1
|
Liu F, Wu Y, Zhang B, Yang S, Shang K, Li J, Zhang P, Deng W, Chen L, Zheng L, Gai X, Zhang H. Oncogenic β-catenin-driven liver cancer is susceptible to methotrexate-mediated disruption of nucleotide synthesis. Chin Med J (Engl) 2024; 137:181-189. [PMID: 37612257 PMCID: PMC10798734 DOI: 10.1097/cm9.0000000000002816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Liver cancer is largely resistant to chemotherapy. This study aimed to identify the effective chemotherapeutics for β-catenin-activated liver cancer which is caused by gain-of-function mutation of catenin beta 1 ( CTNNB1 ), the most frequently altered proto-oncogene in hepatic neoplasms. METHODS Constitutive β-catenin-activated mouse embryonic fibroblasts (MEFs) were established by deleting exon 3 ( β-catenin Δ(ex3)/+ ), the most common mutation site in CTNNB1 gene. A screening of 12 widely used chemotherapy drugs was conducted for the ones that selectively inhibited β-catenin Δ(ex3)/+ but not for wild-type MEFs. Untargeted metabolomics was carried out to examine the alterations of metabolites in nucleotide synthesis. The efficacy and selectivity of methotrexate (MTX) on β-catenin-activated human liver cancer cells were determined in vitro . Immuno-deficient nude mice subcutaneously inoculated with β-catenin wild-type or mutant liver cancer cells and hepatitis B virus ( HBV ); β-catenin lox(ex3)/+ mice were used, respectively, to evaluate the efficacy of MTX in the treatment of β-catenin mutant liver cancer. RESULTS MTX was identified and validated as a preferential agent against the proliferation and tumor formation of β-catenin-activated cells. Boosted nucleotide synthesis was the major metabolic aberration in β-catenin-active cells, and this alteration was also the target of MTX. Moreover, MTX abrogated hepatocarcinogenesis of HBV ; β-catenin lox(ex3)/+ mice, which stimulated concurrent Ctnnb1- activated mutation and HBV infection in liver cancer. CONCLUSION MTX is a promising chemotherapeutic agent for β-catenin hyperactive liver cancer. Since repurposing MTX has the advantages of lower risk, shorter timelines, and less investment in drug discovery and development, a clinical trial is warranted to test its efficacy in the treatment of β-catenin mutant liver cancer.
Collapse
Affiliation(s)
- Fangming Liu
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuting Wu
- Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Baohui Zhang
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuhui Yang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Kezhuo Shang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jie Li
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Pengju Zhang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Weiwei Deng
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Linlin Chen
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Liang Zheng
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| | - Xiaochen Gai
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Hongbing Zhang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
2
|
Wu Y, Yang S, Han L, Shang K, Zhang B, Gai X, Deng W, Liu F, Zhang H. β-catenin-IRP2-primed iron availability to mitochondrial metabolism is druggable for active β-catenin-mediated cancer. J Transl Med 2023; 21:50. [PMID: 36703130 PMCID: PMC9879242 DOI: 10.1186/s12967-023-03914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Although β-catenin signaling cascade is frequently altered in human cancers, targeting this pathway has not been approved for cancer treatment. METHODS High-throughput screening of an FDA-approved drug library was conducted to identify therapeutics that selectively inhibited the cells with activated β-catenin. Efficacy of iron chelator and mitochondrial inhibitor was evaluated for suppression of cell proliferation and tumorigenesis. Cellular chelatable iron levels were measured to gain insight into the potential vulnerability of β-catenin-activated cells to iron deprivation. Extracellular flux analysis of mitochondrial function was conducted to evaluate the downstream events of iron deprivation. Chromatin immunoprecipitation, real-time quantitative PCR and immunoblotting were performed to identify β-catenin targets. Depletion of iron-regulatory protein 2 (IRP2), a key regulator of cellular iron homeostasis, was carried out to elucidate its significance in β-catenin-activated cells. Online databases were analyzed for correlation between β-catenin activity and IRP2-TfR1 axis in human cancers. RESULTS Iron chelators were identified as selective inhibitors against β-catenin-activated cells. Deferoxamine mesylate, an iron chelator, preferentially repressed β-catenin-activated cell proliferation and tumor formation in mice. Mechanically, β-catenin stimulated the transcription of IRP2 to increase labile iron level. Depletion of IRP2-sequered iron impaired β-catenin-invigorated mitochondrial function. Moreover, mitochondrial inhibitor S-Gboxin selectively reduced β-catenin-associated cell viability and tumor formation. CONCLUSIONS β-catenin/IRP2/iron stimulation of mitochondrial energetics is targetable vulnerability of β-catenin-potentiated cancer.
