeful continued research will shed light on remaining questions regarding mechanisms used by this important and conserved set of transcriptional regulators.
Collapse
Affiliation(s)
- Deneen M Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States.
| |
Collapse
|
5
|
Draga M, Scaal M. Building a vertebra: Development of the amniote sclerotome. J Morphol 2024; 285:e21665. [PMID: 38100740 DOI: 10.1002/jmor.21665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
In embryonic development, the vertebral column arises from the sclerotomal compartment of the somites. The sclerotome is a mesenchymal cell mass which can be subdivided into several subpopulations specified by different regulatory mechanisms and giving rise to different parts of the vertebrae like vertebral body, vertebral arch, ribs, and vertebral joints. This review gives a short overview on the molecular and cellular basis of the formation of sclerotomal subdomains and the morphogenesis of their vertebral derivatives.
Collapse
Affiliation(s)
- Margarethe Draga
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Martin Scaal
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Lozovska A, Korovesi AG, Duarte P, Casaca A, Assunção T, Mallo M. The control of transitions along the main body axis. Curr Top Dev Biol 2023; 159:272-308. [PMID: 38729678 DOI: 10.1016/bs.ctdb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Although vertebrates display a large variety of forms and sizes, the mechanisms controlling the layout of the basic body plan are substantially conserved throughout the clade. Following gastrulation, head, trunk, and tail are sequentially generated through the continuous addition of tissue at the caudal embryonic end. Development of each of these major embryonic regions is regulated by a distinct genetic network. The transitions from head-to-trunk and from trunk-to-tail development thus involve major changes in regulatory mechanisms, requiring proper coordination to guarantee smooth progression of embryonic development. In this review, we will discuss the key cellular and embryological events associated with those transitions giving particular attention to their regulation, aiming to provide a cohesive outlook of this important component of vertebrate development.
Collapse
Affiliation(s)
| | | | - Patricia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Ana Casaca
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Tereza Assunção
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal.
| |
Collapse
|
7
|
Duarte P, Brattig Correia R, Nóvoa A, Mallo M. Regulatory changes associated with the head to trunk developmental transition. BMC Biol 2023; 21:170. [PMID: 37553620 PMCID: PMC10408190 DOI: 10.1186/s12915-023-01675-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Development of vertebrate embryos is characterized by early formation of the anterior tissues followed by the sequential extension of the axis at their posterior end to build the trunk and tail structures, first by the activity of the primitive streak and then of the tail bud. Embryological, molecular and genetic data indicate that head and trunk development are significantly different, suggesting that the transition into the trunk formation stage involves major changes in regulatory gene networks. RESULTS We explored those regulatory changes by generating differential interaction networks and chromatin accessibility profiles from the posterior epiblast region of mouse embryos at embryonic day (E)7.5 and E8.5. We observed changes in various cell processes, including several signaling pathways, ubiquitination machinery, ion dynamics and metabolic processes involving lipids that could contribute to the functional switch in the progenitor region of the embryo. We further explored the functional impact of changes observed in Wnt signaling associated processes, revealing a switch in the functional relevance of Wnt molecule palmitoleoylation, essential during gastrulation but becoming differentially required for the control of axial extension and progenitor differentiation processes during trunk formation. We also found substantial changes in chromatin accessibility at the two developmental stages, mostly mapping to intergenic regions and presenting differential footprinting profiles to several key transcription factors, indicating a significant switch in the regulatory elements controlling head or trunk development. Those chromatin changes are largely independent of retinoic acid, despite the key role of this factor in the transition to trunk development. We also tested the functional relevance of potential enhancers identified in the accessibility assays that reproduced the expression profiles of genes involved in the transition. Deletion of these regions by genome editing had limited effect on the expression of those genes, suggesting the existence of redundant enhancers that guarantee robust expression patterns. CONCLUSIONS This work provides a global view of the regulatory changes controlling the switch into the axial extension phase of vertebrate embryonic development. It also revealed mechanisms by which the cellular context influences the activity of regulatory factors, channeling them to implement one of several possible biological outputs.
Collapse
Affiliation(s)
- Patrícia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Rion Brattig Correia
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
8
|
Gaunt SJ. Seeking Sense in the Hox Gene Cluster. J Dev Biol 2022; 10:48. [PMID: 36412642 PMCID: PMC9680502 DOI: 10.3390/jdb10040048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The Hox gene cluster, responsible for patterning of the head-tail axis, is an ancestral feature of all bilaterally symmetrical animals (the Bilateria) that remains intact in a wide range of species. We can say that the Hox cluster evolved successfully only once since it is commonly the same in all groups, with labial-like genes at one end of the cluster expressed in the anterior embryo, and Abd-B-like genes at the other end of the cluster expressed posteriorly. This review attempts to make sense of the Hox gene cluster and to address the following questions. How did the Hox cluster form in the protostome-deuterostome last common ancestor, and why was this with a particular head-tail polarity? Why is gene clustering usually maintained? Why is there collinearity between the order of genes along the cluster and the positions of their expressions along the embryo? Why do the Hox gene expression domains overlap along the embryo? Why have vertebrates duplicated the Hox cluster? Why do Hox gene knockouts typically result in anterior homeotic transformations? How do animals adapt their Hox clusters to evolve new structural patterns along the head-tail axis?
Collapse
Affiliation(s)
- Stephen J Gaunt
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
9
|
Pereira AG, Grizante MB, Kohlsdorf T. What snakes and caecilians have in common? Molecular interaction units and the independent origins of similar morphotypes in Tetrapoda. Proc Biol Sci 2022; 289:20220841. [PMID: 35975445 PMCID: PMC9382212 DOI: 10.1098/rspb.2022.0841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022] Open
Abstract
Developmental pathways encompass transcription factors and cis-regulatory elements that interact as transcription factor-regulatory element (TF-RE) units. Independent origins of similar phenotypes likely involve changes in different parts of these units, a hypothesis promisingly tested addressing the evolution of the rib-associated lumbar (RAL) morphotype that characterizes emblematic animals such as snakes and elephants. Previous investigation in these lineages identified a polymorphism in the Homology region 1 [H1] enhancer of the Myogenic factor-5 [Myf5], which interacts with HOX10 proteins to modulate rib development. Here we address the evolution of TF-RE units focusing on independent origins of RAL morphotypes. We compiled an extensive database for H1-Myf5 and HOX10 sequences with two goals: (i) evaluate if the enhancer polymorphism is present in amphibians exhibiting the RAL morphotype and (ii) test a hypothesis of enhanced evolutionary flexibility mediated by TF-RE units, according to which independent origins of the RAL morphotype might involve changes in either component of the interaction unit. We identified the H1-Myf5 polymorphism in lineages that diverged around 340 Ma, including Lissamphibia. Independent origins of the RAL morphotype in Tetrapoda involved sequence variation in either component of the TF-RE unit, confirming that different changes may similarly affect the phenotypic outcome of a given developmental pathway.
