1
|
Roumbo L, Ossareh-Nazari B, Vigneron S, Stefani I, Van Hove L, Legros V, Chevreux G, Lacroix B, Castro A, Joly N, Lorca T, Pintard L. The MAST kinase KIN-4 carries out mitotic entry functions of Greatwall in C. elegans. EMBO J 2025; 44:1943-1974. [PMID: 39962268 PMCID: PMC11961639 DOI: 10.1038/s44318-025-00364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 04/03/2025] Open
Abstract
MAST-like, or Greatwall (Gwl), an atypical protein kinase related to the evolutionarily conserved MAST kinase family, is crucial for cell cycle control during mitotic entry. Mechanistically, Greatwall is activated by Cyclin B-Cdk1 phosphorylation of a 550 amino acids-long insertion in its atypical activation segment. Subsequently, Gwl phosphorylates Endosulfine and Arpp19 to convert them into inhibitors of PP2A-B55 phosphatase, thereby preventing early dephosphorylation of M-phase targets of Cyclin B-Cdk1. Here, searching for an elusive Gwl-like activity in C. elegans, we show that the single worm MAST kinase, KIN-4, fulfills this function in worms and can functionally replace Greatwall in the heterologous Xenopus system. Compared to Greatwall, the short activation segment of KIN-4 lacks a phosphorylation site, and KIN-4 is active even when produced in E. coli. We also show that a balance between Cyclin B-Cdk1 and PP2A-B55 activity, regulated by KIN-4, is essential to ensure asynchronous cell divisions in the early worm embryo. These findings resolve a long-standing puzzle related to the supposed absence of a Greatwall pathway in C. elegans, and highlight a novel aspect of PP2A-B55 regulation by MAST kinases.
Collapse
Affiliation(s)
- Ludivine Roumbo
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Batool Ossareh-Nazari
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Suzanne Vigneron
- Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS UMR 5237, 34293, Montpellier, Cedex 5, France
| | - Ioanna Stefani
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France
- Institute for Integrative Biology of the Cell, Commissariat à l'Énergie Atomique et Aux Énergies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Lucie Van Hove
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Véronique Legros
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Guillaume Chevreux
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Benjamin Lacroix
- Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS UMR 5237, 34293, Montpellier, Cedex 5, France
| | - Anna Castro
- Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS UMR 5237, 34293, Montpellier, Cedex 5, France
| | - Nicolas Joly
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Thierry Lorca
- Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS UMR 5237, 34293, Montpellier, Cedex 5, France
| | - Lionel Pintard
- Université Paris cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
- Programme Equipe Labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
2
|
Ganga AK, Sweeney LK, Rubio Ramos A, Wrinn CM, Bishop CS, Hamel V, Guichard P, Breslow DK. A disease-associated PPP2R3C-MAP3K1 phospho-regulatory module controls centrosome function. Curr Biol 2024; 34:4824-4834.e6. [PMID: 39317195 PMCID: PMC11496028 DOI: 10.1016/j.cub.2024.08.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
Centrosomes have critical roles in microtubule organization, ciliogenesis, and cell signaling.1,2,3,4,5,6,7,8 Centrosomal alterations also contribute to diseases, including microcephaly, cancer, and ciliopathies.9,10,11,12,13 To date, over 150 centrosomal proteins have been identified, including several kinases and phosphatases that control centrosome biogenesis, function, and maintenance.2,3,4,5,14,15,16,17,18,19,20,21 However, the regulatory mechanisms that govern centrosome function are not fully defined, and thus how defects in centrosomal regulation contribute to disease is incompletely understood. Using a systems genetics approach, we find here that PPP2R3C, a poorly characterized PP2A phosphatase subunit, is a distal centriole protein and functional partner of centriolar proteins CEP350 and FOP. We further show that a key function of PPP2R3C is to counteract the kinase activity of MAP3K1. In support of this model, MAP3K1 knockout suppresses growth defects caused by PPP2R3C inactivation, and MAP3K1 and PPP2R3C have opposing effects on basal and microtubule stress-induced JNK signaling. Illustrating the importance of balanced MAP3K1 and PPP2R3C activities, acute overexpression of MAP3K1 severely inhibits centrosome function and triggers rapid centriole disintegration. Additionally, inactivating PPP2R3C mutations and activating MAP3K1 mutations both cause congenital syndromes characterized by gonadal dysgenesis.22,23,24,25,26,27,28 As a syndromic PPP2R3C variant is defective in centriolar localization and binding to centriolar protein FOP, we propose that imbalanced activity of this centrosomal kinase-phosphatase pair is the shared cause of these disorders. Thus, our findings reveal a new centrosomal phospho-regulatory module, shed light on disorders of gonadal development, and illustrate the power of systems genetics to identify previously unrecognized gene functions.
Collapse
Affiliation(s)
- Anil Kumar Ganga
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA
| | - Lauren K Sweeney
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA
| | - Armando Rubio Ramos
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Caitlin M Wrinn
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA
| | - Cassandra S Bishop
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - David K Breslow
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA.
| |
Collapse
|
3
|
Sankaralingam P, Wang S, Liu Y, Oegema KF, O'Connell KF. The kinase ZYG-1 phosphorylates the cartwheel protein SAS-5 to drive centriole assembly in C. elegans. EMBO Rep 2024; 25:2698-2721. [PMID: 38744971 PMCID: PMC11169420 DOI: 10.1038/s44319-024-00157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Centrioles organize centrosomes, the cell's primary microtubule-organizing centers (MTOCs). Centrioles double in number each cell cycle, and mis-regulation of this process is linked to diseases such as cancer and microcephaly. In C. elegans, centriole assembly is controlled by the Plk4 related-kinase ZYG-1, which recruits the SAS-5-SAS-6 complex. While the kinase activity of ZYG-1 is required for centriole assembly, how it functions has not been established. Here we report that ZYG-1 physically interacts with and phosphorylates SAS-5 on 17 conserved serine and threonine residues in vitro. Mutational scanning reveals that serine 10 and serines 331/338/340 are indispensable for proper centriole assembly. Embryos expressing SAS-5S10A exhibit centriole assembly failure, while those expressing SAS-5S331/338/340A possess extra centrioles. We show that in the absence of serine 10 phosphorylation, the SAS-5-SAS-6 complex is recruited to centrioles, but is not stably incorporated, possibly due to a failure to coordinately recruit the microtubule-binding protein SAS-4. Our work defines the critical role of phosphorylation during centriole assembly and reveals that ZYG-1 might play a role in preventing the formation of excess centrioles.
Collapse
Affiliation(s)
- Prabhu Sankaralingam
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yan Liu
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Karen F Oegema
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kevin F O'Connell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
4
|
Ganga AK, Sweeney LK, Ramos AR, Bishop CS, Hamel V, Guichard P, Breslow DK. A disease-associated PPP2R3C-MAP3K1 phospho-regulatory module controls centrosome function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587836. [PMID: 38617270 PMCID: PMC11014585 DOI: 10.1101/2024.04.02.587836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Centrosomes have critical roles in microtubule organization and in cell signaling.1-8 However, the mechanisms that regulate centrosome function are not fully defined, and thus how defects in centrosomal regulation contribute to disease is incompletely understood. From functional genomic analyses, we find here that PPP2R3C, a PP2A phosphatase subunit, is a distal centriole protein and functional partner of centriolar proteins CEP350 and FOP. We further show that a key function of PPP2R3C is to counteract the kinase activity of MAP3K1. In support of this model, MAP3K1 knockout suppresses growth defects caused by PPP2R3C inactivation, and MAP3K1 and PPP2R3C have opposing effects on basal and microtubule stress-induced JNK signaling. Illustrating the importance of balanced MAP3K1 and PPP2R3C activities, acute overexpression of MAP3K1 severely inhibits centrosome function and triggers rapid centriole disintegration. Additionally, inactivating PPP2R3C mutations and activating MAP3K1 mutations both cause congenital syndromes characterized by gonadal dysgenesis.9-15 As a syndromic PPP2R3C variant is defective in centriolar localization and binding to centriolar protein FOP, we propose that imbalanced activity of this centrosomal kinase-phosphatase pair is the shared cause of these disorders. Thus, our findings reveal a new centrosomal phospho-regulatory module, shed light on disorders of gonadal development, and illustrate the power of systems genetics to identify previously unrecognized gene functions.
