1
|
Yampolskaya M, Herriges MJ, Ikonomou L, Kotton DN, Mehta P. scTOP: physics-inspired order parameters for cellular identification and visualization. Development 2023; 150:dev201873. [PMID: 37756586 PMCID: PMC10629677 DOI: 10.1242/dev.201873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Advances in single-cell RNA sequencing provide an unprecedented window into cellular identity. The abundance of data requires new theoretical and computational frameworks to analyze the dynamics of differentiation and integrate knowledge from cell atlases. We present 'single-cell Type Order Parameters' (scTOP): a statistical, physics-inspired approach for quantifying cell identity given a reference basis of cell types. scTOP can accurately classify cells, visualize developmental trajectories and assess the fidelity of engineered cells. Importantly, scTOP does this without feature selection, statistical fitting or dimensional reduction (e.g. uniform manifold approximation and projection, principle components analysis, etc.). We illustrate the power of scTOP using human and mouse datasets. By reanalyzing mouse lung data, we characterize a transient hybrid alveolar type 1/alveolar type 2 cell population. Visualizations of lineage tracing hematopoiesis data using scTOP confirm that a single clone can give rise to multiple mature cell types. We assess the transcriptional similarity between endogenous and donor-derived cells in the context of murine pulmonary cell transplantation. Our results suggest that physics-inspired order parameters can be an important tool for understanding differentiation and characterizing engineered cells. scTOP is available as an easy-to-use Python package.
Collapse
Affiliation(s)
| | - Michael J. Herriges
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY 14215, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14215, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
2
|
Yampolskaya M, Herriges M, Ikonomou L, Kotton D, Mehta P. scTOP: physics-inspired order parameters for cellular identification and visualization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525581. [PMID: 36747864 PMCID: PMC9900792 DOI: 10.1101/2023.01.25.525581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Advances in single-cell RNA-sequencing (scRNA-seq) provide an unprecedented window into cellular identity. The increasing abundance of data requires new theoretical and computational frameworks for understanding cell fate determination, accurately classifying cell fates from expression data, and integrating knowledge from cell atlases. Here, we present single-cell Type Order Parameters (scTOP): a statistical-physics-inspired approach for constructing "order parameters" for cell fate given a reference basis of cell types. scTOP can quickly and accurately classify cells at a single-cell resolution, generate interpretable visualizations of developmental trajectories, and assess the fidelity of engineered cells. Importantly, scTOP does this without using feature selection, statistical fitting, or dimensional reduction (e.g., UMAP, PCA, etc.). We illustrate the power of scTOP utilizing a wide variety of human and mouse datasets (both in vivo and in vitro ). By reanalyzing mouse lung alveolar development data, we characterize a transient perinatal hybrid alveolar type 1/alveolar type 2 (AT1/AT2) cell population that disappears by 15 days post-birth and show that it is transcriptionally distinct from previously identified adult AT2-to-AT1 transitional cell types. Visualizations of lineage tracing data on hematopoiesis using scTOP confirm that a single clone can give rise to as many as three distinct differentiated cell types. We also show how scTOP can quantitatively assess the transcriptional similarity between endogenous and transplanted cells in the context of murine pulmonary cell transplantation. Finally, we provide an easy-to-use Python implementation of scTOP. Our results suggest that physics-inspired order parameters can be an important tool for understanding development and characterizing engineered cells.