Collapse
Affiliation(s)
- Yuting Wu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Shuhui Yang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Luyang Han
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Kezhuo Shang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Baohui Zhang
- grid.412449.e0000 0000 9678 1884Department of Physiology, School of Life Science, China Medical University, Shenyang, China
| | - Xiaochen Gai
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Weiwei Deng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Fangming Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Hongbing Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| |
Collapse
|
3
|
Liu J, Ren G, Li K, Liu Z, Wang Y, Chen T, Mu W, Yang X, Li X, Shi A, Zhao W, Xu B, Chang J, Guo S, Pan C, Zhou T, Zhang Z, Xu Y. The Smad4-MYO18A-PP1A complex regulates β-catenin phosphorylation and pemigatinib resistance by inhibiting PAK1 in cholangiocarcinoma. Cell Death Differ 2022; 29:818-831. [PMID: 34799729 PMCID: PMC8990017 DOI: 10.1038/s41418-021-00897-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Cholangiocarcinoma (CCA), consisting of three subtypes-intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA), is a highly aggressive cancer arising from the bile duct and has an extremely poor prognosis. Pemigatinib is the only FDA-approved targeted drug for CCA, and the CCA treatment options are substantially insufficient considering its poor prognosis and increasing morbidity. Here, we performed next-generation sequencing (NGS) of 15 pCCAs and 16 dCCAs and detected the expression of SMAD4, a frequently mutated gene, in 261 CCAs. By univariate and multivariate analyses, we identified Smad4 as a favorable prognostic biomarker in iCCA and pCCA. With in vitro and in vivo experiments, we demonstrated that Smad4 suppressed CCA proliferation, migration and invasion by inhibiting β-catenin-S675 phosphorylation and intranuclear translocation. We applied LC-MS/MS and multiple biochemical techniques and identified PP1A as the phosphatase in Smad4-mediated dephosphorylation of PAK1-T423, which is responsible for β-catenin-S675 phosphorylation. Moreover, we demonstrated that MYO18A is the PP1-interacting protein of PP1A for substrate recognition in CCA. MYO18A interacts with PP1A via its RVFFR motif and interacts with Smad4 via CC domain. Patients with coexpression of MYO18A and Smad4 have a more favorable prognosis than other patients. Smad4 enhances Pemigatinib efficiency, and Smad4 knockdown results in Pemigatinib resistance. In conclusion, coexpression of Smad4 and MYO18A is a favorable prognostic indicator for iCCA and pCCA. The Smad4-MYO18A-PP1A complex dephosphorylates PAK1-T423 and thus inhibits β-catenin-S675 phosphorylation and its intranuclear localization. Smad4 suppresses CCA proliferation, migration, invasion, and sensitivity to Pemigatinib by governing the phosphorylation and intracellular localization of β-catenin.
Collapse
Affiliation(s)
- Jialiang Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangli Ren
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Wang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianli Chen
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wentao Mu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoqing Yang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Medicine and Health Key Laboratory of Clinical Pathology, Jinan, China
- Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, China
| | - Xingyong Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bowen Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianhua Chang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Sen Guo
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chang Pan
- Department of Emergency, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zhou
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Fan W, Yuan W, Ding X, Zhu L. β-catenin has potential effects on the expression, subcellular localization, and release of high mobility group box 1 during bovine herpesvirus 1 productive infection in MDBK cell culture. Virulence 2021; 12:1345-1361. [PMID: 34008469 PMCID: PMC8143255 DOI: 10.1080/21505594.2021.1926409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
High mobility group box 1 (HMGB1), a ubiquitous DNA-binding protein, can be released into extracellular space and function as a strong proinflammatory cytokine, which plays critical roles in the pathogenesis of various inflammatory diseases. Here, we showed that BoHV-1 productive infection in MDBK cells at later stage significantly increases HMGB1 mRNA expression and the protein release, but decreases the steady-state protein levels. Virus infection increases accumulation of HMGB1 protein in both nucleus and mitochondria, and relocalizes nuclear HMGB1 to assemble in highlighted foci via a confocal microscope assay. Interestingly, β-catenin-specific inhibitor iCRT14 is able to increase HMGB1 transcription and the protein release, and subcellular translocation in virus-infected cells. HMGB1-specific inhibitor, glycyrrhizin, could differentially affect virus gene transcription such as, the viral regulatory protein bICP0, bICP4 and bICP22, as well as glycoprotein gD. In summary, our data provides a novel mechanism that β-catenin signaling may regulate inflammatory response via affecting HMGB1 signaling.
Collapse
Affiliation(s)
- Wenqing Fan
- College of Veterinary Medicine, Yangzhou University and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou China.,College of Life Sciences, Hebei University, Baoding China
| | - Weifeng Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing China
| | - Xiuyan Ding
- College of Veterinary Medicine, Yangzhou University and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou China.,College of Life Sciences, Hebei University, Baoding China
| | - Liqian Zhu
- College of Veterinary Medicine, Yangzhou University and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou China.,College of Life Sciences, Hebei University, Baoding China
| |
Collapse
|
5
|
Schliermann A, Nickel J. Unraveling the Connection between Fibroblast Growth Factor and Bone Morphogenetic Protein Signaling. Int J Mol Sci 2018; 19:ijms19103220. [PMID: 30340367 PMCID: PMC6214098 DOI: 10.3390/ijms19103220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/07/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
Ontogeny of higher organisms as well the regulation of tissue homeostasis in adult individuals requires a fine-balanced interplay of regulating factors that individually trigger the fate of particular cells to either stay undifferentiated or to differentiate towards distinct tissue specific lineages. In some cases, these factors act synergistically to promote certain cellular responses, whereas in other tissues the same factors antagonize each other. However, the molecular basis of this obvious dual signaling activity is still only poorly understood. Bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs) are two major signal protein families that have a lot in common: They are both highly preserved between different species, involved in essential cellular functions, and their ligands vastly outnumber their receptors, making extensive signal regulation necessary. In this review we discuss where and how BMP and FGF signaling cross paths. The compiled data reflect that both factors synchronously act in many tissues, and that antagonism and synergism both exist in a context-dependent manner. Therefore, by challenging a generalization of the connection between these two pathways a new chapter in BMP FGF signaling research will be introduced.
Collapse
Affiliation(s)
- Anna Schliermann
- Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg, Röntgenring 11, 97222 Würzburg, Germany.
| | - Joachim Nickel
- Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg, Röntgenring 11, 97222 Würzburg, Germany.