Collapse
Affiliation(s)
- Anil Kumar Ganga
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Lauren K. Sweeney
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Armando Rubio Ramos
- Department of Molecular and Cellular Biology, University of Geneva, Faculty of Sciences, Geneva, Switzerland
| | - Cassandra S. Bishop
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Faculty of Sciences, Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Faculty of Sciences, Geneva, Switzerland
| | - David K. Breslow
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Medley JC, Yim RN, DiPanni J, Sebou B, Shaffou B, Cramer E, Wu C, Kabara M, Song MH. Site-specific phosphorylation of ZYG-1 regulates ZYG-1 stability and centrosome number. iScience 2023; 26:108410. [PMID: 38034351 PMCID: PMC10687292 DOI: 10.1016/j.isci.2023.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Spindle bipolarity is critical for genomic integrity. As centrosome number often dictates bipolarity, tight control of centrosome assembly is vital for faithful cell division. The master centrosome regulator ZYG-1/Plk4 plays a pivotal role in this process. In C. elegans, casein kinase II (CK2) negatively regulates centrosome duplication by controlling centrosome-associated ZYG-1 levels. Here, we investigated CK2 as a regulator of ZYG-1 and its impact on centrosome assembly. We show that CK2 phosphorylates ZYG-1 in vitro and physically interacts with ZYG-1 in vivo. Depleting CK2 or blocking ZYG-1 phosphorylation at CK2 target sites leads to centrosome amplification. Non-phosphorylatable ZYG-1 mutants exhibit elevated ZYG-1 levels, leading to increased ZYG-1 and downstream factors at centrosomes, thus driving centrosome amplification. Moreover, inhibiting the 26S proteasome prevents degradation of the phospho-mimetic ZYG-1. Our findings suggest that CK2-dependent phosphorylation of ZYG-1 controls ZYG-1 levels via proteasomal degradation to limit centrosome number.
Collapse
Affiliation(s)
- Jeffrey C. Medley
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Rachel N. Yim
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Joseph DiPanni
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Brandon Sebou
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Blake Shaffou
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Evan Cramer
- Department of Chemistry, Oakland University, Rochester, MI, USA
| | - Colin Wu
- Department of Chemistry, Oakland University, Rochester, MI, USA
| | - Megan Kabara
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- University of Connecticut School of Medicine, Office of Graduate Medical Education, Farmington, CT, USA
| | - Mi Hye Song
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| |
Collapse
|
6
|
Schvarzstein M, Alam F, Toure M, Yanowitz JL. An Emerging Animal Model for Querying the Role of Whole Genome Duplication in Development, Evolution, and Disease. J Dev Biol 2023; 11:26. [PMID: 37367480 PMCID: PMC10299280 DOI: 10.3390/jdb11020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Whole genome duplication (WGD) or polyploidization can occur at the cellular, tissue, and organismal levels. At the cellular level, tetraploidization has been proposed as a driver of aneuploidy and genome instability and correlates strongly with cancer progression, metastasis, and the development of drug resistance. WGD is also a key developmental strategy for regulating cell size, metabolism, and cellular function. In specific tissues, WGD is involved in normal development (e.g., organogenesis), tissue homeostasis, wound healing, and regeneration. At the organismal level, WGD propels evolutionary processes such as adaptation, speciation, and crop domestication. An essential strategy to further our understanding of the mechanisms promoting WGD and its effects is to compare isogenic strains that differ only in their ploidy. Caenorhabditis elegans (C. elegans) is emerging as an animal model for these comparisons, in part because relatively stable and fertile tetraploid strains can be produced rapidly from nearly any diploid strain. Here, we review the use of Caenorhabditis polyploids as tools to understand important developmental processes (e.g., sex determination, dosage compensation, and allometric relationships) and cellular processes (e.g., cell cycle regulation and chromosome dynamics during meiosis). We also discuss how the unique characteristics of the C. elegans WGD model will enable significant advances in our understanding of the mechanisms of polyploidization and its role in development and disease.
Collapse
Affiliation(s)
- Mara Schvarzstein
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
- Biology Department, The Graduate Center at the City University of New York, New York, NY 10016, USA
- Biochemistry Department, The Graduate Center at the City University of New York, New York, NY 10016, USA
| | - Fatema Alam
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
| | - Muhammad Toure
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
| | - Judith L. Yanowitz
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA;
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Medley JC, Yim N, DiPanni J, Sebou B, Shaffou B, Cramer E, Wu C, Kabara M, Song MH. Site-Specific Phosphorylation of ZYG-1 Regulates ZYG-1 Stability and Centrosome Number. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539463. [PMID: 37333374 PMCID: PMC10274923 DOI: 10.1101/2023.05.07.539463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Spindle bipolarity is critical for genomic integrity. Given that centrosome number often dictates mitotic bipolarity, tight control of centrosome assembly is vital for the fidelity of cell division. The kinase ZYG-1/Plk4 is a master centrosome factor that is integral for controlling centrosome number and is modulated by protein phosphorylation. While autophosphorylation of Plk4 has been extensively studied in other systems, the mechanism of ZYG-1 phosphorylation in C. elegans remains largely unexplored. In C. elegans, Casein Kinase II (CK2) negatively regulates centrosome duplication by controlling centrosome-associated ZYG-1 levels. In this study, we investigated ZYG-1 as a potential substrate of CK2 and the functional impact of ZYG-1 phosphorylation on centrosome assembly. First, we show that CK2 directly phosphorylates ZYG-1 in vitro and physically interacts with ZYG-1 in vivo. Intriguingly, depleting CK2 or blocking ZYG-1 phosphorylation at putative CK2 target sites leads to centrosome amplification. In the non-phosphorylatable (NP)-ZYG-1 mutant embryo, the overall levels of ZYG-1 are elevated, leading to an increase in centrosomal ZYG-1 and downstream factors, providing a possible mechanism of the NP-ZYG-1 mutation to drive centrosome amplification. Moreover, inhibiting the 26S proteasome blocks degradation of the phospho-mimetic (PM)-ZYG-1, while the NP-ZYG-1 mutant shows partial resistance to proteasomal degradation. Our findings suggest that site-specific phosphorylation of ZYG-1, partly mediated by CK2, controls ZYG-1 levels via proteasomal degradation, limiting centrosome number. We provide a mechanism linking CK2 kinase activity to centrosome duplication through direct phosphorylation of ZYG-1, which is critical for the integrity of centrosome number.
Collapse
Affiliation(s)
| | - Nahyun Yim
- Department of Biological Sciences, Oakland University, MI, USA
| | - Joseph DiPanni
- Department of Biological Sciences, Oakland University, MI, USA
| | - Brandon Sebou
- Department of Biological Sciences, Oakland University, MI, USA
| | - Blake Shaffou
- Department of Biological Sciences, Oakland University, MI, USA
| | - Evan Cramer
- Department of Chemistry, Oakland University, MI, USA
| | - Colin Wu
- Department of Chemistry, Oakland University, MI, USA
| | - Megan Kabara
- Department of Biological Sciences, Oakland University, MI, USA
- University of Connecticut School of Medicine, Office of Graduate Medical Education, Farmington, CT, USA
| | - Mi Hye Song
- Department of Biological Sciences, Oakland University, MI, USA
| |
Collapse
|
8
|
Medley JC, Song MH. kin-3 genetically suppresses sur-6 in centrosome assembly during Caenorhabditis elegans embryogenesis. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000791. [PMID: 36969515 PMCID: PMC10031309 DOI: 10.17912/micropub.biology.000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/29/2023]
Abstract
Protein phosphorylation plays a critical role in cell cycle progression. In Caenorhabditis elegans , Casein Kinase II (CK2) negatively regulates centrosome assembly, and Protein Phosphatase 2A (PP2A) SUR-6 /B55 acts as a positive regulator of centrosome duplication, suggesting CK2 and PP2A SUR-6 /B55 play opposing roles in centrosome assembly. Here, we examined the genetic interaction between kin-3 , encoding the catalytic subunit of CK2, and sur-6 , encoding the PP2Aregulatory subunit SUR-6 /B55, in Caenorhabditis elegans embryos. Our results show that kin-3 (RNAi) partially restores normal centrosome duplication and embryonic viability to hypomorphic sur-6 mutants, suggesting that kin-3 genetically suppresses sur-6 in centrosome assembly during Caenorhabditis elegans embryogenesis.
Collapse
Affiliation(s)
- Jeffrey C. Medley
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States
| | - Mi Hye Song
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States
- Correspondence to: Mi Hye Song (
)
| |
Collapse
|
9
|
Tian Y, Yan Y, Fu J. Nine-fold symmetry of centriole: The joint efforts of its core proteins. Bioessays 2022; 44:e2100262. [PMID: 34997615 DOI: 10.1002/bies.202100262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022]
Abstract
The centriole is a widely conserved organelle required for the assembly of centrosomes, cilia, and flagella. Its striking feature - the nine-fold symmetrical structure, was discovered over 70 years ago by transmission electron microscopy, and since elaborated mostly by cryo-electron microscopy and super-resolution microscopy. Here, we review the discoveries that led to the current understanding of how the nine-fold symmetrical structure is built. We focus on the recent findings of the centriole structure in high resolution, its assembly pathways, and its nine-fold distributed components. We propose a model that the assembly of the nine-fold symmetrical centriole depends on the concerted efforts of its core proteins.