Collapse
Affiliation(s)
- Anieli G. Pereira
- Department of Biology, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana B. Grizante
- Department of Biology, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
| | - Tiana Kohlsdorf
- Department of Biology, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
10
|
Khabyuk J, Pröls F, Draga M, Scaal M. Development of ribs and intercostal muscles in the chicken embryo. J Anat 2022; 241:831-845. [PMID: 35751554 PMCID: PMC9358761 DOI: 10.1111/joa.13716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 11/27/2022] Open
Abstract
In the thorax of higher vertebrates, ribs and intercostal muscles play a decisive role in stability and respiratory movements of the body wall. They are derivatives of the somites, the ribs originating in the sclerotome and the intercostal muscles originating in the myotome. During thorax development, ribs and intercostal muscles extend into the lateral plate mesoderm and eventually contact the sternum during ventral closure. Here, we give a detailed description of the morphogenesis of ribs and thoracic muscles in the chicken embryo (Gallus gallus). Using Alcian blue staining as well as Sox9 and Desmin whole‐mount immunohistochemistry, we monitor synchronously the development of rib cartilage and intercostal muscle anlagen. We show that the muscle anlagen precede the rib anlagen during ventrolateral extension, which is in line with the inductive role of the myotome in rib differentiation. Our studies furthermore reveal the temporary formation of a previously unknown eighth rib in the chicken embryonic thorax.
Collapse
Affiliation(s)
- Julia Khabyuk
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Felicitas Pröls
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Margarethe Draga
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Martin Scaal
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Tekko T, Lozovska A, Nóvoa A, Mallo M. Assessing Myf5 and Lbx1 contribution to carapace development by reproducing their turtle-specific signatures in mouse embryos. Dev Dyn 2022; 251:1698-1710. [PMID: 35618666 DOI: 10.1002/dvdy.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The turtle carapace is an evolutionary novelty resulting from changes in the processes that build ribs and their associated muscles in most tetrapod species. Turtle embryos have several unique features that might play a role in this process, including the carapacial ridge, a Myf5 gene with shorter coding region that generates an alternative splice variant lacking exon 2, and unusual expression patterns of Lbx1 and HGF. RESULTS We investigated these turtle-specific expression differences using genetic approaches in mouse embryos. At mid gestation, mouse embryos producing Myf5 transcripts lacking exon 2 replicated some early properties of turtle somites, but still developed into viable and fertile mice. Extending Lbx1 expression into the hypaxial dermomyotomal lip of trunk somites to mimic the turtle Lbx1 expression pattern, produced fusions in the distal part of the ribs. CONCLUSIONS Turtle-like Myf5 activity might generate a plastic state in developing trunk somites under which they can either enter carapace morphogenetic routes, possibly triggered by signals from the carapacial ridge, or still engage in the development of a standard tetrapod ribcage in the absence of those signals. In addition, trunk Lbx1 expression might play a later role in the formation of the lateral border of the carapace. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Triin Tekko
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Anastasiia Lozovska
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
12
|
Grimaldi A, Comai G, Mella S, Tajbakhsh S. Identification of bipotent progenitors that give rise to myogenic and connective tissues in mouse. eLife 2022; 11:70235. [PMID: 35225230 PMCID: PMC9020825 DOI: 10.7554/elife.70235] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
How distinct cell fates are manifested by direct lineage ancestry from bipotent progenitors, or by specification of individual cell types is a key question for understanding the emergence of tissues. The interplay between skeletal muscle progenitors and associated connective tissue cells provides a model for examining how muscle functional units are established. Most craniofacial structures originate from the vertebrate-specific neural crest cells except in the dorsal portion of the head, where they arise from cranial mesoderm. Here, using multiple lineage-tracing strategies combined with single cell RNAseq and in situ analyses, we identify bipotent progenitors expressing Myf5 (an upstream regulator of myogenic fate) that give rise to both muscle and juxtaposed connective tissue. Following this bifurcation, muscle and connective tissue cells retain complementary signalling features and maintain spatial proximity. Disrupting myogenic identity shifts muscle progenitors to a connective tissue fate. The emergence of Myf5-derived connective tissue is associated with the activity of several transcription factors, including Foxp2. Interestingly, this unexpected bifurcation in cell fate was not observed in craniofacial regions that are colonised by neural crest cells. Therefore, we propose that an ancestral bi-fated program gives rise to muscle and connective tissue cells in skeletal muscles that are deprived of neural crest cells.
Collapse
Affiliation(s)
| | - Glenda Comai
- UMR 3738, Department of Developmental and Stem Cell Biology, CNRS, Paris, France
| | - Sebastien Mella
- Cytometry and Biomarkers UTechS, Institut Pasteur, Paris, France
| | | |
Collapse
|
13
|
Weldon SA, Münsterberg AE. Somite development and regionalisation of the vertebral axial skeleton. Semin Cell Dev Biol 2021; 127:10-16. [PMID: 34690064 DOI: 10.1016/j.semcdb.2021.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022]
Abstract
A critical stage in the development of all vertebrate embryos is the generation of the body plan and its subsequent patterning and regionalisation along the main anterior-posterior axis. This includes the formation of the vertebral axial skeleton. Its organisation begins during early embryonic development with the periodic formation of paired blocks of mesoderm tissue called somites. Here, we review axial patterning of somites, with a focus on studies using amniote model systems - avian and mouse. We summarise the molecular and cellular mechanisms that generate paraxial mesoderm and review how the different anatomical regions of the vertebral column acquire their specific identity and thus shape the body plan. We also discuss the generation of organoids and embryo-like structures from embryonic stem cells, which provide insights regarding axis formation and promise to be useful for disease modelling.
Collapse
Affiliation(s)
- Shannon A Weldon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
14
|
Niu N, Wang H, Shi G, Liu X, Liu H, Liu Q, Yang M, Wang L, Zhang L. Genome scanning reveals novel candidate genes for vertebral and teat number in the Beijing Black Pig. Anim Genet 2021; 52:734-738. [PMID: 34192356 DOI: 10.1111/age.13111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
Porcine vertebral and teat numbers are variable and important economic traits in pig production. However, the quantitative trait loci (QTL) and candidate genes for both of these traits in the Beijing Black Pig are not yet known. In the present study, number of vertebrae and number of teats were obtained for 891 individuals of the Beijing Black Pig and genotyped using the Illumina Porcine 50 K BeadChip. Genome scanning was performed to detect associated variants and candidate genes for both traits using a genome-wide association study by tassel software. For vertebral number, 15 significant SNPs were located on SSC7. According to linkage disequilibrium analysis on SSC7, a haplotype block of 221 kb from 97.4 to 97.6 Mb was shown to contain a good candidate gene ABCD4. Interestingly, on SSC12, we recorded a novel QTL containing three significant SNPs and 34 annotated genes from 24.0 to 25.7 Mb for vertebral number. Of the 34 genes, nine Hox family genes (HOXB 1-7, 9, and 13) were found to be good candidate genes. Using the 34 genes, a gene ontology analysis was performed to detect enrichment of anterior/posterior pattern specification. For teat number, a novel chromosome-wide significant QTL was identified on SSC10. In this QTL region, one significant SNP was identified. The nearest gene, NTRK2, was regarded as a candidate gene. The present results expanded the QTL for vertebral and teat numbers and provided useful molecular markers for breeding in the Beijing Black Pig population.