- Fraunhofer Institut für Silicatforschung, Translationszentrum TLZ-RT, Röntgenring 11, 97222 Würzburg, Germany.
| |
Collapse
|
6
|
Sun Z, da Fontoura CSG, Moreno M, Holton NE, Sweat M, Sweat Y, Lee MK, Arbon J, Bidlack FB, Thedens DR, Nopoulos P, Cao H, Eliason S, Weinberg SM, Martin JF, Moreno-Uribe L, Amendt BA. FoxO6 regulates Hippo signaling and growth of the craniofacial complex. PLoS Genet 2018; 14:e1007675. [PMID: 30286078 PMCID: PMC6197693 DOI: 10.1371/journal.pgen.1007675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/22/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
The mechanisms that regulate post-natal growth of the craniofacial complex and that ultimately determine the size and shape of our faces are not well understood. Hippo signaling is a general mechanism to control tissue growth and organ size, and although it is known that Hippo signaling functions in neural crest specification and patterning during embryogenesis and before birth, its specific role in postnatal craniofacial growth remains elusive. We have identified the transcription factor FoxO6 as an activator of Hippo signaling regulating neonatal growth of the face. During late stages of mouse development, FoxO6 is expressed specifically in craniofacial tissues and FoxO6-/- mice undergo expansion of the face, frontal cortex, olfactory component and skull. Enlargement of the mandible and maxilla and lengthening of the incisors in FoxO6-/- mice are associated with increases in cell proliferation. In vitro and in vivo studies demonstrated that FoxO6 activates Lats1 expression, thereby increasing Yap phosphorylation and activation of Hippo signaling. FoxO6-/- mice have significantly reduced Hippo Signaling caused by a decrease in Lats1 expression and decreases in Shh and Runx2 expression, suggesting that Shh and Runx2 are also linked to Hippo signaling. In vitro, FoxO6 activates Hippo reporter constructs and regulates cell proliferation. Furthermore PITX2, a regulator of Hippo signaling is associated with Axenfeld-Rieger Syndrome causing a flattened midface and we show that PITX2 activates FoxO6 expression. Craniofacial specific expression of FoxO6 postnatally regulates Hippo signaling and cell proliferation. Together, these results identify a FoxO6-Hippo regulatory pathway that controls skull growth, odontogenesis and face morphology.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Clarissa S. G. da Fontoura
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Myriam Moreno
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Nathan E. Holton
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Mason Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Yan Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Myoung Keun Lee
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh PA, United States of America
| | - Jed Arbon
- Private practice, Cary, North Carolina United States of America
| | | | - Daniel R. Thedens
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Peggy Nopoulos
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Huojun Cao
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Steven Eliason
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Seth M. Weinberg
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh PA, United States of America
| | - James F. Martin
- Department of Physiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Lina Moreno-Uribe
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
7
|
Youngblood JL, Coleman TF, Davis SW. Regulation of Pituitary Progenitor Differentiation by β-Catenin. Endocrinology 2018; 159:3287-3305. [PMID: 30085028 DOI: 10.1210/en.2018-00563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
The pituitary gland is a critical organ that is necessary for many physiological processes, including growth, reproduction, and stress response. The secretion of pituitary hormones from specific cell types regulates these essential processes. Pituitary hormone cell types arise from a common pool of pituitary progenitors, and mutations that disrupt the formation and differentiation of pituitary progenitors result in hypopituitarism. Canonical WNT signaling through CTNNB1 (β-catenin) is known to regulate the formation of the POU1F1 lineage of pituitary cell types. When β-catenin is deleted during the initial formation of the pituitary progenitors, Pou1f1 is not transcribed, which leads to the loss of the POU1F1 lineage. However, when β-catenin is deleted after lineage specification, there is no observable effect. Similarly, the generation of a β-catenin gain-of-function allele in early pituitary progenitors or stem cells results in the formation of craniopharyngiomas, whereas stimulating β-catenin in differentiated cell types has no effect. PROP1 is a pituitary-specific transcription factor, and the peak of PROP1 expression coincides with a critical time point in pituitary organogenesis-that is, after pituitary progenitor formation but before lineage specification. We used a Prop1-cre to conduct both loss- and gain-of-function studies on β-catenin during this critical time point. Our results demonstrate that pituitary progenitors remain sensitive to both loss and gain of β-catenin at this time point, and that either manipulation results in hypopituitarism.
Collapse
Affiliation(s)
- Julie L Youngblood
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Tanner F Coleman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
8
|
Osmundsen AM, Keisler JL, Taketo MM, Davis SW. Canonical WNT Signaling Regulates the Pituitary Organizer and Pituitary Gland Formation. Endocrinology 2017; 158:3339-3353. [PMID: 28938441 DOI: 10.1210/en.2017-00581] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/11/2017] [Indexed: 11/19/2022]
Abstract
The pituitary organizer is a domain within the ventral diencephalon that expresses Bmp4, Fgf8, and Fgf10, which induce the formation of the pituitary precursor, Rathke's pouch, from the oral ectoderm. The WNT signaling pathway regulates this pituitary organizer such that loss of Wnt5a leads to an expansion of the pituitary organizer and an enlargement of Rathke's pouch. WNT signaling is classified into canonical signaling, which is mediated by β-CATENIN, and noncanonical signaling, which operates independently of β-CATENIN. WNT5A is typically classified as a noncanonical WNT; however, other WNT family members are expressed in the ventral diencephalon and nuclear localized β-CATENIN is observed in the ventral diencephalon. Therefore, we sought to determine whether canonical WNT signaling is necessary for regulation of pituitary organizer function. Using a conditional loss-of-function approach, we deleted β-catenin within the mouse ventral diencephalon. Mutant embryos have a smaller Rathke's pouch, resulting from a reduced pituitary organizer, especially Fgf8. This result suggests that canonical WNT signaling promotes pituitary organizer function, instead of inhibiting it. To test this hypothesis, we stimulated canonical WNT signaling in the ventral diencephalon using an inducible gain-of-function allele of β-catenin and found that stimulating canonical WNT signaling expands the domain of Fgf8 and results in a dysmorphic Rathke's pouch. These results demonstrate that canonical WNT signaling in the ventral diencephalon is necessary for proper expression of pituitary organizer genes and suggests that a balance of both canonical and noncanonical WNT signaling is necessary to ensure proper formation of Rathke's pouch.