Collapse
Affiliation(s)
- Yuan Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuxuan Yan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingyan Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Medley JC, DiPanni JR, Schira L, Shaffou BM, Sebou BM, Song MH. APC/CFZR-1 regulates centrosomal ZYG-1 to limit centrosome number. J Cell Sci 2021; 134:jcs253088. [PMID: 34308970 PMCID: PMC8349554 DOI: 10.1242/jcs.253088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/23/2021] [Indexed: 12/28/2022] Open
Abstract
Aberrant centrosome numbers are associated with human cancers. The levels of centrosome regulators positively correlate with centrosome number. Thus, tight control of centrosome protein levels is critical. In Caenorhabditis elegans, the anaphase-promoting complex/cyclosome and its co-activator FZR-1 (APC/CFZR-1), a ubiquitin ligase, negatively regulates centrosome assembly through SAS-5 degradation. In this study, we report the C. elegans ZYG-1 (Plk4 in humans) as a potential substrate of APC/CFZR-1. Inhibiting APC/CFZR-1 or mutating a ZYG-1 destruction (D)-box leads to elevated ZYG-1 levels at centrosomes, restoring bipolar spindles and embryonic viability to zyg-1 mutants, suggesting that APC/CFZR-1 influences centrosomal ZYG-1 via the D-box motif. We also show the Slimb/βTrCP-binding (SB) motif is critical for ZYG-1 degradation, substantiating a conserved mechanism by which ZYG-1/Plk4 stability is regulated by the SKP1-CUL1-F-box (Slimb/βTrCP)-protein complex (SCFSlimb/βTrCP)-dependent proteolysis via the conserved SB motif in C. elegans. Furthermore, we show that co-mutating ZYG-1 SB and D-box motifs stabilizes ZYG-1 in an additive manner, suggesting that the APC/CFZR-1 and SCFSlimb/βTrCP ubiquitin ligases function cooperatively for timely ZYG-1 destruction in C. elegans embryos where ZYG-1 activity remains at threshold level to ensure normal centrosome number.
Collapse
Affiliation(s)
| | | | | | | | | | - Mi Hye Song
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
11
|
Rincón AM, Monje-Casas F. A guiding torch at the poles: the multiple roles of spindle microtubule-organizing centers during cell division. Cell Cycle 2020; 19:1405-1421. [PMID: 32401610 DOI: 10.1080/15384101.2020.1754586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The spindle constitutes the cellular machinery that enables the segregation of the chromosomes during eukaryotic cell division. The microtubules that form this fascinating and complex genome distribution system emanate from specialized structures located at both its poles and known as microtubule-organizing centers (MTOCs). Beyond their structural function, the spindle MTOCs play fundamental roles in cell cycle control, the activation and functionality of the mitotic checkpoints and during cellular aging. This review highlights the pivotal importance of spindle-associated MTOCs in multiple cellular processes and their central role as key regulatory hubs where diverse intracellular signals are integrated and coordinated to ensure the successful completion of cell division and the maintenance of the replicative lifespan.
Collapse
Affiliation(s)
- Ana M Rincón
- Centro Andaluz de Biología Molecular Y Medicina Regenerativa (CABIMER) / CSIC - Universidad de Sevilla - Universidad Pablo de Olavide , Sevilla, Spain.,Dpto. de Genética / Universidad de Sevilla , Sevilla, Spain
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular Y Medicina Regenerativa (CABIMER) / CSIC - Universidad de Sevilla - Universidad Pablo de Olavide , Sevilla, Spain.,Consejo Superior de Investigaciones Científicas (CSIC) , Sevilla, Spain
| |
Collapse
|
12
|
Bel Borja L, Soubigou F, Taylor SJP, Fraguas Bringas C, Budrewicz J, Lara-Gonzalez P, Sorensen Turpin CG, Bembenek JN, Cheerambathur DK, Pelisch F. BUB-1 targets PP2A:B56 to regulate chromosome congression during meiosis I in C. elegans oocytes. eLife 2020; 9:65307. [PMID: 33355089 PMCID: PMC7787666 DOI: 10.7554/elife.65307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Protein Phosphatase 2A (PP2A) is a heterotrimer composed of scaffolding (A), catalytic (C), and regulatory (B) subunits. PP2A complexes with B56 subunits are targeted by Shugoshin and BUBR1 to protect centromeric cohesion and stabilise kinetochore-microtubule attachments in yeast and mouse meiosis. In Caenorhabditis elegans, the closest BUBR1 orthologue lacks the B56-interaction domain and Shugoshin is not required for meiotic segregation. Therefore, the role of PP2A in C. elegans female meiosis is unknown. We report that PP2A is essential for meiotic spindle assembly and chromosome dynamics during C. elegans female meiosis. BUB-1 is the main chromosome-targeting factor for B56 subunits during prometaphase I. BUB-1 recruits PP2A:B56 to the chromosomes via a newly identified LxxIxE motif in a phosphorylation-dependent manner, and this recruitment is important for proper chromosome congression. Our results highlight a novel mechanism for B56 recruitment, essential for recruiting a pool of PP2A involved in chromosome congression during meiosis I.
Collapse
Affiliation(s)
- Laura Bel Borja
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Flavie Soubigou
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Samuel J P Taylor
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Conchita Fraguas Bringas
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jacqueline Budrewicz
- Ludwig Institute for Cancer ResearchSan DiegoUnited States,Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Pablo Lara-Gonzalez
- Ludwig Institute for Cancer ResearchSan DiegoUnited States,Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | | | - Joshua N Bembenek
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Dhanya K Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of EdinburghEdinburghUnited Kingdom
| | - Federico Pelisch
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
13
|
Magescas J, Zonka JC, Feldman JL. A two-step mechanism for the inactivation of microtubule organizing center function at the centrosome. eLife 2019; 8:47867. [PMID: 31246171 PMCID: PMC6684319 DOI: 10.7554/elife.47867] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/26/2019] [Indexed: 01/18/2023] Open
Abstract
The centrosome acts as a microtubule organizing center (MTOC), orchestrating microtubules into the mitotic spindle through its pericentriolar material (PCM). This activity is biphasic, cycling through assembly and disassembly during the cell cycle. Although hyperactive centrosomal MTOC activity is a hallmark of some cancers, little is known about how the centrosome is inactivated as an MTOC. Analysis of endogenous PCM proteins in C. elegans revealed that the PCM is composed of partially overlapping territories organized into an inner and outer sphere that are removed from the centrosome at different rates and using different behaviors. We found that phosphatases oppose the addition of PCM by mitotic kinases, ultimately catalyzing the dissolution of inner sphere PCM proteins at the end of mitosis. The nature of the PCM appears to change such that the remaining aging PCM outer sphere is mechanically ruptured by cortical pulling forces, ultimately inactivating MTOC function at the centrosome. New cells are created when existing cells divide, a process that is critical for life. A structure called the spindle is an important part of cell division, helping to orient the division and separate parts of the old cell into the newly generated ones. The spindle is built using filamentous protein structures called microtubules which are arranged by microtubule organizing centers (or MTOCs for short). In animals, an MTOC forms at each end of the spindle around two structures called centrosomes. A network of proteins called the pericentriolar material (PCM) form around centrosomes, converting them into MTOCs. The PCM grows around centrosomes as a cell prepares to divide and is removed again afterward. Enzymes called kinases are important in controlling cell division and PCM assembly; they are opposed by other enzymes known as phosphatases. The processes involved in organization and removal of the PCM are not well understood. The microscopic worm Caenorhabditis elegans provides an opportunity to study details of cell division in a living animal. Magescas et al. used fluorescent labels to view proteins from the PCM under a microscope. The images showed two partially overlapping spherical parts to the PCM – inner and outer. Further examination revealed that the inner PCM is maintained by a careful balance of kinase and phosphatase activity. When kinases shut down at the end of cell division, the phosphatases break down the inner PCM. By contrast, the outer PCM is physically torn apart by forces acting through the attached microtubules. Future work will seek to examine which proteins are specifically affected by phosphatases to identify the key regulators of PCM persistence in the cell and to reveal the proteins needed for MTOC activity at the centrosome. Since poor MTOC regulation can play a part in the growth and spread of cancer, this could lead to targets for new treatments.
Collapse
Affiliation(s)
- Jérémy Magescas
- Department of Biology, Stanford University, Stanford, United States
| | - Jenny C Zonka
- Department of Biology, Stanford University, Stanford, United States
| | | |
Collapse
|
14
|
Kinetochore Recruitment of the Spindle and Kinetochore-Associated (Ska) Complex Is Regulated by Centrosomal PP2A in Caenorhabditis elegans. Genetics 2019; 212:509-522. [PMID: 31018924 DOI: 10.1534/genetics.119.302105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/07/2019] [Indexed: 12/31/2022] Open
Abstract
During mitosis, kinetochore-microtubule interactions ensure that chromosomes are accurately segregated to daughter cells. RSA-1 (regulator of spindle assembly-1) is a regulatory B″ subunit of protein phosphatase 2A that was previously proposed to modulate microtubule dynamics during spindle assembly. We have identified a genetic interaction between the centrosomal protein, RSA-1, and the spindle- and kinetochore-associated (Ska) complex in Caenorhabditis elegans In a forward genetic screen for suppressors of rsa-1(or598) embryonic lethality, we identified mutations in ska-1 and ska-3 Loss of SKA-1 and SKA-3, as well as components of the KMN (KNL-1/MIS-12/NDC-80) complex and the microtubule end-binding protein EBP-2, all suppressed the embryonic lethality of rsa-1(or598) These suppressors also disrupted the intracellular localization of the Ska complex, revealing a network of proteins that influence Ska function during mitosis. In rsa-1(or598) embryos, SKA-1 is excessively and prematurely recruited to kinetochores during spindle assembly, but SKA-1 levels return to normal just prior to anaphase onset. Loss of the TPX2 homolog, TPXL-1, also resulted in overrecruitment of SKA-1 to the kinetochores and this correlated with the loss of Aurora A kinase on the spindle microtubules. We propose that rsa-1 regulates the kinetochore localization of the Ska complex, with spindle-associated Aurora A acting as a potential mediator. These data reveal a novel mechanism of protein phosphatase 2A function during mitosis involving a centrosome-based regulatory mechanism for Ska complex recruitment to the kinetochore.