Collapse
Affiliation(s)
- N Niu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - H Wang
- Beijing Heiliu Stockbreeding Technology Co. Ltd, Beijing, 102211, China
| | - G Shi
- Beijing Heiliu Stockbreeding Technology Co. Ltd, Beijing, 102211, China
| | - X Liu
- Beijing Heiliu Stockbreeding Technology Co. Ltd, Beijing, 102211, China
| | - H Liu
- Beijing Heiliu Stockbreeding Technology Co. Ltd, Beijing, 102211, China
| | - Q Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - M Yang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - L Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - L Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
15
|
Abstract
The axial skeleton of all vertebrates is composed of individual units known as vertebrae. Each vertebra has individual anatomical attributes, yet they can be classified in five different groups, namely cervical, thoracic, lumbar, sacral and caudal, according to shared characteristics and their association with specific body areas. Variations in vertebral number, size, morphological features and their distribution amongst the different regions of the vertebral column are a major source of the anatomical diversity observed among vertebrates. In this review I will discuss the impact of those variations on the anatomy of different vertebrate species and provide insights into the genetic origin of some remarkable morphological traits that often serve to classify phylogenetic branches or individual species, like the long trunks of snakes or the long necks of giraffes.
Collapse
|
16
|
The Hox protein conundrum: The "specifics" of DNA binding for Hox proteins and their partners. Dev Biol 2021; 477:284-292. [PMID: 34102167 PMCID: PMC8846413 DOI: 10.1016/j.ydbio.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
Homeotic genes (Hox genes) are homeodomain-transcription factors involved in conferring segmental identity along the anterior-posterior body axis. Molecular characterization of HOX protein function raises some interesting questions regarding the source of the binding specificity of the HOX proteins. How do HOX proteins regulate common and unique target specificity across space and time? This review attempts to summarize and interpret findings in this area, largely focused on results from in vitro and in vivo studies in Drosophila and mouse systems. Recent studies related to HOX protein binding specificity compel us to reconsider some of our current models for transcription factor-DNA interactions. It is crucial to study transcription factor binding by incorporating components of more complex, multi-protein interactions in concert with small changes in binding motifs that can significantly impact DNA binding specificity and subsequent alterations in gene expression. To incorporate the multiple elements that can determine HOX protein binding specificity, we propose a more integrative Cooperative Binding model.
Collapse
|
17
|
Fossoriality and evolutionary development in two Cretaceous mammaliamorphs. Nature 2021; 592:577-582. [PMID: 33828300 DOI: 10.1038/s41586-021-03433-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/09/2021] [Indexed: 02/02/2023]
Abstract
Mammaliamorpha comprises the last common ancestor of Tritylodontidae and Mammalia plus all its descendants1. Tritylodontids are nonmammaliaform herbivorous cynodonts that originated in the Late Triassic epoch, diversified in the Jurassic period2-5 and survived into the Early Cretaceous epoch6,7. Eutriconodontans have generally been considered to be an extinct mammalian group, although different views exist8. Here we report a newly discovered tritylodontid and eutriconodontan from the Early Cretaceous Jehol Biota of China. Eutriconodontans are common in this biota9, but it was not previously known to contain tritylodontids. The two distantly related species show convergent features that are adapted for fossorial life, and are the first 'scratch-diggers' known from this biota. Both species also show an increased number of presacral vertebrae, relative to the ancestral state in synapsids or mammals10,11, that display meristic and homeotic changes. These fossils shed light on the evolutionary development of the axial skeleton in mammaliamorphs, which has been the focus of numerous studies in vertebrate evolution12-17 and developmental biology18-28. The phenotypes recorded by these fossils indicate that developmental plasticity in somitogenesis and HOX gene expression in the axial skeleton-similar to that observed in extant mammals-was already in place in stem mammaliamorphs. The interaction of these developmental mechanisms with natural selection may have underpinned the diverse phenotypes of body plan that evolved independently in various clades of mammaliamorph.
Collapse
|
18
|
López-Delgado AC, Delgado I, Cadenas V, Sánchez-Cabo F, Torres M. Axial skeleton anterior-posterior patterning is regulated through feedback regulation between Meis transcription factors and retinoic acid. Development 2021; 148:dev.193813. [PMID: 33298461 DOI: 10.1242/dev.193813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/20/2020] [Indexed: 11/20/2022]
Abstract
Vertebrate axial skeletal patterning is controlled by co-linear expression of Hox genes and axial level-dependent activity of HOX protein combinations. MEIS transcription factors act as co-factors of HOX proteins and profusely bind to Hox complex DNA; however, their roles in mammalian axial patterning remain unknown. Retinoic acid (RA) is known to regulate axial skeletal element identity through the transcriptional activity of its receptors; however, whether this role is related to MEIS/HOX activity remains unknown. Here, we study the role of Meis in axial skeleton formation and its relationship to the RA pathway in mice. Meis elimination in the paraxial mesoderm produces anterior homeotic transformations and rib mis-patterning associated to alterations of the hypaxial myotome. Although Raldh2 and Meis positively regulate each other, Raldh2 elimination largely recapitulates the defects associated with Meis deficiency, and Meis overexpression rescues the axial skeletal defects in Raldh2 mutants. We propose a Meis-RA-positive feedback loop, the output of which is Meis levels, that is essential to establish anterior-posterior identities and patterning of the vertebrate axial skeleton.
Collapse
Affiliation(s)
- Alejandra C López-Delgado
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28003, Spain
| | - Irene Delgado
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28003, Spain
| | - Vanessa Cadenas
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28003, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28003, Spain
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28003, Spain
| |
Collapse
|
19
|
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn 2020; 250:414-449. [PMID: 33314394 PMCID: PMC7986209 DOI: 10.1002/dvdy.278] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair. Compares and contrasts Endochondral and intramembranous bone development Reviews embryonic origins of different bones Describes the cellular and molecular mechanisms of positioning skeletal elements. Describes mechanisms of skeletal growth with a focus on the generation of skeletal shape
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Mohamed R Zein
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Steven Allen
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
20
|
Wood WM, Otis C, Etemad S, Goldhamer DJ. Development and patterning of rib primordia are dependent on associated musculature. Dev Biol 2020; 468:133-145. [PMID: 32768399 PMCID: PMC7669625 DOI: 10.1016/j.ydbio.2020.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 01/29/2023]
Abstract
The importance of skeletal muscle for rib development and patterning in the mouse embryo has not been resolved, largely because different experimental approaches have yielded disparate results. In this study, we utilize both gene knockouts and muscle cell ablation approaches to re-visit the extent to which rib growth and patterning are dependent on developing musculature. Consistent with previous studies, we show that rib formation is highly dependent on the MYOD family of myogenic regulatory factors (MRFs), and demonstrate that the extent of rib formation is gene-, allele-, and dosage-dependent. In the absence of Myf5 and MyoD, one allele of Mrf4 is sufficient for extensive rib growth, although patterning is abnormal. Under conditions of limiting MRF dosage, MyoD is identified as a positive regulator of rib patterning, presumably due to improved intercostal muscle development. In contrast to previous muscle ablation studies, we show that diphtheria toxin subunit A (DTA)-mediated ablation of muscle progenitors or differentiated muscle, using MyoDiCre or HSA-Cre drivers, respectively, profoundly disrupts rib development. Further, a comparison of three independently derived Rosa26-based DTA knockin alleles demonstrates that the degree of rib perturbations in MyoDiCre/+/DTA embryos is markedly dependent on the DTA allele used, and may in part explain discrepancies with previous findings. The results support the conclusion that the extent and quality of rib formation is largely dependent on the dosage of Myf5 and Mrf4, and that both early myotome-sclerotome interactions, as well as later muscle-rib interactions, are important for proper rib growth and patterning.