Collapse
Affiliation(s)
| | - Michael Herriges
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Laertis Ikonomou
- Department of Oral Biology. University at Buffalo, The State University of New York, Buffalo, NY, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Darrell Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
3
|
Ikonomou L, Yampolskaya M, Mehta P. Multipotent Embryonic Lung Progenitors: Foundational Units of In Vitro and In Vivo Lung Organogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:49-70. [PMID: 37195526 PMCID: PMC10351616 DOI: 10.1007/978-3-031-26625-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transient, tissue-specific, embryonic progenitors are important cell populations in vertebrate development. In the course of respiratory system development, multipotent mesenchymal and epithelial progenitors drive the diversification of fates that results to the plethora of cell types that compose the airways and alveolar space of the adult lungs. Use of mouse genetic models, including lineage tracing and loss-of-function studies, has elucidated signaling pathways that guide proliferation and differentiation of embryonic lung progenitors as well as transcription factors that underlie lung progenitor identity. Furthermore, pluripotent stem cell-derived and ex vivo expanded respiratory progenitors offer novel, tractable, high-fidelity systems that allow for mechanistic studies of cell fate decisions and developmental processes. As our understanding of embryonic progenitor biology deepens, we move closer to the goal of in vitro lung organogenesis and resulting applications in developmental biology and medicine.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, USA.
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA.
- Cell, Gene and Tissue Engineering Center, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | | | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
4
|
Sun L, Fu X, Ma G, Hutchins AP. Chromatin and Epigenetic Rearrangements in Embryonic Stem Cell Fate Transitions. Front Cell Dev Biol 2021; 9:637309. [PMID: 33681220 PMCID: PMC7930395 DOI: 10.3389/fcell.2021.637309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
A major event in embryonic development is the rearrangement of epigenetic information as the somatic genome is reprogrammed for a new round of organismal development. Epigenetic data are held in chemical modifications on DNA and histones, and there are dramatic and dynamic changes in these marks during embryogenesis. However, the mechanisms behind this intricate process and how it is regulating and responding to embryonic development remain unclear. As embryos develop from totipotency to pluripotency, they pass through several distinct stages that can be captured permanently or transiently in vitro. Pluripotent naïve cells resemble the early epiblast, primed cells resemble the late epiblast, and blastomere-like cells have been isolated, although fully totipotent cells remain elusive. Experiments using these in vitro model systems have led to insights into chromatin changes in embryonic development, which has informed exploration of pre-implantation embryos. Intriguingly, human and mouse cells rely on different signaling and epigenetic pathways, and it remains a mystery why this variation exists. In this review, we will summarize the chromatin rearrangements in early embryonic development, drawing from genomic data from in vitro cell lines, and human and mouse embryos.
Collapse
Affiliation(s)
| | | | | | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
5
|
Saitou M. Mammalian Germ Cell Development: From Mechanism to In Vitro Reconstitution. Stem Cell Reports 2021; 16:669-680. [PMID: 33577794 PMCID: PMC8072030 DOI: 10.1016/j.stemcr.2021.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
The germ cell lineage gives rise to totipotency and perpetuates and diversifies genetic as well as epigenetic information. Specifically, germ cells undergo epigenetic reprogramming/programming, replicate genetic information with high fidelity, and create genetic diversity through meiotic recombination. Driven by advances in our understanding of the mechanisms underlying germ cell development and stem cell/reproductive technologies, research over the past 2 decades has culminated in the in vitro reconstitution of mammalian germ cell development: mouse pluripotent stem cells (PSCs) can now be induced into primordial germ cell-like cells (PGCLCs) and then differentiated into fully functional oocytes and spermatogonia, and human PSCs can be induced into PGCLCs and into early oocytes and prospermatogonia with epigenetic reprogramming. Here, I provide my perspective on the key investigations that have led to the in vitro reconstitution of mammalian germ cell development, which will be instrumental in exploring salient themes in germ cell biology and, with further refinements/extensions, in developing innovative medical applications.