Collapse
|
15
|
Busch JMC, Erat MC, Blank ID, Musgaard M, Biggin PC, Vakonakis I. A dynamically interacting flexible loop assists oligomerisation of the Caenorhabditis elegans centriolar protein SAS-6. Sci Rep 2019; 9:3526. [PMID: 30837637 PMCID: PMC6401066 DOI: 10.1038/s41598-019-40294-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/11/2019] [Indexed: 01/12/2023] Open
Abstract
Centrioles are conserved organelles fundamental for the organisation of microtubules in animal cells. Oligomerisation of the spindle assembly abnormal protein 6 (SAS-6) is an essential step in the centriole assembly process and may act as trigger for the formation of these organelles. SAS-6 oligomerisation is driven by two independent interfaces, comprising an extended coiled coil and a dimeric N-terminal globular domain. However, how SAS-6 oligomerisation is controlled remains unclear. Here, we show that in the Caenorhabditis elegans SAS-6, a segment of the N-terminal globular domain, unresolved in crystallographic structures, comprises a flexible loop that assists SAS-6 oligomerisation. Atomistic molecular dynamics simulations and nuclear magnetic resonance experiments suggest that transient interactions of this loop across the N-terminal dimerisation interface stabilise the SAS-6 oligomer. We discuss the possibilities presented by such flexible SAS-6 segments for the control of centriole formation.
Collapse
Affiliation(s)
- Julia M C Busch
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
| | - Michèle C Erat
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
- University of Warwick, Mathematical Institute, Coventry, CV4 7AL, United Kingdom
| | - Iris D Blank
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
| | - Maria Musgaard
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, Ottawa, ON, K1N 6N5, Canada
| | - Philip C Biggin
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
| | - Ioannis Vakonakis
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
16
|
Pintard L, Bowerman B. Mitotic Cell Division in Caenorhabditis elegans. Genetics 2019; 211:35-73. [PMID: 30626640 PMCID: PMC6325691 DOI: 10.1534/genetics.118.301367] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Mitotic cell divisions increase cell number while faithfully distributing the replicated genome at each division. The Caenorhabditis elegans embryo is a powerful model for eukaryotic cell division. Nearly all of the genes that regulate cell division in C. elegans are conserved across metazoan species, including humans. The C. elegans pathways tend to be streamlined, facilitating dissection of the more redundant human pathways. Here, we summarize the virtues of C. elegans as a model system and review our current understanding of centriole duplication, the acquisition of pericentriolar material by centrioles to form centrosomes, the assembly of kinetochores and the mitotic spindle, chromosome segregation, and cytokinesis.
Collapse
Affiliation(s)
- Lionel Pintard
- Equipe labellisée Ligue contre le Cancer, Institut Jacques Monod, Team Cell Cycle and Development UMR7592, Centre National de la Recherche Scientifique - Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
17
|
Leda M, Holland AJ, Goryachev AB. Autoamplification and Competition Drive Symmetry Breaking: Initiation of Centriole Duplication by the PLK4-STIL Network. iScience 2018; 8:222-235. [PMID: 30340068 PMCID: PMC6197440 DOI: 10.1016/j.isci.2018.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
Centrioles, the cores of centrosomes and cilia, duplicate every cell cycle to ensure their faithful inheritance. How only a single procentriole is produced on each mother centriole remains enigmatic. We propose the first mechanistic biophysical model for procentriole initiation which posits that interactions between kinase PLK4 and its activator-substrate STIL are central for procentriole initiation. The model recapitulates the transition from a uniform "ring" of PLK4 surrounding the mother centriole to a single PLK4 "spot" that initiates procentriole assembly. This symmetry breaking requires autocatalytic activation of PLK4 and enhanced centriolar anchoring of PLK4 by phosphorylated STIL. We find that in situ degradation of active PLK4 cannot break symmetry. The model predicts that competition between transient PLK4 activity maxima for PLK4-STIL complexes destabilizes the PLK4 ring and produces instead a single PLK4 spot. Weakening of competition by overexpression of PLK4 and STIL causes progressive addition of supernumerary procentrioles, as observed experimentally.
Collapse
Affiliation(s)
- Marcin Leda
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK.
| |
Collapse
|
18
|
Revisiting Centrioles in Nematodes-Historic Findings and Current Topics. Cells 2018; 7:cells7080101. [PMID: 30096824 PMCID: PMC6115991 DOI: 10.3390/cells7080101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/02/2023] Open
Abstract
Theodor Boveri is considered as the “father” of centrosome biology. Boveri’s fundamental findings have laid the groundwork for decades of research on centrosomes. Here, we briefly review his early work on centrosomes and his first description of the centriole. Mainly focusing on centriole structure, duplication, and centriole assembly factors in C. elegans, we will highlight the role of this model in studying germ line centrosomes in nematodes. Last but not least, we will point to future directions of the C. elegans centrosome field.
Collapse
|
19
|
Wolf B, Balestra FR, Spahr A, Gönczy P. ZYG-1 promotes limited centriole amplification in the C. elegans seam lineage. Dev Biol 2018; 434:221-230. [PMID: 29307730 DOI: 10.1016/j.ydbio.2018.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/08/2017] [Accepted: 01/01/2018] [Indexed: 11/27/2022]
Abstract
Genome stability relies notably on the integrity of centrosomes and on the mitotic spindle they organize. Structural and numerical centrosome aberrations are frequently observed in human cancer, and there is increasing evidence that centrosome amplification can promote tumorigenesis. Here, we use C. elegans seam cells as a model system to analyze centrosome homeostasis in the context of a stereotyped stem like lineage. We found that overexpression of the Plk4-related kinase ZYG-1 leads to the formation of one supernumerary centriolar focus per parental centriole during the cell cycle that leads to the sole symmetric division in the seam lineage. In the following cell cycle, such supernumerary foci function as microtubule organizing centers, but do not cluster during mitosis, resulting in the formation of a multipolar spindle and then aneuploid daughter cells. Intriguingly, we found also that supernumerary centriolar foci do not assemble in the asymmetric cell divisions that precedes or that follows the symmetric seam cell division, despite the similar presence of GFP::ZYG-1. Furthermore, we established that supernumerary centrioles form earlier during development in animals depleted of the heterochronic gene lin-14, in which the symmetric division is precocious. Conversely, supernumerary centrioles are essentially not observed in animals depleted of lin-28, in which the symmetric division is lacking. These findings lead us to conclude that ZYG-1 promotes limited centriole amplification solely during the symmetric division in the C. elegans seam lineage.
Collapse
Affiliation(s)
- Benita Wolf
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Fernando R Balestra
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Antoine Spahr
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
20
|
Enos SJ, Dressler M, Gomes BF, Hyman AA, Woodruff JB. Phosphatase PP2A and microtubule-mediated pulling forces disassemble centrosomes during mitotic exit. Biol Open 2018; 7:bio.029777. [PMID: 29222174 PMCID: PMC5829501 DOI: 10.1242/bio.029777] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Centrosomes are microtubule-nucleating organelles that facilitate chromosome segregation and cell division in metazoans. Centrosomes comprise centrioles that organize a micron-scale mass of protein called pericentriolar material (PCM) from which microtubules nucleate. During each cell cycle, PCM accumulates around centrioles through phosphorylation-mediated assembly of PCM scaffold proteins. During mitotic exit, PCM swiftly disassembles by an unknown mechanism. Here, we used Caenorhabditis elegans embryos to determine the mechanism and importance of PCM disassembly in dividing cells. We found that the phosphatase PP2A and its regulatory subunit SUR-6 (PP2ASUR-6), together with cortically directed microtubule pulling forces, actively disassemble PCM. In embryos depleted of these activities, ∼25% of PCM persisted from one cell cycle into the next. Purified PP2ASUR-6 could dephosphorylate the major PCM scaffold protein SPD-5 in vitro. Our data suggest that PCM disassembly occurs through a combination of dephosphorylation of PCM components and force-driven fragmentation of the PCM scaffold. Summary: Centrosomes acquire and lose pericentriolar material during each cell cycle. We show that dephosphorylation and cortically directed forces disassemble pericentriolar material at the end of mitosis.