Collapse
Affiliation(s)
- William M Wood
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA
| | - Chelsea Otis
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA
| | - Shervin Etemad
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA
| | - David J Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
21
|
Scaal M. Development of the amniote ventrolateral body wall. Dev Dyn 2020; 250:39-59. [PMID: 32406962 DOI: 10.1002/dvdy.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
In vertebrates, the trunk consists of the musculoskeletal structures of the back and the ventrolateral body wall, which together enclose the internal organs of the circulatory, digestive, respiratory and urogenital systems. This review gives an overview on the development of the thoracic and abdominal wall during amniote embryogenesis. Specifically, I briefly summarize relevant historical concepts and the present knowledge on the early embryonic development of ribs, sternum, intercostal muscles and abdominal muscles with respect to anatomical bauplan, origin and specification of precursor cells, initial steps of pattern formation, and cellular and molecular regulation of morphogenesis.
Collapse
Affiliation(s)
- Martin Scaal
- Faculty of Medicine, Institute of Anatomy II, University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Saito S, Suzuki T. How do signaling and transcription factors regulate both axis elongation and Hox gene expression along the anteroposterior axis? Dev Growth Differ 2020; 62:363-375. [DOI: 10.1111/dgd.12682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Seiji Saito
- Division of Biological Science Graduate School of Science Nagoya University Nagoya Japan
| | - Takayuki Suzuki
- Avian Bioscience Research Center Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| |
Collapse
|
23
|
Hombría JCG, Sotillos S. Evo-Devo: When Four Became Two Plus Two. Curr Biol 2020; 30:R655-R657. [PMID: 32516617 DOI: 10.1016/j.cub.2020.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Wings and halteres are homologous flight appendages whose shape differences are controlled by the Ubx transcription factor. Recent research shows how Ubx regulates apical and basal extracellular matrix proteases and their inhibitors to achieve this morphological divergence.
Collapse
Affiliation(s)
- James C-G Hombría
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, 41013 Seville, Spain.
| | - Sol Sotillos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
24
|
Sato T, Kataoka K, Ito Y, Yokoyama S, Inui M, Mori M, Takahashi S, Akita K, Takada S, Ueno-Kudoh H, Asahara H. Lin28a/let-7 pathway modulates the Hox code via Polycomb regulation during axial patterning in vertebrates. eLife 2020; 9:53608. [PMID: 32479258 PMCID: PMC7259951 DOI: 10.7554/elife.53608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
The body plan along the anteroposterior axis and regional identities are specified by the spatiotemporal expression of Hox genes. Multistep controls are required for their unique expression patterns; however, the molecular mechanisms behind the tight control of Hox genes are not fully understood. In this study, we demonstrated that the Lin28a/let-7 pathway is critical for axial elongation. Lin28a–/– mice exhibited axial shortening with mild skeletal transformations of vertebrae, which were consistent with results in mice with tail bud-specific mutants of Lin28a. The accumulation of let-7 in Lin28a–/– mice resulted in the reduction of PRC1 occupancy at the Hox cluster loci by targeting Cbx2. Consistently, Lin28a loss in embryonic stem-like cells led to aberrant induction of posterior Hox genes, which was rescued by the knockdown of let-7. These results suggest that the Lin28/let-7 pathway is involved in the modulation of the ‘Hox code’ via Polycomb regulation during axial patterning.
Collapse
Affiliation(s)
- Tempei Sato
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kensuke Kataoka
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoshiaki Ito
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigetoshi Yokoyama
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Laboratory of Metabolism, National Institutes of Health, Bethesda, United States
| | - Masafumi Inui
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Laboratory of Animal Regeneration Systemology, Meiji University, Kanagawa, Japan
| | - Masaki Mori
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Medical Chemistry, Shiga University of Medical Science, Shiga, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, University of Tsukuba, Ibaraki, Japan
| | - Keiichi Akita
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroe Ueno-Kudoh
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Reproduction Center, Yokohama City University, Yokohama, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
25
|
Wang K, Wang Y, Hu Z, Zhang L, Li G, Dang L, Tan Y, Cao X, Shi F, Zhang S, Zhang G. Bone-targeted lncRNA OGRU alleviates unloading-induced bone loss via miR-320-3p/Hoxa10 axis. Cell Death Dis 2020; 11:382. [PMID: 32427900 PMCID: PMC7237470 DOI: 10.1038/s41419-020-2574-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/13/2023]
Abstract
Unloading-induced bone loss is a threat to human health and can eventually result in osteoporotic fractures. Although the underlying molecular mechanism of unloading-induced bone loss has been broadly elucidated, the pathophysiological role of long noncoding RNAs (lncRNAs) in this process is unknown. Here, we identified a novel lncRNA, OGRU, a 1816-nucleotide transcript with significantly decreased levels in bone specimens from hindlimb-unloaded mice and in MC3T3-E1 cells under clinorotation-unloading conditions. OGRU overexpression promoted osteoblast activity and matrix mineralization under normal loading conditions, and attenuated the suppression of MC3T3-E1 cell differentiation induced by clinorotation unloading. Furthermore, this study found that supplementation of pcDNA3.1(+)–OGRU via (DSS)6–liposome delivery to the bone-formation surfaces of hindlimb-unloaded (HLU) mice partially alleviated unloading-induced bone loss. Mechanistic investigations demonstrated that OGRU functions as a competing endogenous RNA (ceRNA) to facilitate the protein expression of Hoxa10 by competitively binding miR-320-3p and subsequently promote osteoblast differentiation and bone formation. Taken together, the results of our study provide the first clarification of the role of lncRNA OGRU in unloading-induced bone loss through the miR-320-3p/Hoxa10 axis, suggesting an efficient anabolic strategy for osteoporosis treatment.