Collapse
Affiliation(s)
- Allison M Osmundsen
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Jessica L Keisler
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo, Kyoto 606-8501, Japan
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| |
Collapse
|
9
|
Camper SA, Daly AZ, Stallings CE, Ellsworth BS. Hypothalamic β-Catenin Is Essential for FGF8-Mediated Anterior Pituitary Growth: Links to Human Disease. Endocrinology 2017; 158:3322-3324. [PMID: 28977614 PMCID: PMC5659706 DOI: 10.1210/en.2017-00736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Sally A. Camper
- Department of Human Genetics, University of Michigan, Ann
Arbor, Michigan 48109-5618
| | - Alexandre Z. Daly
- Department of Human Genetics, University of Michigan, Ann
Arbor, Michigan 48109-5618
| | - Caitlin E. Stallings
- Department of Physiology, Southern Illinois University,
Carbondale, Illinois 62901-6523
| | - Buffy S. Ellsworth
- Department of Physiology, Southern Illinois University,
Carbondale, Illinois 62901-6523
| |
Collapse
|
10
|
FGF-Dependent, Context-Driven Role for FRS Adapters in the Early Telencephalon. J Neurosci 2017; 37:5690-5698. [PMID: 28483978 DOI: 10.1523/jneurosci.2931-16.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 01/20/2023] Open
Abstract
FGF signaling, an important component of intercellular communication, is required in many tissues throughout development to promote diverse cellular processes. Whether FGF receptors (FGFRs) accomplish such varied tasks in part by activating different intracellular transducers in different contexts remains unclear. Here, we used the developing mouse telencephalon as an example to study the role of the FRS adapters FRS2 and FRS3 in mediating the functions of FGFRs. Using tissue-specific and germline mutants, we examined the requirement of Frs genes in two FGFR-dependent processes. We found that Frs2 and Frs3 are together required for the differentiation of a subset of medial ganglionic eminence (MGE)-derived neurons, but are dispensable for the survival of early telencephalic precursor cells, in which any one of three FGFRs (FGFR1, FGFR2, or FGFR3) is sufficient for survival. Although FRS adapters are dispensable for ERK-1/2 activation, they are required for AKT activation within the subventricular zone of the developing MGE. Using an FRS2,3-binding site mutant of Fgfr1, we established that FRS adapters are necessary for mediating most or all FGFR1 signaling, not only in MGE differentiation, but also in cell survival, implying that other adapters mediate at least in part the signaling from FGFR2 and FGFR3. Our study provides an example of a contextual role for an intracellular transducer and contributes to our understanding of how FGF signaling plays diverse developmental roles.SIGNIFICANCE STATEMENT FGFs promote a range of developmental processes in many developing tissues and at multiple developmental stages. The mechanisms underlying this multifunctionality remain poorly defined in vivo Using telencephalon development as an example, we show here that FRS adapters exhibit some selectivity in their requirement for mediating FGF receptor (FGFR) signaling and activating downstream mediators that depend on the developmental process, with a requirement in neuronal differentiation but not cell survival. Differential engagement of FRS and non-FRS intracellular adapters downstream of FGFRs could therefore in principle explain how FGFs play several distinct roles in other developing tissues and developmental stages.