Collapse
Affiliation(s)
- Stephen J Enos
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Martin Dressler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Beatriz Ferreira Gomes
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jeffrey B Woodruff
- Department of Cell Biology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
21
|
Rale MJ, Kadzik RS, Petry S. Phase Transitioning the Centrosome into a Microtubule Nucleator. Biochemistry 2017; 57:30-37. [PMID: 29256606 DOI: 10.1021/acs.biochem.7b01064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Centrosomes are self-assembling, micron-scale, nonmembrane bound organelles that nucleate microtubules (MTs) and organize the microtubule cytoskeleton of the cell. They orchestrate critical cellular processes such as ciliary-based motility, vesicle trafficking, and cell division. Much is known about the role of the centrosome in these contexts, but we have a less comprehensive understanding of how the centrosome assembles and generates microtubules. Studies over the past 10 years have fundamentally shifted our view of these processes. Subdiffraction imaging has probed the amorphous haze of material surrounding the core of the centrosome revealing a complex, hierarchically organized structure whose composition and size changes profoundly during the transition from interphase to mitosis. New biophysical insights into protein phase transitions, where a diffuse protein spontaneously separates into a locally concentrated, nonmembrane bounded compartment, have provided a fresh perspective into how the centrosome might rapidly condense from diffuse cytoplasmic components. In this Perspective, we focus on recent findings that identify several centrosomal proteins that undergo phase transitions. We discuss how to reconcile these results with the current model of the underlying organization of proteins in the centrosome. Furthermore, we reflect on how these findings impact our understanding of how the centrosome undergoes self-assembly and promotes MT nucleation.
Collapse
Affiliation(s)
- Michael J Rale
- Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| | - Rachel S Kadzik
- Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| | - Sabine Petry
- Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
22
|
Peel N, Iyer J, Naik A, Dougherty MP, Decker M, O’Connell KF. Protein Phosphatase 1 Down Regulates ZYG-1 Levels to Limit Centriole Duplication. PLoS Genet 2017; 13:e1006543. [PMID: 28103229 PMCID: PMC5289615 DOI: 10.1371/journal.pgen.1006543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 02/02/2017] [Accepted: 12/16/2016] [Indexed: 01/01/2023] Open
Abstract
In humans perturbations of centriole number are associated with tumorigenesis and microcephaly, therefore appropriate regulation of centriole duplication is critical. The C. elegans homolog of Plk4, ZYG-1, is required for centriole duplication, but our understanding of how ZYG-1 levels are regulated remains incomplete. We have identified the two PP1 orthologs, GSP-1 and GSP-2, and their regulators I-2SZY-2 and SDS-22 as key regulators of ZYG-1 protein levels. We find that down-regulation of PP1 activity either directly, or by mutation of szy-2 or sds-22 can rescue the loss of centriole duplication associated with a zyg-1 hypomorphic allele. Suppression is achieved through an increase in ZYG-1 levels, and our data indicate that PP1 normally regulates ZYG-1 through a post-translational mechanism. While moderate inhibition of PP1 activity can restore centriole duplication to a zyg-1 mutant, strong inhibition of PP1 in a wild-type background leads to centriole amplification via the production of more than one daughter centriole. Our results thus define a new pathway that limits the number of daughter centrioles produced each cycle. The centrosomes are responsible for organizing the mitotic spindle a microtubule-based structure that centers, then segregates, the chromosomes during cell division. When a cell divides it normally possesses two centrosomes, allowing it to build a bipolar spindle and accurately segregate the chromosomes to two daughter cells. Appropriate control of centrosome number is therefore crucial to maintaining genome stability. Centrosome number is largely controlled by their regulated duplication. In particular, the protein Plk4, which is essential for duplication, must be strictly limited as an overabundance leads to excess centrosome duplication. We have identified protein phosphatase 1 as a critical regulator of the C. elegans Plk4 homolog (known as ZYG-1). When protein phosphatase 1 is down-regulated, ZYG-1 levels increase leading to centrosome amplification. Thus our work identifies a novel mechanism that limits centrosome duplication.
Collapse
Affiliation(s)
- Nina Peel
- Department of Biology, The College of New Jersey, Ewing, NJ, United States of America
- * E-mail: (NP); (KFO)
| | - Jyoti Iyer
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, United States of America
| | - Anar Naik
- Department of Biology, The College of New Jersey, Ewing, NJ, United States of America
| | - Michael P. Dougherty
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, United States of America
| | - Markus Decker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Kevin F. O’Connell
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, United States of America
- * E-mail: (NP); (KFO)
| |
Collapse
|
23
|
Medley JC, Kabara MM, Stubenvoll MD, DeMeyer LE, Song MH. Casein kinase II is required for proper cell division and acts as a negative regulator of centrosome duplication in Caenorhabditis elegans embryos. Biol Open 2017; 6:17-28. [PMID: 27881437 PMCID: PMC5278433 DOI: 10.1242/bio.022418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/15/2016] [Indexed: 11/28/2022] Open
Abstract
Centrosomes are the primary microtubule-organizing centers that orchestrate microtubule dynamics during the cell cycle. The correct number of centrosomes is pivotal for establishing bipolar mitotic spindles that ensure accurate segregation of chromosomes. Thus, centrioles must duplicate once per cell cycle, one daughter per mother centriole, the process of which requires highly coordinated actions among core factors and modulators. Protein phosphorylation is shown to regulate the stability, localization and activity of centrosome proteins. Here, we report the function of Casein kinase II (CK2) in early Caenorhabditis elegans embryos. The catalytic subunit (KIN-3/CK2α) of CK2 localizes to nuclei, centrosomes and midbodies. Inactivating CK2 leads to cell division defects, including chromosome missegregation, cytokinesis failure and aberrant centrosome behavior. Furthermore, depletion or inhibiting kinase activity of CK2 results in elevated ZYG-1 levels at centrosomes, restoring centrosome duplication and embryonic viability to zyg-1 mutants. Our data suggest that CK2 functions in cell division and negatively regulates centrosome duplication in a kinase-dependent manner.
Collapse
Affiliation(s)
- Jeffrey C Medley
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Megan M Kabara
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | | | - Lauren E DeMeyer
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Mi Hye Song
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
24
|
Stubenvoll MD, Medley JC, Irwin M, Song MH. ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics. PLoS Genet 2016; 12:e1006370. [PMID: 27689799 PMCID: PMC5045193 DOI: 10.1371/journal.pgen.1006370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022] Open
Abstract
Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT) to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin), increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics.
Collapse
Affiliation(s)
- Michael D. Stubenvoll
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Jeffrey C. Medley
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Miranda Irwin
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Mi Hye Song
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| |
Collapse
|
25
|
The E2F-DP1 Transcription Factor Complex Regulates Centriole Duplication in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2016; 6:709-20. [PMID: 26772748 PMCID: PMC4777132 DOI: 10.1534/g3.115.025577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Centrioles play critical roles in the organization of microtubule-based structures, from the mitotic spindle to cilia and flagella. In order to properly execute their various functions, centrioles are subjected to stringent copy number control. Central to this control mechanism is a precise duplication event that takes place during S phase of the cell cycle and involves the assembly of a single daughter centriole in association with each mother centriole . Recent studies have revealed that posttranslational control of the master regulator Plk4/ZYG-1 kinase and its downstream effector SAS-6 is key to ensuring production of a single daughter centriole. In contrast, relatively little is known about how centriole duplication is regulated at a transcriptional level. Here we show that the transcription factor complex EFL-1-DPL-1 both positively and negatively controls centriole duplication in the Caenorhabditis elegans embryo. Specifically, we find that down regulation of EFL-1-DPL-1 can restore centriole duplication in a zyg-1 hypomorphic mutant and that suppression of the zyg-1 mutant phenotype is accompanied by an increase in SAS-6 protein levels. Further, we find evidence that EFL-1-DPL-1 promotes the transcription of zyg-1 and other centriole duplication genes. Our results provide evidence that in a single tissue type, EFL-1-DPL-1 sets the balance between positive and negative regulators of centriole assembly and thus may be part of a homeostatic mechanism that governs centriole assembly.