Collapse
Affiliation(s)
- Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Lei Dang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
26
|
Rion N, Castets P, Lin S, Enderle L, Reinhard JR, Eickhorst C, Rüegg MA. mTOR controls embryonic and adult myogenesis via mTORC1. Development 2019; 146:dev.172460. [PMID: 30872276 DOI: 10.1242/dev.172460] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
Abstract
The formation of multi-nucleated muscle fibers from progenitors requires the fine-tuned and coordinated regulation of proliferation, differentiation and fusion, both during development and after injury in the adult. Although some of the key factors that are involved in the different steps are well known, how intracellular signals are coordinated and integrated is largely unknown. Here, we investigated the role of the cell-growth regulator mTOR by eliminating essential components of the mTOR complexes 1 (mTORC1) and 2 (mTORC2) in mouse muscle progenitors. We show that inactivation of mTORC1, but not mTORC2, in developing muscle causes perinatal death. In the adult, mTORC1 deficiency in muscle stem cells greatly impinges on injury-induced muscle regeneration. These phenotypes are because of defects in the proliferation and fusion capacity of the targeted muscle progenitors. However, mTORC1-deficient muscle progenitors partially retain their myogenic function. Hence, our results show that mTORC1 and not mTORC2 is an important regulator of embryonic and adult myogenesis, and they point to alternative pathways that partially compensate for the loss of mTORC1.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Nathalie Rion
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | - Shuo Lin
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Leonie Enderle
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | - Markus A Rüegg
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
27
|
Young M, Selleri L, Capellini TD. Genetics of scapula and pelvis development: An evolutionary perspective. Curr Top Dev Biol 2019; 132:311-349. [PMID: 30797513 PMCID: PMC6430119 DOI: 10.1016/bs.ctdb.2018.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In tetrapods, the scapular and pelvic girdles perform the important function of anchoring the limbs to the trunk of the body and facilitating the movement of each appendage. This shared function, however, is one of relatively few similarities between the scapula and pelvis, which have significantly different morphologies, evolutionary histories, embryonic origins, and underlying genetic pathways. The scapula evolved in jawless fish prior to the pelvis, and its embryonic development is unique among bones in that it is derived from multiple progenitor cell populations, including the dermomyotome, somatopleure, and neural crest. Conversely, the pelvis evolved several million years later in jawed fish, and it develops from an embryonic somatopleuric cell population. The genetic networks controlling the formation of the pelvis and scapula also share similarities and differences, with a number of genes shaping only one or the other, while other gene products such as PBX transcription factors act as hierarchical developmental regulators of both girdle structures. Here, we provide a detailed review of the cellular processes and genetic networks underlying pelvis and scapula formation in tetrapods, while also highlighting unanswered questions about girdle evolution and development.
Collapse
Affiliation(s)
- Mariel Young
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Licia Selleri
- Program in Craniofacial Biology, Department of Orofacial Sciences, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California, Institute of Human Genetics, San Francisco, CA, United States; Program in Craniofacial Biology, Department of Anatomy, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California, Institute of Human Genetics, San Francisco, CA, United States.
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States.
| |
Collapse
|
28
|
Reassessing the Role of Hox Genes during Vertebrate Development and Evolution. Trends Genet 2018; 34:209-217. [PMID: 29269261 DOI: 10.1016/j.tig.2017.11.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
Since their discovery Hox genes have been at the core of the established models explaining the development and evolution of the vertebrate body plan as well as its paired appendages. Recent work brought new light to their role in the patterning processes along the main body axis. These studies show that Hox genes do not control the basic layout of the vertebrate body plan but carry out region-specific patterning instructions loaded on the derivatives of axial progenitors by Hox-independent processes. Furthermore, the finding that Hox clusters are embedded in functional chromatin domains, which critically impacts their expression, has significantly altered our understanding of the mechanisms of Hox gene regulation. This new conceptual framework has broadened our understanding of both limb development and the evolution of vertebrate paired appendages.
Collapse
|
29
|
Di Gioia SA, Shaaban S, Tüysüz B, Elcioglu NH, Chan WM, Robson CD, Ecklund K, Gilette NM, Hamzaoglu A, Tayfun GA, Traboulsi EI, Engle EC. Recessive MYF5 Mutations Cause External Ophthalmoplegia, Rib, and Vertebral Anomalies. Am J Hum Genet 2018; 103:115-124. [PMID: 29887215 DOI: 10.1016/j.ajhg.2018.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/04/2018] [Indexed: 12/23/2022] Open
Abstract
MYF5 is member of the Myc-like basic helix-loop-helix transcription factor family and, in cooperation with other myogenic regulatory factors MYOD and MYF5, is a key regulator of early stages of myogenesis. Here, we report three consanguineous families with biallelic homozygous loss-of-function mutations in MYF5 who define a clinical disorder characterized by congenital ophthalmoplegia with scoliosis and vertebral and rib anomalies. The clinical phenotype overlaps strikingly with that reported in several Myf5 knockout mouse models. Affected members of two families share a haploidentical region that contains a homozygous 10 bp frameshift mutation in exon 1 of MYF5 (c.23_32delAGTTCTCACC [p.Gln8Leufs∗86]) predicted to undergo nonsense-mediated decay. Affected members of the third family harbor a homozygous missense change in exon 1 of MYF5 (c.283C>T [p.Arg95Cys]). Using in vitro assays, we show that this missense mutation acts as a loss-of-function allele by impairing MYF5 DNA binding and nuclear localization. We performed whole-genome sequencing in one affected individual with the frameshift mutation and did not identify additional rare variants in the haploidentical region that might account for differences in severity among the families. These data support the direct role of MYF5 in rib, spine, and extraocular muscle formation in humans.
Collapse
|
30
|
Leal F, Cohn MJ. Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes. Genesis 2017; 56. [DOI: 10.1002/dvg.23077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Francisca Leal
- Howard Hughes Medical Institute, UF Genetics Institute, University of Florida; Gainesville FL 32610
- Department of Biology; University of Florida; Gainesville FL 32610
| | - Martin J. Cohn
- Department of Biology; University of Florida; Gainesville FL 32610
- Department of Molecular Genetics and Microbiology; University of Florida; Gainesville FL 32610
| |
Collapse
|
31
|
Naruse C, Shibata S, Tamura M, Kawaguchi T, Abe K, Sugihara K, Kato T, Nishiuchi T, Wakana S, Ikawa M, Asano M. New insights into the role of Jmjd3 and Utx in axial skeletal formation in mice. FASEB J 2017; 31:2252-2266. [PMID: 28188179 DOI: 10.1096/fj.201600642r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Jmjd3 and Utx are demethylases specific for lysine 27 of histone H3. Previous reports indicate that Jmjd3 is essential for differentiation of various cell types, such as macrophages and epidermal cells in mice, whereas Utx is involved in cancer and developmental diseases in humans and mice, as well as Hox regulation in zebrafish and nematodes. Here, we report that Jmjd3, but not Utx, is involved in axial skeletal formation in mice. A Jmjd3 mutant embryo (Jmjd3Δ18/Δ18), but not a catalytically inactive Utx truncation mutant (Utx-/y), showed anterior homeotic transformation. Quantitative RT-PCR and microarray analyses showed reduced Hox expression in both Jmjd3Δ18/Δ18 embryos and tailbuds, whereas levels of Hox activators, such as Wnt signaling factors and retinoic acid synthases, did not decrease, which suggests that Jmjd3 plays a regulatory role in Hox expression during axial patterning. Chromatin immunoprecipitation analyses of embryo tailbud tissue showed trimethylated lysine 27 on histone H3 to be at higher levels at the Hox loci in Jmjd3Δ18/Δ18 mutants compared with wild-type tailbuds. In contrast, trimethylated lysine 4 on histone H3 levels were found to be equivalent in wild-type and Jmjd3Δ18/Δ18 tailbuds. Demethylase-inactive Jmjd3 mutant embryos showed the same phenotype as Jmjd3Δ18/Δ18 mice. These results suggest that the demethylase activity of Jmjd3, but not that of Utx, affects mouse axial patterning in concert with alterations in Hox gene expression.-Naruse, C., Shibata, S., Tamura, M., Kawaguchi, T., Abe, K., Sugihara, K., Kato, T., Nishiuchi, T., Wakana, S., Ikawa, M., Asano, M. New insights into the role of Jmjd3 and Utx in axial skeletal formation in mice.