Collapse
|
11
|
β-catenin is required in the neural crest and mesencephalon for pituitary gland organogenesis. BMC DEVELOPMENTAL BIOLOGY 2016; 16:16. [PMID: 27184910 PMCID: PMC4868042 DOI: 10.1186/s12861-016-0118-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/10/2016] [Indexed: 12/18/2022]
Abstract
Background The pituitary gland is a highly vascularized tissue that requires coordinated interactions between the neural ectoderm, oral ectoderm, and head mesenchyme during development for proper physiological function. The interactions between the neural ectoderm and oral ectoderm, especially the role of the pituitary organizer in shaping the pituitary precursor, Rathke’s pouch, are well described. However, less is known about the role of head mesenchyme in pituitary organogenesis. The head mesenchyme is derived from definitive mesoderm and neural crest, but the relative contributions of these tissues to the mesenchyme adjacent to the pituitary are not known. Results We carried out lineage tracing experiments using two neural crest-specific mouse cre lines, Wnt1-cre and P0-cre, and determined that the head mesenchyme rostral to the pituitary gland is neural crest derived. To assess the role of the neural crest in pituitary development we ablated it, using Wnt1-cre to delete Ctnnb1 (β-catenin), which is required for neural crest development. The Wnt1-cre is active in the neural ectoderm, principally in the mesencephalon, but also in the posterior diencephalon. Loss of β-catenin in this domain causes a rostral shift in the ventral diencephalon, including the pituitary organizer, resulting in pituitary dysmorphology. The neural crest deficient embryos have abnormally dilated pituitary vasculature due to a loss of neural crest derived pericytes. Conclusions β-catenin in the Wnt1 expression domain, including the neural crest, plays a critical role in regulation of pituitary gland growth, development, and vascularization. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0118-9) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Karpinski BA, Bryan CA, Paronett EM, Baker JL, Fernandez A, Horvath A, Maynard TM, Moody SA, LaMantia AS. A cellular and molecular mosaic establishes growth and differentiation states for cranial sensory neurons. Dev Biol 2016; 415:228-241. [PMID: 26988119 DOI: 10.1016/j.ydbio.2016.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/02/2016] [Accepted: 03/13/2016] [Indexed: 02/06/2023]
Abstract
We compared apparent origins, cellular diversity and regulation of initial axon growth for differentiating cranial sensory neurons. We assessed the molecular and cellular composition of the developing olfactory and otic placodes, and cranial sensory ganglia to evaluate contributions of ectodermal placode versus neural crest at each site. Special sensory neuron populations-the olfactory and otic placodes, as well as those in vestibulo-acoustic ganglion- are entirely populated with cells expressing cranial placode-associated, rather than neural crest-associated markers. The remaining cranial sensory ganglia are a mosaic of cells that express placode-associated as well as neural crest-associated markers. We found two distinct populations of neural crest in the cranial ganglia: the first, as expected, is labeled by Wnt1:Cre mediated recombination. The second is not labeled by Wnt1:Cre recombination, and expresses both Sox10 and FoxD3. These populations-Wnt1:Cre recombined, and Sox10/Foxd3-expressing- are proliferatively distinct from one another. Together, the two neural crest-associated populations are substantially more proliferative than their placode-associated counterparts. Nevertheless, the apparently placode- and neural crest-associated populations are similarly sensitive to altered signaling that compromises cranial morphogenesis and differentiation. Acute disruption of either Fibroblast growth factor (Fgf) or Retinoic acid (RA) signaling alters axon growth and cell death, but does not preferentially target any of the three distinct populations. Apparently, mosaic derivation and diversity of precursors and early differentiating neurons, modulated uniformly by local signals, supports early cranial sensory neuron differentiation and growth.
Collapse
Affiliation(s)
- Beverly A Karpinski
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Corey A Bryan
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Elizabeth M Paronett
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Jennifer L Baker
- Center for the Advanced Study of Human Paleobiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Alejandra Fernandez
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Anelia Horvath
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Thomas M Maynard
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Anthony-S LaMantia
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| |
Collapse
|
13
|
Edwards N, Farookhi R, Clarke HJ. Identification of a β-galactosidase transgene that provides a live-cell marker of transcriptional activity in growing oocytes and embryos. Mol Hum Reprod 2015; 21:583-93. [PMID: 25882542 PMCID: PMC4487448 DOI: 10.1093/molehr/gav020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/27/2015] [Accepted: 04/09/2015] [Indexed: 01/14/2023] Open
Abstract
Identifying the events and molecular mechanisms that regulate oocyte growth has emerged as a key objective of research in human fertility, fuelled by evidence from human and animal studies indicating that disease and environmental factors can act on oocytes to affect the health of the resulting individual and by efforts to grow oocytes in vitro to enable fertility preservation of cancer survivors. Techniques that monitor the development of growing oocytes would be valuable tools to assess the progression of growth under different conditions. Most methods used to assess oocytes grown in vitro are indirect, however, relying on characteristics of the somatic compartment of the follicle, or compromise the oocyte, preventing its subsequent culture or fertilization. We investigated the utility of T-cell factor/lymphoid enhancer-binding factor (TCF/Lef)-LacZ transgene expression as a predictor of global transcriptional activity in oocytes and early embryos. Using a fluorescent β-galactosidase substrate combined with live-cell imaging, we show that TCF/Lef-LacZ transgene expression is detectable in growing oocytes, lost in fully grown oocytes and resumes in late two-cell embryos. Transgene expression is likely regulated by a Wnt-independent mechanism. Using chromatin analysis, LacZ expression and methods to monitor and inhibit transcription, we show that TCF/Lef-LacZ expression mirrors transcriptional activity in oocytes and preimplantation embryos. Oocytes and preimplantation embryos that undergo live-cell imaging for TCF/Lef-LacZ expression are able to continue development in vitro. TCF/Lef-LacZ reporter expression in living oocytes and early embryos is thus a sensitive and faithful marker of transcriptional activity that can be used to monitor and optimize conditions for oocyte growth.