Collapse
|
26
|
Rogala KB, Dynes NJ, Hatzopoulos GN, Yan J, Pong SK, Robinson CV, Deane CM, Gönczy P, Vakonakis I. The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation. eLife 2015; 4:e07410. [PMID: 26023830 PMCID: PMC4471805 DOI: 10.7554/elife.07410] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/28/2015] [Indexed: 12/21/2022] Open
Abstract
Centrioles are microtubule-based organelles crucial for cell division, sensing and motility. In Caenorhabditis elegans, the onset of centriole formation requires notably the proteins SAS-5 and SAS-6, which have functional equivalents across eukaryotic evolution. Whereas the molecular architecture of SAS-6 and its role in initiating centriole formation are well understood, the mechanisms by which SAS-5 and its relatives function is unclear. Here, we combine biophysical and structural analysis to uncover the architecture of SAS-5 and examine its functional implications in vivo. Our work reveals that two distinct self-associating domains are necessary to form higher-order oligomers of SAS-5: a trimeric coiled coil and a novel globular dimeric Implico domain. Disruption of either domain leads to centriole duplication failure in worm embryos, indicating that large SAS-5 assemblies are necessary for function in vivo. DOI:http://dx.doi.org/10.7554/eLife.07410.001 Most animal cells contain structures known as centrioles. Typically, a cell that is not dividing contains a pair of centrioles. But when a cell prepares to divide, the centrioles are duplicated. The two pairs of centrioles then organize the scaffolding that shares the genetic material equally between the newly formed cells at cell division. Centriole assembly is tightly regulated and abnormalities in this process can lead to developmental defects and cancer. Centrioles likely contain several hundred proteins, but only a few of these are strictly needed for centriole assembly. New centrioles usually assemble from a cartwheel-like arrangement of proteins, which includes a protein called SAS-6. In the worm Caenorhabditis elegans, SAS-6 associates with another protein called SAS-5. This interaction is essential for centrioles to form, but the reason behind this is not clearly understood. Now, Rogala et al. have used a range of techniques including X-ray crystallography, biophysics and studies of worm embryos to investigate the role of SAS-5 in C. elegans. These experiments revealed that SAS-5 proteins can interact with each other, via two regions of each protein termed a ‘coiled-coil’ and a previously unrecognized ‘Implico domain’. These regions drive the formation of assemblies that contain multiple SAS-5 proteins. Next, Rogala et al. asked whether SAS-5 assemblies are important for centriole duplication. Mutant worm embryos, in which SAS-5 proteins could not interact with one another, failed to form new centrioles. This resulted in defects with cell division. An independent study by Cottee, Muschalik et al. obtained similar results and found that the fruit fly equivalent of SAS-5, called Ana2, can also self-associate and this activity is required for centriole duplication. Further work is now needed to understand how SAS-5 and SAS-6 work with each other to form the initial framework at the core of centrioles. DOI:http://dx.doi.org/10.7554/eLife.07410.002
Collapse
Affiliation(s)
- Kacper B Rogala
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Nicola J Dynes
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | | | - Jun Yan
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Sheng Kai Pong
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Charlotte M Deane
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Cep68 can be regulated by Nek2 and SCF complex. Eur J Cell Biol 2015; 94:162-72. [PMID: 25704143 DOI: 10.1016/j.ejcb.2015.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 01/01/2023] Open
Abstract
Centrosome cohesion maintains centrosomes in close proximity until mitosis, when cell cycle-dependent regulatory signaling events dissolve cohesion and promote centrosome separation in preparation for bipolar spindle assembly at mitosis. Cohesion is regulated by the antagonistic activities of the mitotic NIMA-related kinase 2 (Nek2), protein phosphatase 1, the cohesion fiber components rootletin, centrosomal Nek2-associated protein 1 (C-Nap1) and Cep68. The centrosomal protein Cep68 is essential for centrosome cohesion and dissociates from centrosomes at the onset of mitosis. Here, our cell line studies show the C-terminal 300-400 amino acids of Cep68 are necessary to localize Cep68 to interphase centrosomes while C-terminal 400-500 amino acids might regulate Cep68 dissociation from centrosomes at mitotic onset. In addition, Nek2 was demonstrated to phosphorylate Cep68 in vivo and this phosphorylation appears to promote Cep68 degradation in mitosis. We further show that the SCF complex destroys Cep68 at mitosis through recognition by the beta-Trcp F box component of SCF. Together, the findings provide a new insight into the control of centrosome separation by Cep68 during mitosis.
Collapse
|
28
|
Abstract
The centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function. The strategies for gaining such knowledge were quickly developed in the yeasts to decipher the structure and function of their distinctive spindle pole bodies. Only within the past decade have studies with model eukaryotes and cultured cells brought a similar degree of sophistication to our understanding of the centrosome duplication cycle and the multiple roles of this organelle and its component parts in cell division and signaling. Now as we begin to understand these functions in the context of development, the way is being opened up for studies of the roles of centrosomes in human disease.
Collapse
Affiliation(s)
- Jingyan Fu
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Iain M Hagan
- Cancer Research UK Manchester Institute, University of Manchester, Withington, Manchester M20 4BX, United Kingdom
| | - David M Glover
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
29
|
Lu Y, Roy R. Centrosome/Cell cycle uncoupling and elimination in the endoreduplicating intestinal cells of C. elegans. PLoS One 2014; 9:e110958. [PMID: 25360893 PMCID: PMC4215990 DOI: 10.1371/journal.pone.0110958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 09/28/2014] [Indexed: 01/14/2023] Open
Abstract
The centrosome cycle is most often coordinated with mitotic cell division through the activity of various essential cell cycle regulators, consequently ensuring that the centriole is duplicated once, and only once, per cell cycle. However, this coupling can be altered in specific developmental contexts; for example, multi-ciliated cells generate hundreds of centrioles without any S-phase requirement for their biogenesis, while Drosophila follicle cells eliminate their centrosomes as they begin to endoreduplicate. In order to better understand how the centrosome cycle and the cell cycle are coordinated in a developmental context we use the endoreduplicating intestinal cell lineage of C. elegans to address how novel variations of the cell cycle impact this important process. In C. elegans, the larval intestinal cells undergo one nuclear division without subsequent cytokinesis, followed by four endocycles that are characterized by successive rounds of S-phase. We monitored the levels of centriolar/centrosomal markers and found that centrosomes lose their pericentriolar material following the nuclear division that occurs during the L1 stage and is thereafter never re-gained. The centrioles then become refractory to S phase regulators that would normally promote duplication during the first endocycle, after which they are eliminated during the L2 stage. Furthermore, we show that SPD-2 plays a central role in the numeral regulation of centrioles as a potential target of CDK activity. On the other hand, the phosphorylation on SPD-2 by Polo-like kinase, the transcriptional regulation of genes that affect centriole biogenesis, and the ubiquitin/proteasome degradation pathway, contribute collectively to the final elimination of the centrioles during the L2 stage.
Collapse
Affiliation(s)
- Yu Lu
- Department of Biology, The Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| | - Richard Roy
- Department of Biology, The Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Ohta M, Ashikawa T, Nozaki Y, Kozuka-Hata H, Goto H, Inagaki M, Oyama M, Kitagawa D. Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nat Commun 2014; 5:5267. [PMID: 25342035 PMCID: PMC4220463 DOI: 10.1038/ncomms6267] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/12/2014] [Indexed: 01/08/2023] Open
Abstract
Formation of one procentriole next to each pre-existing centriole is essential for centrosome duplication, robust bipolar spindle assembly and maintenance of genome integrity. However, the mechanisms maintaining strict control over centriole copy number are incompletely understood. Here we show that Plk4 and STIL, the key regulators of centriole formation, form a protein complex that provides a scaffold for recruiting HsSAS-6, a major component of the centriolar cartwheel, at the onset of procentriole formation. Furthermore, we demonstrate that phosphorylation of STIL by Plk4 facilitates the STIL/HsSAS-6 interaction and centriolar loading of HsSAS-6. We also provide evidence that negative feedback by centriolar STIL regulates bimodal centriolar distribution of Plk4 and seemingly restricts occurrence of procentriole formation to one site on each parental centriole. Overall, these findings suggest a mechanism whereby coordinated action of three critical factors ensures formation of a single procentriole per parental centriole. Centrosome duplication requires a cartwheel-shaped protein complex containing the protein HsSAS-6, which acts as a template for centriole assembly. Ohta et al. show that HsSAS-6 is recruited to this structure by STIL and Plk4, and reveal that Plk4 phosphorylates STIL, stabilizing its interaction with HsSAS-6.
Collapse
Affiliation(s)
- Midori Ohta
- Centrosome Biology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Tomoko Ashikawa
- Centrosome Biology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yuka Nozaki
- Centrosome Biology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi 464-8681, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi 464-8681, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Daiju Kitagawa
- Centrosome Biology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
31
|
Xu Q, Zhang Y, Xiong X, Huang Y, Salisbury JL, Hu J, Ling K. PIPKIγ targets to the centrosome and restrains centriole duplication. J Cell Sci 2014; 127:1293-305. [PMID: 24434581 DOI: 10.1242/jcs.141465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Centriole biogenesis depends on the polo-like kinase (PLK4) and a small group of structural proteins. The spatiotemporal regulation of these proteins at pre-existing centrioles is essential to ensure that centriole duplication occurs once per cell cycle. Here, we report that phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1C, hereafter referred to as PIPKIγ) plays an important role in centriole fidelity. PIPKIγ localized in a ring-like pattern in the intermediate pericentriolar materials around the proximal end of the centriole in G1, S and G2 phases, but not in M phase. This localization was dependent upon an association with centrosomal protein of 152 KDa (CEP152). Without detaining cells in S or M phase, the depletion of PIPKIγ led to centriole amplification in a manner that was dependent upon PLK4 and spindle assembly abnormal protein 6 homolog (SAS6). The expression of exogenous PIPKIγ reduced centriole amplification that occurred as a result of endogenous PIPKIγ depletion, hydroxyurea treatment or PLK4 overexpression, suggesting that PIPKIγ is likely to function at the PLK4 level to restrain centriole duplication. Importantly, we found that PIPKIγ bound to the cryptic polo-box domain of PLK4 and that this binding reduced the kinase activity of PLK4. Together, our findings suggest that PIPKIγ is a novel negative regulator of centriole duplication, which acts by modulating the homeostasis of PLK4 activity.