Collapse
Affiliation(s)
- Chie Naruse
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Shinwa Shibata
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Takayuki Kawaguchi
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Kanae Abe
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Kazushi Sugihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Tomoaki Kato
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Masahito Ikawa
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan; .,Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
32
|
Deries M, Thorsteinsdóttir S. Axial and limb muscle development: dialogue with the neighbourhood. Cell Mol Life Sci 2016; 73:4415-4431. [PMID: 27344602 PMCID: PMC11108464 DOI: 10.1007/s00018-016-2298-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/03/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022]
Abstract
Skeletal muscles are part of the musculoskeletal system which also includes nerves, tendons, connective tissue, bones and blood vessels. Here we review the development of axial and limb muscles in amniotes within the context of their surrounding tissues in vivo. We highlight the reciprocal dialogue mediated by signalling factors between cells of these adjacent tissues and developing muscles and also demonstrate its importance from the onset of muscle cell differentiation well into foetal development. Early embryonic tissues secrete factors which are important regulators of myogenesis. However, later muscle development relies on other tissue collaborators, such as developing nerves and connective tissue, which are in turn influenced by the developing muscles themselves. We conclude that skeletal muscle development in vivo is a compelling example of the importance of reciprocal interactions between developing tissues for the complete and coordinated development of a functional system.
Collapse
Affiliation(s)
- Marianne Deries
- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Sólveig Thorsteinsdóttir
- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
33
|
Aires R, Jurberg AD, Leal F, Nóvoa A, Cohn MJ, Mallo M. Oct4 Is a Key Regulator of Vertebrate Trunk Length Diversity. Dev Cell 2016; 38:262-74. [DOI: 10.1016/j.devcel.2016.06.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/19/2016] [Accepted: 06/15/2016] [Indexed: 01/13/2023]
|
34
|
Böhmer C, Rauhut OWM, Wörheide G. New insights into the vertebral Hox code of archosaurs. Evol Dev 2016; 17:258-69. [PMID: 26372060 DOI: 10.1111/ede.12136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Variation in axial formulae (i.e., number and identity of vertebrae) is an important feature in the evolution of vertebrates. Vertebrae at different axial positions exhibit a region-specific morphology. Key determinants for the establishment of particular vertebral shapes are the highly conserved Hox genes. Here, we analyzed Hox gene expression in the presacral vertebral column in the Nile crocodile in order to complement and extend a previous examination in the alligator and thus establish a Hox code for the axial skeleton of crocodilians in general. The newly determined expression of HoxA-4, C-5, B-7, and B-8 all revealed a crocodilian-specific pattern. HoxA-4 and HoxC-5 characterize cervical morphologies and the latter furthermore is associated with the position of the forelimb relative to the axial skeleton. HoxB-7 and HoxB-8 map exclusively to the dorsal vertebral region. The resulting expression patterns of these two Hox genes is the first description of their exact expression in the archosaurian embryo. Our comparative analyses of the Hox code in several amniote taxa provide new evidence that evolutionary differences in the axial skeleton correspond to changes in Hox gene expression domains. We detect two general processes: (i) expansion of a Hox gene's expression domain as well as (ii) a shift of gene expression. We infer that the ancestral archosaur Hox code may have resembled that of the crocodile. In association with the evolution of morphological traits, it may have been modified to patterns that can be observed in birds.
Collapse
Affiliation(s)
- Christine Böhmer
- Department für Geo- und Umweltwissenschaften & GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 München, Germany.,SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, 80333 München, Germany
| | - Oliver W M Rauhut
- Department für Geo- und Umweltwissenschaften & GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 München, Germany.,SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, 80333 München, Germany
| | - Gert Wörheide
- Department für Geo- und Umweltwissenschaften & GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 München, Germany.,SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, 80333 München, Germany
| |
Collapse
|
35
|
Abstract
Tgif1 and Tgif2 are transcriptional repressors that inhibit the transcriptional response to transforming growth factor β signaling, and can repress gene expression by direct binding to DNA. Loss of function mutations in TGIF1 are associated with holoprosencephaly (HPE) in humans. In mice, embryos lacking both Tgif1 and Tgif2 fail to complete gastrulation, and conditional double null embryos that survive past gastrulation have HPE and do not survive past mid-gestation. Here we show that in mice of a relatively pure C57BL/6 strain background, loss of Tgif1 alone results in defective axial patterning and altered expression of Hoxc6. The primary defects in Tgif1 null embryos are the presence of extra ribs on the C7 vertebra, consistent with a posterior transformation phenotype. In addition we observed defective cervical vertebrae, primarily C1-C5, in both adult mice and embryos that lacked Tgif1. The combination of Tgif1 and Tgif2 mutations increases the severity and penetrance of the posterior transformation phenotype, without altering the type of defects seen. Similarly, exposure of Tgif1 mutant embryos to retinoic acid at E8.5 increased the severity and penetrance of the Tgif1 phenotype. This suggests that Tgif1 and Tgif2 regulate axial patterning and that reduced TGIF function sensitizes embryos to the effects of retinoic acid.
Collapse
|
36
|
Gunji M, Endo H. Functional cervicothoracic boundary modified by anatomical shifts in the neck of giraffes. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150604. [PMID: 26998330 PMCID: PMC4785981 DOI: 10.1098/rsos.150604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Here we examined the kinematic function of the morpho- logically unique first thoracic vertebra in giraffes. The first thoracic vertebra of the giraffe displayed similar shape to the seventh cervical vertebra in general ruminants. The flexion experiment using giraffe carcasses demonstrated that the first thoracic vertebra exhibited a higher dorsoventral mobility than other thoracic vertebrae. Despite the presence of costovertebral joints, restriction in the intervertebral movement imposed by ribs is minimized around the first thoracic vertebra by subtle changes of the articular system between the vertebra and ribs. The attachment area of musculus longus colli, mainly responsible for ventral flexion of the neck, is partly shifted posteriorly in the giraffe so that the force generated by muscles is exerted on the cervical vertebrae and on the first thoracic vertebra. These anatomical modifications allow the first thoracic vertebra to adopt the kinematic function of a cervical vertebra in giraffes. The novel movable articulation in the thorax functions as a fulcrum of neck movement and results in a large displacement of reachable space in the cranial end of the neck. The unique first thoracic vertebra in giraffes provides higher flexibility to the neck and may provide advantages for high browsing and/or male competition behaviours specific to giraffes.