Collapse
Affiliation(s)
- Nicole Edwards
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada Department of Physiology, McGill University, Montreal, QC, Canada Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Riaz Farookhi
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada Department of Physiology, McGill University, Montreal, QC, Canada Research Institute of the McGill University Health Centre, Montreal, QC, Canada Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada Research Institute of the McGill University Health Centre, Montreal, QC, Canada Department of Experimental Medicine, McGill University, Montreal, QC, Canada Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Cajal M, Creuzet SE, Papanayotou C, Sabéran-Djoneidi D, Chuva de Sousa Lopes SM, Zwijsen A, Collignon J, Camus A. A conserved role for non-neural ectoderm cells in early neural development. Development 2014; 141:4127-38. [DOI: 10.1242/dev.107425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During the early steps of head development, ectodermal patterning leads to the emergence of distinct non-neural and neural progenitor cells. The induction of the preplacodal ectoderm and the neural crest depends on well-studied signalling interactions between the non-neural ectoderm fated to become epidermis and the prospective neural plate. By contrast, the involvement of the non-neural ectoderm in the morphogenetic events leading to the development and patterning of the central nervous system has been studied less extensively. Here, we show that the removal of the rostral non-neural ectoderm abutting the prospective neural plate at late gastrulation stage leads, in mouse and chick embryos, to morphological defects in forebrain and craniofacial tissues. In particular, this ablation compromises the development of the telencephalon without affecting that of the diencephalon. Further investigations of ablated mouse embryos established that signalling centres crucial for forebrain regionalization, namely the axial mesendoderm and the anterior neural ridge, form normally. Moreover, changes in cell death or cell proliferation could not explain the specific loss of telencephalic tissue. Finally, we provide evidence that the removal of rostral tissues triggers misregulation of the BMP, WNT and FGF signalling pathways that may affect telencephalon development. This study opens new perspectives on the role of the neural/non-neural interface and reveals its functional relevance across higher vertebrates.
Collapse
Affiliation(s)
- Marieke Cajal
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, Paris F-75013, France
| | - Sophie E. Creuzet
- Institut de Neurobiologie, Laboratoire Neurobiologie et Développement, CNRS-UPR3294, avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Costis Papanayotou
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, Paris F-75013, France
| | - Délara Sabéran-Djoneidi
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, Paris F-75013, France
| | | | - An Zwijsen
- Laboratory of Developmental Signaling, VIB Center for the Biology of Disease, and KU Leuven, Department for Human Genetics, Leuven 3000, Belgium
| | - Jérôme Collignon
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, Paris F-75013, France
| | - Anne Camus
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, Paris F-75013, France
| |
Collapse
|
15
|
Nomura T, Murakami Y, Gotoh H, Ono K. Reconstruction of ancestral brains: exploring the evolutionary process of encephalization in amniotes. Neurosci Res 2014; 86:25-36. [PMID: 24671134 DOI: 10.1016/j.neures.2014.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 11/24/2022]
Abstract
There is huge divergence in the size and complexity of vertebrate brains. Notably, mammals and birds have bigger brains than other vertebrates, largely because these animal groups established larger dorsal telencephali. Fossil evidence suggests that this anatomical trait could have evolved independently. However, recent comparative developmental analyses demonstrate surprising commonalities in neuronal subtypes among species, although this interpretation is highly controversial. In this review, we introduce intriguing evidence regarding brain evolution collected from recent studies in paleontology and developmental biology, and we discuss possible evolutionary changes in the cortical developmental programs that led to the encephalization and structural complexity of amniote brains. New research concepts and approaches will shed light on the origin and evolutionary processes of amniote brains, particularly the mammalian cerebral cortex.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Nishitakatsukasa-cho 13, Taishogun, Kita-ku, Kyoto 603-8334, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Nishitakatsukasa-cho 13, Taishogun, Kita-ku, Kyoto 603-8334, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Nishitakatsukasa-cho 13, Taishogun, Kita-ku, Kyoto 603-8334, Japan
| |
Collapse
|
16
|
Neural crest-derived mesenchymal cells require Wnt signaling for their development and drive invagination of the telencephalic midline. PLoS One 2014; 9:e86025. [PMID: 24516524 PMCID: PMC3916303 DOI: 10.1371/journal.pone.0086025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/08/2013] [Indexed: 11/19/2022] Open
Abstract
Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs) leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis.
Collapse
|
17
|
SUN YUANJIE, KIM NAMHO, JI LITING, KIM SEUNGHYUK, LEE JONGHO, RHEE HAEJIN. Lysophosphatidic acid activates β-catenin/T cell factor signaling, which contributes to the suppression of apoptosis in H19-7 cells. Mol Med Rep 2013; 8:1729-33. [DOI: 10.3892/mmr.2013.1743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/03/2013] [Indexed: 11/06/2022] Open
|
18
|
Andoniadou CL, Martinez-Barbera JP. Developmental mechanisms directing early anterior forebrain specification in vertebrates. Cell Mol Life Sci 2013; 70:3739-52. [PMID: 23397132 PMCID: PMC3781296 DOI: 10.1007/s00018-013-1269-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/14/2022]
Abstract
Research from the last 15 years has provided a working model for how the anterior forebrain is induced and specified during the early stages of embryogenesis. This model relies on three basic processes: (1) induction of the neural plate from naive ectoderm requires the inhibition of BMP/TGFβ signaling; (2) induced neural tissue initially acquires an anterior identity (i.e., anterior forebrain); (3) maintenance and expansion of the anterior forebrain depends on the antagonism of posteriorizing signals that would otherwise transform this tissue into posterior neural fates. In this review, we present a historical perspective examining some of the significant experiments that have helped to delineate this molecular model. In addition, we discuss the function of the relevant tissues that act prior to and during gastrulation to ensure proper anterior forebrain formation. Finally, we elaborate data, mainly obtained from the analyses of mouse mutants, supporting a role for transcriptional repressors in the regulation of cell competence within the anterior forebrain. The aim of this review is to provide the reader with a general overview of the signals as well as the signaling centers that control the development of the anterior neural plate.