Collapse
Affiliation(s)
- Qingwen Xu
- Department of Biochemistry and Molecular Biology, and Division of Hypertension and Nephrology, Mayo Clinic, 200 First Street SW, Rochester, MN 55902, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Lin H, Miller ML, Granas DM, Dutcher SK. Whole genome sequencing identifies a deletion in protein phosphatase 2A that affects its stability and localization in Chlamydomonas reinhardtii. PLoS Genet 2013; 9:e1003841. [PMID: 24086163 PMCID: PMC3784568 DOI: 10.1371/journal.pgen.1003841] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3) in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michelle L. Miller
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Granas
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Genomic Sciences and System Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
33
|
Lettman MM, Wong YL, Viscardi V, Niessen S, Chen SH, Shiau AK, Zhou H, Desai A, Oegema K. Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly. Dev Cell 2013; 25:284-98. [PMID: 23673331 DOI: 10.1016/j.devcel.2013.03.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/26/2013] [Accepted: 03/17/2013] [Indexed: 12/18/2022]
Abstract
Assembly of SAS-6 dimers to form the centriolar cartwheel requires the ZYG-1/Plk4 kinase. Here, we show that ZYG-1 recruits SAS-6 to the mother centriole independently of its kinase activity; kinase activity is subsequently required for cartwheel assembly. We identify a direct interaction between ZYG-1 and the SAS-6 coiled coil that explains its kinase activity-independent function in SAS-6 recruitment. Perturbing this interaction, or the interaction between an adjacent segment of the SAS-6 coiled coil and SAS-5, prevented SAS-6 recruitment and cartwheel assembly. SAS-6 mutants with alanine substitutions in a previously described ZYG-1 target site or in 37 other residues, either phosphorylated by ZYG-1 in vitro or conserved in closely related nematodes, all supported cartwheel assembly. We propose that ZYG-1 binding to the SAS-6 coiled coil recruits the SAS-6-SAS-5 complex to the mother centriole, where a ZYG-1 kinase activity-dependent step, whose target is unlikely to be SAS-6, triggers cartwheel assembly.
Collapse
Affiliation(s)
- Molly M Lettman
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Brownlee CW, Rogers GC. Show me your license, please: deregulation of centriole duplication mechanisms that promote amplification. Cell Mol Life Sci 2013; 70:1021-34. [PMID: 22892665 PMCID: PMC11113234 DOI: 10.1007/s00018-012-1102-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 12/13/2022]
Abstract
Centrosomes are organelles involved in generating and organizing the interphase microtubule cytoskeleton, mitotic spindles and cilia. At the centrosome core are a pair of centrioles, structures that act as the duplicating elements of this organelle. Centrioles function to recruit and organize pericentriolar material which nucleates microtubules. While centrioles are relatively simple in construction, the mechanics of centriole biogenesis remain an important yet poorly understood process. More mysterious still are the regulatory mechanisms that oversee centriole assembly. The fidelity of centriole duplication is critical as defects in either the assembly or number of centrioles promote aneuploidy, primary microcephaly, birth defects, ciliopathies and tumorigenesis. In addition, some pathogens employ mechanisms to promote centriole overduplication to the detriment of the host cell. This review summarizes our current understanding of this important topic, highlighting the need for further study if new therapeutics are to be developed to treat diseases arising from defects of centrosome duplication.
Collapse
Affiliation(s)
- Christopher W. Brownlee
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| |
Collapse
|
35
|
Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex. Curr Biol 2013; 23:265-70. [PMID: 23333316 DOI: 10.1016/j.cub.2012.12.030] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 07/12/2012] [Accepted: 12/14/2012] [Indexed: 11/23/2022]
Abstract
The centrosome functions as the main microtubule-organizing center of animal cells and is crucial for several fundamental cellular processes. Abnormalities in centrosome number and composition correlate with tumor progression and other diseases. Although proteomic studies have identified many centrosomal proteins, their interactions are incompletely characterized. The lack of information on the precise localization and interaction partners for many centrosomal proteins precludes comprehensive understanding of centrosome biology. Here, we utilize a combination of selective chemical crosslinking and superresolution microscopy to reveal novel functional interactions among a set of 31 centrosomal proteins. We reveal that Cep57, Cep63, and Cep152 are parts of a ring-like complex localizing around the proximal end of centrioles. Furthermore, we identify that STIL, together with HsSAS-6, resides at the proximal end of the procentriole, where the cartwheel is located. Our studies also reveal that the known interactors Cep152 and Plk4 reside in two separable structures, suggesting that the kinase Plk4 contacts its substrate Cep152 only transiently, at the centrosome or within the cytoplasm. Our findings provide novel insights into protein interactions critical for centrosome biology and establish a toolbox for future studies of centrosomal proteins.
Collapse
|
36
|
Abstract
The transitions between the successive cell cycle stages depend on reversible protein phosphorylation events. The phosphorylation state of every protein within a cell is strictly determined by spatiotemporally controlled kinase and phosphatase activities. Nuclear disassembly and reassembly during open mitosis in higher eukaryotic cells is one such process that is tightly regulated by the reversible phosphorylation of key proteins. However, little is known about the regulation of these mitotic events. In particular, although kinase function during entry into mitosis is better studied, very little is known about how proteins are dephosphorylated to allow nuclear reformation at the end of mitosis. We have identified LEM‑4, a conserved protein of the nuclear envelope, as an essential coordinator of kinase and phosphatase activities during mitotic exit. Inhibition of VRK‑1 kinase and promotion of a PP2A phosphatase complex by LEM‑4 tightly regulate the phosphorylation state of BAF, an essential player of nuclear reformation at the end of mitosis. Here I offer extended comments on the contribution of LEM‑4 in the regulation of protein phosphorylation and nuclear reformation.
Collapse
|
37
|
Lange KI, Heinrichs J, Cheung K, Srayko M. Suppressor mutations identify amino acids in PAA-1/PR65 that facilitate regulatory RSA-1/B″ subunit targeting of PP2A to centrosomes in C. elegans. Biol Open 2012; 2:88-94. [PMID: 23336080 PMCID: PMC3545272 DOI: 10.1242/bio.20122956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/16/2012] [Indexed: 12/17/2022] Open
Abstract
Protein phosphorylation and dephosphorylation is a key mechanism for the spatial and temporal regulation of many essential developmental processes and is especially prominent during mitosis. The multi-subunit protein phosphatase 2A (PP2A) enzyme plays an important, yet poorly characterized role in dephosphorylating proteins during mitosis. PP2As are heterotrimeric complexes comprising a catalytic, structural, and regulatory subunit. Regulatory subunits are mutually exclusive and determine subcellular localization and substrate specificity of PP2A. At least 3 different classes of regulatory subunits exist (termed B, B′, B″) but there is no obvious similarity in primary sequence between these classes. Therefore, it is not known how these diverse regulatory subunits interact with the same holoenzyme to facilitate specific PP2A functions in vivo. The B″ family of regulatory subunits is the least understood because these proteins lack conserved structural domains. RSA-1 (regulator of spindle assembly) is a regulatory B″ subunit required for mitotic spindle assembly in Caenorhabditis elegans. In order to address how B″ subunits interact with the PP2A core enzyme, we focused on a conditional allele, rsa-1(or598ts), and determined that this mutation specifically disrupts the protein interaction between RSA-1 and the PP2A structural subunit, PAA-1. Through genetic screening, we identified a putative interface on the PAA-1 structural subunit that interacts with a defined region of RSA-1/B″. In the context of previously published results, these data propose a mechanism of how different PP2A B-regulatory subunit families can bind the same holoenzyme in a mutually exclusive manner, to perform specific tasks in vivo.
Collapse
Affiliation(s)
- Karen I Lange
- Department of Biological Sciences, University of Alberta , Edmonton, AB T6G 2E9 , Canada
| | | | | | | |
Collapse
|
38
|
Qiao R, Cabral G, Lettman MM, Dammermann A, Dong G. SAS-6 coiled-coil structure and interaction with SAS-5 suggest a regulatory mechanism in C. elegans centriole assembly. EMBO J 2012; 31:4334-47. [PMID: 23064147 DOI: 10.1038/emboj.2012.280] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 09/20/2012] [Indexed: 01/17/2023] Open
Abstract
The centriole is a conserved microtubule-based organelle essential for both centrosome formation and cilium biogenesis. Five conserved proteins for centriole duplication have been identified. Two of them, SAS-5 and SAS-6, physically interact with each other and are codependent for their targeting to procentrioles. However, it remains unclear how these two proteins interact at the molecular level. Here, we demonstrate that the short SAS-5 C-terminal domain (residues 390-404) specifically binds to a narrow central region (residues 275-288) of the SAS-6 coiled coil. This was supported by the crystal structure of the SAS-6 coiled-coil domain (CCD), which, together with mutagenesis studies, indicated that the association is mediated by synergistic hydrophobic and electrostatic interactions. The crystal structure also shows a periodic charge pattern along the SAS-6 CCD, which gives rise to an anti-parallel tetramer. Overall, our findings establish the molecular basis of the specific interaction between SAS-5 and SAS-6, and suggest that both proteins individually adopt an oligomeric conformation that is disrupted upon the formation of the hetero-complex to facilitate the correct assembly of the nine-fold symmetric centriole.