Collapse
Affiliation(s)
- Mitinori Saitou
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
6
|
Gao F, Niu Y, Sun YE, Lu H, Chen Y, Li S, Kang Y, Luo Y, Si C, Yu J, Li C, Sun N, Si W, Wang H, Ji W, Tan T. De novo DNA methylation during monkey pre-implantation embryogenesis. Cell Res 2017; 27:526-539. [PMID: 28233770 PMCID: PMC5385613 DOI: 10.1038/cr.2017.25] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/01/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022] Open
Abstract
Critical epigenetic regulation of primate embryogenesis entails DNA methylome changes. Here we report genome-wide composition, patterning, and stage-specific dynamics of DNA methylation in pre-implantation rhesus monkey embryos as well as male and female gametes studied using an optimized tagmentation-based whole-genome bisulfite sequencing method. We show that upon fertilization, both paternal and maternal genomes undergo active DNA demethylation, and genome-wide de novo DNA methylation is also initiated in the same period. By the 8-cell stage, remethylation becomes more pronounced than demethylation, resulting in an increase in global DNA methylation. Promoters of genes associated with oxidative phosphorylation are preferentially remethylated at the 8-cell stage, suggesting that this mode of energy metabolism may not be favored. Unlike in rodents, X chromosome inactivation is not observed during monkey pre-implantation development. Our study provides the first comprehensive illustration of the 'wax and wane' phases of DNA methylation dynamics. Most importantly, our DNA methyltransferase loss-of-function analysis indicates that DNA methylation influences early monkey embryogenesis.
Collapse
Affiliation(s)
- Fei Gao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan 650500, China
| | - Yi Eve Sun
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Translational Stem Cell Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Department of Psychiatry and Biobehavioral Sciences, UCLA Medical School, Los Angeles, CA 90095, USA
| | - Hanlin Lu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yongchang Chen
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan 650500, China
| | - Siguang Li
- Translational Stem Cell Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yu Kang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan 650500, China
| | - Yuping Luo
- Translational Stem Cell Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Chenyang Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan 650500, China
| | - Juehua Yu
- Department of Psychiatry and Biobehavioral Sciences, UCLA Medical School, Los Angeles, CA 90095, USA
| | - Chang Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan 650500, China
| | - Nianqin Sun
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan 650500, China
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan 650500, China
| | - Hong Wang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan 650500, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan 650500, China
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan 650500, China
| |
Collapse
|
7
|
Zhao ZA, Yu Y, Ma HX, Wang XX, Lu X, Zhai Y, Zhang X, Wang H, Li L. The roles of ERAS during cell lineage specification of mouse early embryonic development. Open Biol 2016; 5:rsob.150092. [PMID: 26269429 PMCID: PMC4554925 DOI: 10.1098/rsob.150092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β-catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development.
Collapse
Affiliation(s)
- Zhen-Ao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215000, People's Republic of China
| | - Yang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huai-Xiao Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Xiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yanhua Zhai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xiaoxin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Haibin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
8
|
Cosson S, Otte EA, Hezaveh H, Cooper-White JJ. Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine. Stem Cells Transl Med 2015; 4:156-64. [PMID: 25575526 PMCID: PMC4303362 DOI: 10.5966/sctm.2014-0203] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/10/2014] [Indexed: 01/16/2023] Open
Abstract