Collapse
Affiliation(s)
- Cynthia Lilian Andoniadou
- Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | | |
Collapse
|
19
|
Hébert JM. Only scratching the cell surface: extracellular signals in cerebrum development. Curr Opin Genet Dev 2013; 23:470-4. [PMID: 23669550 DOI: 10.1016/j.gde.2013.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/03/2013] [Indexed: 01/01/2023]
Abstract
Numerous roles have been identified for extracellular signals such as Fibroblast Growth Factors (FGFs), Transforming Growth Factor-βs (TGFβs), Wingless-Int proteins (WNTs), and Sonic Hedgehog (SHH) in assigning fates to cells during development of the cerebrum. However, several fundamental questions remain largely unexplored. First, how does the same extracellular signal instruct precursor cells in different locations or at different stages to adopt distinct fates? And second, how does a precursor cell integrate multiple signals to adopt a specific fate? Answers to these questions require knowing the mechanisms that underlie each cell type's competence to respond to certain extracellular signals. This brief review provides illustrative examples of potential mechanisms that begin to bridge the gap between cell surface and cell fate during cerebrum development.
Collapse
Affiliation(s)
- Jean M Hébert
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
20
|
Basson MA. Signaling in cell differentiation and morphogenesis. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008151. [PMID: 22570373 DOI: 10.1101/cshperspect.a008151] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
All the information to make a complete, fully functional living organism is encoded within the genome of the fertilized oocyte. How is this genetic code translated into the vast array of cellular behaviors that unfold during the course of embryonic development, as the zygote slowly morphs into a new organism? Studies over the last 30 years or so have shown that many of these cellular processes are driven by secreted or membrane-bound signaling molecules. Elucidating how the genetic code is translated into instructions or signals during embryogenesis, how signals are generated at the correct time and place and at the appropriate level, and finally, how these instructions are interpreted and put into action, are some of the central questions of developmental biology. Our understanding of the causes of congenital malformations and disease has improved substantially with the rapid advances in our knowledge of signaling pathways and their regulation during development. In this article, I review some of the signaling pathways that play essential roles during embryonic development. These examples show some of the mechanisms used by cells to receive and interpret developmental signals. I also discuss how signaling pathways downstream from these signals are regulated and how they induce specific cellular responses that ultimately affect cell fate and morphogenesis.
Collapse
Affiliation(s)
- M Albert Basson
- Department of Craniofacial Development, King's College London, United Kingdom.
| |
Collapse
|
21
|
Jin YR, Han XH, Taketo MM, Yoon JK. Wnt9b-dependent FGF signaling is crucial for outgrowth of the nasal and maxillary processes during upper jaw and lip development. Development 2012; 139:1821-30. [PMID: 22461561 DOI: 10.1242/dev.075796] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Outgrowth and fusion of the lateral and medial nasal processes and of the maxillary process of the first branchial arch are integral to lip and primary palate development. Wnt9b mutations are associated with cleft lip and cleft palate in mice; however, the cause of these defects remains unknown. Here, we report that Wnt9b(-/-) mice show significantly retarded outgrowth of the nasal and maxillary processes due to reduced proliferation of mesenchymal cells, which subsequently results in a failure of physical contact between the facial processes that leads to cleft lip and cleft palate. These cellular defects in Wnt9b(-/-) mice are mainly caused by reduced FGF family gene expression and FGF signaling activity resulting from compromised canonical WNT/β-catenin signaling. Our study has identified a previously unknown regulatory link between WNT9B and FGF signaling during lip and upper jaw development.
Collapse
Affiliation(s)
- Yong-Ri Jin
- COBRE in Stem Cell and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA
| | | | | | | |
Collapse
|
22
|
Hébert JM. FGFs: Neurodevelopment's Jack-of-all-Trades - How Do They Do it? Front Neurosci 2011; 5:133. [PMID: 22164131 PMCID: PMC3230033 DOI: 10.3389/fnins.2011.00133] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 11/18/2011] [Indexed: 12/02/2022] Open
Abstract
From neurulation to postnatal processes, the requirements for FGF signaling in many aspects of neural precursor cell biology have been well documented. However, identifying a requirement for FGFs in a particular neurogenic process provides only an initial and superficial understanding of what FGF signaling is doing. How FGFs specify cell types in one instance, yet promote cell survival, proliferation, migration, or differentiation in other instances remains largely unknown and is key to understanding how they function. This review describes what we have learned primarily from in vivo vertebrate studies about the roles of FGF signaling in neurulation, anterior–posterior patterning of the neural plate, brain patterning from local signaling centers, and finally neocortex development as an example of continued roles for FGFs within the same brain area. The potential explanations for the diverse functions of FGFs through differential interactions with cell intrinsic and extrinsic factors is then discussed with an emphasis on how little we know about the modulation of FGF signaling in vivo. A clearer picture of the mechanisms involved is nevertheless essential to understand the behavior of neural precursor cells and to potentially guide their fates for therapeutic purposes.
Collapse
Affiliation(s)
- Jean M Hébert
- Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
23
|
Paek H, Antoine MW, Diaz F, Hébert JM. Increased β-catenin activity in the anterior neural plate induces ectopic mid-hindbrain characteristics. Dev Dyn 2011; 241:242-6. [PMID: 22102609 DOI: 10.1002/dvdy.22787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The early telencephalon shares molecular features with the early mid-hindbrain region. In particular, these two developing brain areas each have a signaling center that secretes FGFs and an adjacent one that secretes WNTs. WNTs and FGFs each play essential roles in regulating cell fates in both the telencephalon and mid-hindbrain. Despite this similarity, telencephalic and mid-hindbrain precursors express distinct genes and ultimately generate different cell types, tissue morphologies, and neural functions. RESULTS Here we show that genetically increasing the level of β-catenin, a mediator of canonical WNT signaling, in the anterior neural plate causes a loss of telencephalic characteristics and a gain of mid-hindbrain characteristics. CONCLUSION These results, together with previous ones demonstrating that increased WNT signaling in the anterior neural plate increases FGF expression, suggest that the levels of WNT and FGF signaling regulate telencephalic versus mid-hindbrain fates.