Collapse
Affiliation(s)
- Renping Qiao
- Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
39
|
Asencio C, Davidson I, Santarella-Mellwig R, Ly-Hartig T, Mall M, Wallenfang M, Mattaj I, Gorjánácz M. Coordination of Kinase and Phosphatase Activities by Lem4 Enables Nuclear Envelope Reassembly during Mitosis. Cell 2012; 150:122-35. [DOI: 10.1016/j.cell.2012.04.043] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/09/2012] [Accepted: 04/20/2012] [Indexed: 12/19/2022]
|
40
|
Abstract
The centriole is an evolutionarily conserved macromolecular structure that is crucial for the formation of flagella, cilia and centrosomes. The ultrastructure of the centriole was first characterized decades ago with the advent of electron microscopy, revealing a striking ninefold radial arrangement of microtubules. However, it is only recently that the molecular mechanisms governing centriole assembly have begun to emerge, including the elucidation of the crucial role of spindle assembly abnormal 6 (SAS-6) proteins in imparting the ninefold symmetry. These advances have brought the field to an exciting era in which architecture meets function.
Collapse
|
41
|
Mikeladze-Dvali T, von Tobel L, Strnad P, Knott G, Leonhardt H, Schermelleh L, Gönczy P. Analysis of centriole elimination during C. elegans oogenesis. Development 2012; 139:1670-9. [PMID: 22492357 PMCID: PMC4074223 DOI: 10.1242/dev.075440] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2012] [Indexed: 01/04/2023]
Abstract
Centrosomes are the principal microtubule organizing centers (MTOCs) of animal cells and comprise a pair of centrioles surrounded by pericentriolar material (PCM). Centriole number must be carefully regulated, notably to ensure bipolar spindle formation and thus faithful chromosome segregation. In the germ line of most metazoan species, centrioles are maintained during spermatogenesis, but eliminated during oogenesis. Such differential behavior ensures that the appropriate number of centrioles is present in the newly fertilized zygote. Despite being a fundamental feature of sexual reproduction in metazoans, the mechanisms governing centriole elimination during oogenesis are poorly understood. Here, we investigate this question in C. elegans. Using antibodies directed against centriolar components and serial-section electron microscopy, we establish that centrioles are eliminated during the diplotene stage of the meiotic cell cycle. Moreover, we show that centriole elimination is delayed upon depletion of the helicase CGH-1. We also find that somatic cells make a minor contribution to this process, and demonstrate that the germ cell karyotype is important for timely centriole elimination. These findings set the stage for a mechanistic dissection of centriole elimination in a metazoan organism.
Collapse
Affiliation(s)
| | | | | | - Graham Knott
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, 1015 Switzerland
| | | | | | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, 1015 Switzerland
| |
Collapse
|
42
|
Brito DA, Gouveia SM, Bettencourt-Dias M. Deconstructing the centriole: structure and number control. Curr Opin Cell Biol 2012; 24:4-13. [PMID: 22321829 DOI: 10.1016/j.ceb.2012.01.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/02/2012] [Accepted: 01/07/2012] [Indexed: 11/18/2022]
Abstract
Centrioles are very small microtubule-based organelles essential for centrosome, cilia and flagella assembly, which are involved in a variety of cellular and developmental processes. Although the centriole was first described almost a century ago, the knowledge on its assembly mechanism remains poor. In the past decade, forefront functional studies have provided important data on the different players involved in centriole biogenesis. Centriole research has now started to profit from highly sensitive structural, imaging, and biochemical techniques that are unveiling how those players contribute to assemble such a small and complex structure. We will review those studies and discuss how this field will increasingly benefit from the newborn and exciting era of super resolution analyses.
Collapse
Affiliation(s)
- Daniela A Brito
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, P-2780-156 Oeiras, Portugal
| | | | | |
Collapse
|
43
|
Mahen R, Venkitaraman AR. Pattern formation in centrosome assembly. Curr Opin Cell Biol 2012; 24:14-23. [PMID: 22245706 DOI: 10.1016/j.ceb.2011.12.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 01/01/2023]
Abstract
A striking but poorly explained feature of cell division is the ability to assemble and maintain organelles not bounded by membranes, from freely diffusing components in the cytosol. This process is driven by information transfer across biological scales such that interactions at the molecular scale allow pattern formation at the scale of the organelle. One important example of such an organelle is the centrosome, which is the main microtubule organising centre in the cell. Centrosomes consist of two centrioles surrounded by a cloud of proteins termed the pericentriolar material (PCM). Profound structural and proteomic transitions occur in the centrosome during specific cell cycle stages, underlying events such as centrosome maturation during mitosis, in which the PCM increases in size and microtubule nucleating capacity. Here we use recent insights into the spatio-temporal behaviour of key regulators of centrosomal maturation, including Polo-like kinase 1, CDK5RAP2 and Aurora-A, to propose a model for the assembly and maintenance of the PCM through the mobility and local interactions of its constituent proteins. We argue that PCM structure emerges as a pattern from decentralised self-organisation through a reaction-diffusion mechanism, with or without an underlying template, rather than being assembled from a central structural template alone. Self-organisation of this kind may have broad implications for the maintenance of mitotic structures, which, like the centrosome, exist stably as supramolecular assemblies on the micron scale, based on molecular interactions at the nanometer scale.
Collapse
Affiliation(s)
- Robert Mahen
- The Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 OXZ, United Kingdom.
| | | |
Collapse
|
44
|
Brownlee CW, Klebba JE, Buster DW, Rogers GC. The Protein Phosphatase 2A regulatory subunit Twins stabilizes Plk4 to induce centriole amplification. ACTA ACUST UNITED AC 2011; 195:231-43. [PMID: 21987638 PMCID: PMC3198173 DOI: 10.1083/jcb.201107086] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The PP2A subunit Twins and the SV40 small T antigen, a functional mimic of Twins, counteract Plk4 autophosphorylation, leading to its stabilization and to subsequent centriole amplification. Centriole duplication is a tightly regulated process that must occur only once per cell cycle; otherwise, supernumerary centrioles can induce aneuploidy and tumorigenesis. Plk4 (Polo-like kinase 4) activity initiates centriole duplication and is regulated by ubiquitin-mediated proteolysis. Throughout interphase, Plk4 autophosphorylation triggers its degradation, thus preventing centriole amplification. However, Plk4 activity is required during mitosis for proper centriole duplication, but the mechanism stabilizing mitotic Plk4 is unknown. In this paper, we show that PP2A (Protein Phosphatase 2ATwins) counteracts Plk4 autophosphorylation, thus stabilizing Plk4 and promoting centriole duplication. Like Plk4, the protein level of PP2A’s regulatory subunit, Twins (Tws), peaks during mitosis and is required for centriole duplication. However, untimely Tws expression stabilizes Plk4 inappropriately, inducing centriole amplification. Paradoxically, expression of tumor-promoting simian virus 40 small tumor antigen (ST), a reported PP2A inhibitor, promotes centrosome amplification by an unknown mechanism. We demonstrate that ST actually mimics Tws function in stabilizing Plk4 and inducing centriole amplification.
Collapse
Affiliation(s)
- Christopher W Brownlee
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
45
|
The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 2011; 13:1154-60. [PMID: 21968988 DOI: 10.1038/ncb2345] [Citation(s) in RCA: 451] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Centrosomes are microtubule-organizing centres of animal cells. They influence the morphology of the microtubule cytoskeleton, function as the base for the primary cilium and serve as a nexus for important signalling pathways. At the core of a typical centrosome are two cylindrical microtubule-based structures termed centrioles, which recruit a matrix of associated pericentriolar material. Cells begin the cell cycle with exactly one centrosome, and the duplication of centrioles is constrained such that it occurs only once per cell cycle and at a specific site in the cell. As a result of this duplication mechanism, the two centrioles differ in age and maturity, and thus have different functions; for example, the older of the two centrioles can initiate the formation of a ciliary axoneme. We discuss spatial aspects of the centrosome duplication cycle, the mechanism of centriole assembly and the possible consequences of the inherent asymmetry of centrioles and centrosomes.
Collapse
|
46
|
|
47
|
Abstract
In this issue of Developmental Cell, Kitagawa et al. (2011a) and Song et al. (2011) show that the protein phosphatase PP2A regulates SAS-5 to control centriole duplication. Two paradigms are presented to explain how PP2A regulates SAS-5.
Collapse
Affiliation(s)
- Tim Megraw
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA.
| |
Collapse
|