The potential for the clinical application of stem cells in tissue regeneration is clearly significant. However, this potential has remained largely unrealized owing to the persistent challenges in reproducibly, with tight quality criteria, and expanding and controlling the fate of stem cells in vitro and in vivo. Tissue engineering approaches that rely on reformatting traditional Food and Drug Administration-approved biomedical polymers from fixation devices to porous scaffolds have been shown to lack the complexity required for in vitro stem cell culture models or translation to in vivo applications with high efficacy. This realization has spurred the development of advanced mimetic biomaterials and scaffolds to increasingly enhance our ability to control the cellular microenvironment and, consequently, stem cell fate. New insights into the biology of stem cells are expected to eventuate from these advances in material science, in particular, from synthetic hydrogels that display physicochemical properties reminiscent of the natural cell microenvironment and that can be engineered to display or encode essential biological cues. Merging these advanced biomaterials with high-throughput methods to systematically, and in an unbiased manner, probe the role of scaffold biophysical and biochemical elements on stem cell fate will permit the identification of novel key stem cell behavioral effectors, allow improved in vitro replication of requisite in vivo niche functions, and, ultimately, have a profound impact on our understanding of stem cell biology and unlock their clinical potential in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Steffen Cosson
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia; Commonwealth Scientific and Industrial Research Organization, Material Science and Engineering, Clayton, Victoria, Australia; University of Queensland School of Chemical Engineering, St. Lucia, Queensland, Australia
| | - Ellen A Otte
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia; Commonwealth Scientific and Industrial Research Organization, Material Science and Engineering, Clayton, Victoria, Australia; University of Queensland School of Chemical Engineering, St. Lucia, Queensland, Australia
| | - Hadi Hezaveh
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia; Commonwealth Scientific and Industrial Research Organization, Material Science and Engineering, Clayton, Victoria, Australia; University of Queensland School of Chemical Engineering, St. Lucia, Queensland, Australia
| | - Justin J Cooper-White
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia; Commonwealth Scientific and Industrial Research Organization, Material Science and Engineering, Clayton, Victoria, Australia; University of Queensland School of Chemical Engineering, St. Lucia, Queensland, Australia
| |
Collapse
|
9
|
PRDM14: a unique regulator for pluripotency and epigenetic reprogramming. Trends Biochem Sci 2014; 39:289-98. [PMID: 24811060 DOI: 10.1016/j.tibs.2014.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 11/20/2022]
Abstract
PRDM14 belongs to the PR domain-containing (PRDM) transcriptional regulators. Among the PRDM family members, PRDM14 shows specific expression in preimplantation embryos, primordial germ cells (PGCs), and embryonic stem cells (ESCs) in vitro, and accordingly plays a key role in the regulation of their pluripotency and epigenetic reprogramming, most notably, genome-wide DNA demethylation. The function of PRDM14 appears to be conserved between mice and humans, but it shows several characteristic differences between the two species. A precise understanding of the function of PRDM14 in mice and humans would shed new light on the regulation of pluripotency and the epigenome in these two species, providing a foundation for better control of stem cell fates in a broader context.
Collapse
|
10
|
Baron MH. Concise Review: early embryonic erythropoiesis: not so primitive after all. Stem Cells 2014; 31:849-56. [PMID: 23361843 DOI: 10.1002/stem.1342] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/27/2012] [Indexed: 12/28/2022]
Abstract
In the developing embryo, hematopoiesis begins with the formation of primitive erythroid cells (EryP), a distinct and transient red blood cell lineage. EryP play a vital role in oxygen delivery and in generating shear forces necessary for normal vascular development. Progenitors for EryP arise as a cohort within the blood islands of the mammalian yolk sac at the end of gastrulation. As a strong heartbeat is established, nucleated erythroblasts begin to circulate and to mature in a stepwise, nearly synchronous manner. Until relatively recently, these cells were thought to be "primitive" in that they seemed to more closely resemble the nucleated erythroid cells of lower vertebrates than the enucleated erythrocytes of mammals. It is now known that mammalian EryP do enucleate, but not until several days after entering the bloodstream. I will summarize the common and distinguishing characteristics of primitive versus definitive (adult-type) erythroid cells, review the development of EryP from the emergence of their progenitors through maturation and enucleation, and discuss pluripotent stem cells as models for erythropoiesis. Erythroid differentiation of both mouse and human pluripotent stem cells in vitro has thus far reproduced early but not late red blood cell ontogeny. Therefore, a deeper understanding of cellular and molecular mechanisms underlying the differences and similarities between the embryonic and adult erythroid lineages will be critical to improving methods for production of red blood cells for use in the clinic.