Collapse
Affiliation(s)
- Hunki Paek
- Departments of Neuroscience and Genetics, Albert Einstein College of Medicine, Bronx, New York 10464, USA
| | | | | | | |
Collapse
|
24
|
Brown AC, Adams D, de Caestecker M, Yang X, Friesel R, Oxburgh L. FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development. Development 2011; 138:5099-112. [PMID: 22031548 DOI: 10.1242/dev.065995] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent studies indicate that nephron progenitor cells of the embryonic kidney are arranged in a series of compartments of an increasing state of differentiation. The earliest progenitor compartment, distinguished by expression of CITED1, possesses greater capacity for renewal and differentiation than later compartments. Signaling events governing progression of nephron progenitor cells through stages of increasing differentiation are poorly understood, and their elucidation will provide key insights into normal and dysregulated nephrogenesis, as well as into regenerative processes that follow kidney injury. In this study, we found that the mouse CITED1(+) progenitor compartment is maintained in response to receptor tyrosine kinase (RTK) ligands that activate both FGF and EGF receptors. This RTK signaling function is dependent on RAS and PI3K signaling but not ERK. In vivo, RAS inactivation by expression of sprouty 1 (Spry1) in CITED1(+) nephron progenitors results in loss of characteristic molecular marker expression and in increased death of progenitor cells. Lineage tracing shows that surviving Spry1-expressing progenitor cells are impaired in their subsequent epithelial differentiation, infrequently contributing to epithelial structures. These findings demonstrate that the survival and developmental potential of cells in the earliest embryonic nephron progenitor cell compartment are dependent on FGF/EGF signaling through RAS.
Collapse
Affiliation(s)
- Aaron C Brown
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | | | | | | | | | | |
Collapse
|
25
|
Andoniadou CL, Signore M, Young RM, Gaston-Massuet C, Wilson SW, Fuchs E, Martinez-Barbera JP. HESX1- and TCF3-mediated repression of Wnt/β-catenin targets is required for normal development of the anterior forebrain. Development 2011; 138:4931-42. [PMID: 22007134 DOI: 10.1242/dev.066597] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Wnt/β-catenin pathway plays an essential role during regionalisation of the vertebrate neural plate and its inhibition in the most anterior neural ectoderm is required for normal forebrain development. Hesx1 is a conserved vertebrate-specific transcription factor that is required for forebrain development in Xenopus, mice and humans. Mouse embryos deficient for Hesx1 exhibit a variable degree of forebrain defects, but the molecular mechanisms underlying these defects are not fully understood. Here, we show that injection of a hesx1 morpholino into a 'sensitised' zygotic headless (tcf3) mutant background leads to severe forebrain and eye defects, suggesting an interaction between Hesx1 and the Wnt pathway during zebrafish forebrain development. Consistent with a requirement for Wnt signalling repression, we highlight a synergistic gene dosage-dependent interaction between Hesx1 and Tcf3, a transcriptional repressor of Wnt target genes, to maintain anterior forebrain identity during mouse embryogenesis. In addition, we reveal that Tcf3 is essential within the neural ectoderm to maintain anterior character and that its interaction with Hesx1 ensures the repression of Wnt targets in the developing forebrain. By employing a conditional loss-of-function approach in mouse, we demonstrate that deletion of β-catenin, and concomitant reduction of Wnt signalling in the developing anterior forebrain of Hesx1-deficient embryos, leads to a significant rescue of the forebrain defects. Finally, transcriptional profiling of anterior forebrain precursors from mouse embryos expressing eGFP from the Hesx1 locus provides molecular evidence supporting a novel function of Hesx1 in mediating repression of Wnt/β-catenin target activation in the developing forebrain.
Collapse
Affiliation(s)
- Cynthia L Andoniadou
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Ferretti E, Li B, Zewdu R, Wells V, Hebert JM, Karner C, Anderson MJ, Williams T, Dixon J, Dixon MJ, Depew MJ, Selleri L. A conserved Pbx-Wnt-p63-Irf6 regulatory module controls face morphogenesis by promoting epithelial apoptosis. Dev Cell 2011; 21:627-41. [PMID: 21982646 DOI: 10.1016/j.devcel.2011.08.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/20/2011] [Accepted: 08/02/2011] [Indexed: 12/29/2022]
Abstract
Morphogenesis of mammalian facial processes requires coordination of cellular proliferation, migration, and apoptosis to develop intricate features. Cleft lip and/or palate (CL/P), the most frequent human craniofacial birth defect, can be caused by perturbation of any of these programs. Mutations of WNT, P63, and IRF6 yield CL/P in humans and mice; however, how these genes are regulated remains elusive. We generated mouse lines lacking Pbx genes in cephalic ectoderm and demonstrated that they exhibit fully penetrant CL/P and perturbed Wnt signaling. We also characterized a midfacial regulatory element that Pbx proteins bind to control the expression of Wnt9b-Wnt3, which in turn regulates p63. Altogether, we establish a Pbx-dependent Wnt-p63-Irf6 regulatory module in midfacial ectoderm that is conserved within mammals. Dysregulation of this network leads to localized suppression of midfacial apoptosis and CL/P. Ectopic Wnt ectodermal expression in Pbx mutants rescues the clefting, opening avenues for tissue repair.
Collapse
Affiliation(s)
- Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|