Collapse
Affiliation(s)
- Megu Gunji
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideki Endo
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
37
|
Early development of the vertebral column. Semin Cell Dev Biol 2016; 49:83-91. [DOI: 10.1016/j.semcdb.2015.11.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022]
|
38
|
Subdivision of the lateral plate mesoderm and specification of the forelimb and hindlimb forming domains. Semin Cell Dev Biol 2016; 49:102-8. [DOI: 10.1016/j.semcdb.2015.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/17/2015] [Accepted: 11/21/2015] [Indexed: 11/15/2022]
|
39
|
Luo ZX, Meng QJ, Ji Q, Liu D, Zhang YG, Neander AI. Evolutionary development in basal mammaliaforms as revealed by a docodontan. Science 2015; 347:760-4. [DOI: 10.1126/science.1260880] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
40
|
Rice R, Riccio P, Gilbert SF, Cebra-Thomas J. Emerging from the rib: resolving the turtle controversies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:208-20. [PMID: 25675951 DOI: 10.1002/jez.b.22600] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022]
Abstract
Two of the major controversies in the present study of turtle shell development involve the mechanism by which the carapacial ridge initiates shell formation and the mechanism by which each rib forms the costal bones adjacent to it. This paper claims that both sides of each debate might be correct-but within the species examined. Mechanism is more properly "mechanisms," and there is more than one single way to initiate carapace formation and to form the costal bones. In the initiation of the shell, the rib precursors may be kept dorsal by either "axial displacement" (in the hard-shell turtles) or "axial arrest" (in the soft-shell turtle Pelodiscus), or by a combination of these. The former process would deflect the rib into the dorsal dermis and allow it to continue its growth there, while the latter process would truncate rib growth. In both instances, though, the result is to keep the ribs from extending into the ventral body wall. Our recent work has shown that the properties of the carapacial ridge, a key evolutionary innovation of turtles, differ greatly between these two groups. Similarly, the mechanism of costal bone formation may differ between soft-shell and hard-shell turtles, in that the hard-shell species may have both periosteal flattening as well as dermal bone induction, while the soft-shelled turtles may have only the first of these processes.
Collapse
Affiliation(s)
- Ritva Rice
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
41
|
Head JJ, Polly PD. Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature 2015; 520:86-9. [PMID: 25539083 DOI: 10.1038/nature14042] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/04/2014] [Indexed: 11/09/2022]
Abstract
Hox genes regulate regionalization of the axial skeleton in vertebrates, and changes in their expression have been proposed to be a fundamental mechanism driving the evolution of new body forms. The origin of the snake-like body form, with its deregionalized pre-cloacal axial skeleton, has been explained as either homogenization of Hox gene expression domains, or retention of standard vertebrate Hox domains with alteration of downstream expression that suppresses development of distinct regions. Both models assume a highly regionalized ancestor, but the extent of deregionalization of the primaxial domain (vertebrae, dorsal ribs) of the skeleton in snake-like body forms has never been analysed. Here we combine geometric morphometrics and maximum-likelihood analysis to show that the pre-cloacal primaxial domain of elongate, limb-reduced lizards and snakes is not deregionalized compared with limbed taxa, and that the phylogenetic structure of primaxial morphology in reptiles does not support a loss of regionalization in the evolution of snakes. We demonstrate that morphometric regional boundaries correspond to mapped gene expression domains in snakes, suggesting that their primaxial domain is patterned by a normally functional Hox code. Comparison of primaxial osteology in fossil and modern amniotes with Hox gene distributions within Amniota indicates that a functional, sequentially expressed Hox code patterned a subtle morphological gradient along the anterior-posterior axis in stem members of amniote clades and extant lizards, including snakes. The highly regionalized skeletons of extant archosaurs and mammals result from independent evolution in the Hox code and do not represent ancestral conditions for clades with snake-like body forms. The developmental origin of snakes is best explained by decoupling of the primaxial and abaxial domains and by increases in somite number, not by changes in the function of primaxial Hox genes.
Collapse
Affiliation(s)
- Jason J Head
- Department of Earth and Atmospheric Sciences and Nebraska State Museum of Natural History, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0340, USA
| | - P David Polly
- Departments of Geological Sciences, Biology and Anthropology, Indiana University, Bloomington, Indiana 47405-1405, USA
| |
Collapse
|
42
|
Casaca A, Nóvoa A, Mallo M. Hoxb6 can interfere with somitogenesis in the posterior embryo through a mechanism independent of its rib-promoting activity. Development 2015; 143:437-48. [DOI: 10.1242/dev.133074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/18/2015] [Indexed: 01/19/2023]
Abstract
Formation of the vertebrate axial skeleton requires coordinated Hox gene activity. Hox group 6 genes are involved in the formation of the thoracic area due to their unique rib-promoting properties. We show here that the linker region (LR) connecting the homeodomain and the hexapeptide is essential for Hoxb6 rib-promoting activity. The LR-defective Hoxb6 protein was still able to bind a target enhancer together with Pax3 producing a dominant negative effect, indicating that the LR brings additional regulatory factors to target DNA elements. We also found an unexpected association between Hoxb6 and segmentation in the paraxial mesoderm. In particular, Hoxb6 can disturb somitogenesis and anterior-posterior somite patterning by deregulating Lfng expression. Interestingly, this interaction occurred differently in thoracic and more caudal embryonic areas, indicating functional differences in somitogenesis before and after the trunk to tail transition. Our results suggest the requirement of precisely regulated Hoxb6 expression for proper segmentation at tailbud stages.
Collapse
Affiliation(s)
- Ana Casaca
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
43
|
Abstract
Limb innervation is established by opposing Hox-dependent activities. In this issue of Developmental Cell, Jung et al. (2014) show that Hoxc9 restriction of Foxp1, high levels of which specify limb-innervating motor neurons, first appeared in vertebrates concomitantly with paired appendages. Spatial control of this activity shapes neural networks controlling locomotion patterns.
Collapse
Affiliation(s)
- Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
44
|
Jung H, Mazzoni EO, Soshnikova N, Hanley O, Venkatesh B, Duboule D, Dasen JS. Evolving Hox activity profiles govern diversity in locomotor systems. Dev Cell 2014; 29:171-87. [PMID: 24746670 DOI: 10.1016/j.devcel.2014.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/07/2014] [Accepted: 03/13/2014] [Indexed: 11/28/2022]
Abstract
The emergence of limb-driven locomotor behaviors was a key event in the evolution of vertebrates and fostered the transition from aquatic to terrestrial life. We show that the generation of limb-projecting lateral motor column (LMC) neurons in mice relies on a transcriptional autoregulatory module initiated via transient activity of multiple genes within the HoxA and HoxC clusters. Repression of this module at thoracic levels restricts expression of LMC determinants, thus dictating LMC position relative to the limbs. This suppression is mediated by a key regulatory domain that is specifically found in the Hoxc9 proteins of appendage-bearing vertebrates. The profile of Hoxc9 expression inversely correlates with LMC position in land vertebrates and likely accounts for the absence of LMC neurons in limbless species such as snakes. Thus, modulation of both Hoxc9 protein function and Hoxc9 gene expression likely contributed to evolutionary transitions between undulatory and ambulatory motor circuit connectivity programs.
Collapse
Affiliation(s)
- Heekyung Jung
- Howard Hughes Medical Institute, NYU Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Natalia Soshnikova
- Department of Genetics and Evolution, University of Geneva, Sciences III, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland; Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Olivia Hanley
- Howard Hughes Medical Institute, NYU Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Byrappa Venkatesh
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis, Singapore 138673, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, Sciences III, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale, 1015 Lausanne, Switzerland
| | - Jeremy S Dasen
- Howard Hughes Medical Institute, NYU Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
45
|
Rubinstein M, de Souza FSJ. Evolution of transcriptional enhancers and animal diversity. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130017. [PMID: 24218630 DOI: 10.1098/rstb.2013.0017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Deciphering the genetic bases that drive animal diversity is one of the major challenges of modern biology. Although four decades ago it was proposed that animal evolution was mainly driven by changes in cis-regulatory DNA elements controlling gene expression rather than in protein-coding sequences, only now are powerful bioinformatics and experimental approaches available to accelerate studies into how the evolution of transcriptional enhancers contributes to novel forms and functions. In the introduction to this Theme Issue, we start by defining the general properties of transcriptional enhancers, such as modularity and the coexistence of tight sequence conservation with transcription factor-binding site shuffling as different mechanisms that maintain the enhancer grammar over evolutionary time. We discuss past and current methods used to identify cell-type-specific enhancers and provide examples of how enhancers originate de novo, change and are lost in particular lineages. We then focus in the central part of this Theme Issue on analysing examples of how the molecular evolution of enhancers may change form and function. Throughout this introduction, we present the main findings of the articles, reviews and perspectives contributed to this Theme Issue that together illustrate some of the great advances and current frontiers in the field.
Collapse
Affiliation(s)
- Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, , C1428ADN Buenos Aires, Argentina
| | | |
Collapse
|
46
|
Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos. Dev Cell 2013; 25:451-62. [PMID: 23763947 DOI: 10.1016/j.devcel.2013.05.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/30/2013] [Accepted: 05/10/2013] [Indexed: 11/21/2022]
Abstract
The vertebrate body is made by progressive addition of new tissue from progenitors at the posterior embryonic end. Axial extension involves different mechanisms that produce internal organs in the trunk but not in the tail. We show that Gdf11 signaling is a major coordinator of the trunk-to-tail transition. Without Gdf11 signaling, the switch from trunk to tail is significantly delayed, and its premature activation brings the hindlimbs and cloaca next to the forelimbs, leaving extremely short trunks. Gdf11 activity includes activation of Isl1 to promote formation of the hindlimbs and cloaca-associated mesoderm as the most posterior derivatives of lateral mesoderm progenitors. Gdf11 also coordinates reallocation of bipotent neuromesodermal progenitors from the anterior primitive streak to the tail bud, in part by reducing the retinoic acid available to the progenitors. Our findings provide a perspective to understand the evolution of the vertebrate body plan.
Collapse
|
47
|
Casaca A, Santos AC, Mallo M. Controlling Hox gene expression and activity to build the vertebrate axial skeleton. Dev Dyn 2013; 243:24-36. [DOI: 10.1002/dvdy.24007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ana Casaca
- Instituto Gulbenkian de Ciência; Oeiras Portugal
| | | | - Moisés Mallo
- Instituto Gulbenkian de Ciência; Oeiras Portugal
| |
Collapse
|
48
|
Notch signalling is required for the formation of structurally stable muscle fibres in zebrafish. PLoS One 2013; 8:e68021. [PMID: 23840804 PMCID: PMC3695967 DOI: 10.1371/journal.pone.0068021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/23/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Accurate regulation of Notch signalling is central for developmental processes in a variety of tissues, but its function in pectoral fin development in zebrafish is still unknown. METHODOLOGY/PRINCIPAL FINDINGS Here we show that core elements necessary for a functional Notch pathway are expressed in developing pectoral fins in or near prospective muscle territories. Blocking Notch signalling at different levels of the pathway consistently leads to the formation of thin, wavy, fragmented and mechanically weak muscles fibres and loss of stress fibres in endoskeletal disc cells in pectoral fins. Although the structural muscle genes encoding Desmin and Vinculin are normally transcribed in Notch-disrupted pectoral fins, their proteins levels are severely reduced, suggesting that weak mechanical forces produced by the muscle fibres are unable to stabilize/localize these proteins. Moreover, in Notch signalling disrupted pectoral fins there is a decrease in the number of Pax7-positive cells indicative of a defect in myogenesis. CONCLUSIONS/SIGNIFICANCE We propose that by controlling the differentiation of myogenic progenitor cells, Notch signalling might secure the formation of structurally stable muscle fibres in the zebrafish pectoral fin.
Collapse
|
49
|
cis-regulatory change associated with snake body plan evolution. Proc Natl Acad Sci U S A 2013; 110:10473-4. [PMID: 23749870 DOI: 10.1073/pnas.1307778110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
50
|
Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine. Proc Natl Acad Sci U S A 2013; 110:10682-6. [PMID: 23674686 DOI: 10.1073/pnas.1300592110] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patterning of the vertebrate skeleton requires the coordinated activity of Hox genes. In particular, Hox10 proteins are essential to set the transition from thoracic to lumbar vertebrae because of their rib-repressing activity. In snakes, however, the thoracic region extends well into Hox10-expressing areas of the embryo, suggesting that these proteins are unable to block rib formation. Here, we show that this is not a result of the loss of rib-repressing properties by the snake proteins, but rather to a single base pair change in a Hox/Paired box (Pax)-responsive enhancer, which prevents the binding of Hox proteins. This polymorphism is also found in Paenungulata, such as elephants and manatees, which have extended rib cages. In vivo, this modified enhancer failed to respond to Hox10 activity, supporting its role in the extension of rib cages. In contrast, the enhancer could still interact with Hoxb6 and Pax3 to promote rib formation. These results suggest that a polymorphism in the Hox/Pax-responsive enhancer may have played a role in the evolution of the vertebrate spine by differently modulating its response to rib-suppressing and rib-promoting Hox proteins.
Collapse
|