Collapse
Affiliation(s)
- Margaret H Baron
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA.
| |
Collapse
|
11
|
Bhatt T, Rizvi A, Batta SPR, Kataria S, Jamora C. Signaling and mechanical roles of E-cadherin. ACTA ACUST UNITED AC 2013; 20:189-99. [PMID: 24205986 DOI: 10.3109/15419061.2013.854778] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The epithelium comprises an important tissue that lines the internal and external surfaces of metazoan organs. In order to organize sheets of epithelial cells into three-dimensional tissues, it requires the coordination of basic cellular processes such as polarity, adhesion, growth, and differentiation. Moreover, as a primary barrier to the external environment, epithelial tissues are often subjected to physical forces and damage. This critical barrier function dictates that these fundamental cellular processes are continually operational in order to maintain tissue homeostasis in the face of almost constant trauma and stress. A protein that is largely responsible for the organization and maintenance of epithelial tissues is the transmembrane protein, E-cadherin, found at the surface of epithelial cells. Though originally investigated for its essential role in mediating intercellular cohesion, its impact on a wide array of physiological processes underscores its fundamental contributions to tissue development and its perturbation in a variety of common diseases.
Collapse
Affiliation(s)
- Tanay Bhatt
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine , Bangalore , India
| | | | | | | | | |
Collapse
|
12
|
Rodríguez-Seguel E, Mah N, Naumann H, Pongrac IM, Cerdá-Esteban N, Fontaine JF, Wang Y, Chen W, Andrade-Navarro MA, Spagnoli FM. Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence. Genes Dev 2013; 27:1932-46. [PMID: 24013505 PMCID: PMC3778245 DOI: 10.1101/gad.220244.113] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A key question in stem cell biology is how distinct cell types arise from common multipotent progenitor cells. It is unknown how liver and pancreas cells diverge from a common endoderm progenitor population and adopt specific fates. Using RNA-seq, Spagnoli and colleagues define the gene expression programs of liver and pancreas progenitors and identify the noncanonical Wnt pathway as a potential developmental regulator of this fate decision. Furthermore, this study provides a framework for lineage-reprogramming strategies to convert adult hepatic cells into pancreatic cells. Understanding how distinct cell types arise from multipotent progenitor cells is a major quest in stem cell biology. The liver and pancreas share many aspects of their early development and possibly originate from a common progenitor. However, how liver and pancreas cells diverge from a common endoderm progenitor population and adopt specific fates remains elusive. Using RNA sequencing (RNA-seq), we defined the molecular identity of liver and pancreas progenitors that were isolated from the mouse embryo at two time points, spanning the period when the lineage decision is made. The integration of temporal and spatial gene expression profiles unveiled mutually exclusive signaling signatures in hepatic and pancreatic progenitors. Importantly, we identified the noncanonical Wnt pathway as a potential developmental regulator of this fate decision and capable of inducing the pancreas program in endoderm and liver cells. Our study offers an unprecedented view of gene expression programs in liver and pancreas progenitors and forms the basis for formulating lineage-reprogramming strategies to convert adult hepatic cells into pancreatic cells.
Collapse
|
13
|
Ectogenesis: what could be learned from novel in-vitro culture systems? Reprod Biomed Online 2013; 26:555-61. [PMID: 23528284 DOI: 10.1016/j.rbmo.2013.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 11/20/2022]
Abstract
Early mammalian development consists of two distinct phases separated by the event of implantation. Whereas much has been discovered about developmental mechanisms prior to implantation, the inability to culture and follow in real time cell behaviour over the period of implantation means that the second phase has not been explored in as much detail. Recently, a novel in-vitro culture system was described that permits continuous culture and time-lapse observations through the peri- and early post-implantation stages. This system has already delivered detailed information on the cellular processes accompanying early morphogenesis and allowed direct connections to be established between events occurring at the two developmental phases. This review discusses the potential of this novel technology and its possible applications that could have not only impact on basic science but also practical implications for human medicine.
Collapse
|
14
|
Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol 2013; 375:54-64. [PMID: 23261930 DOI: 10.1016/j.ydbio.2012.12.008] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 11/29/2012] [Accepted: 12/11/2012] [Indexed: 12/18/2022]
Abstract
Early mammalian embryogenesis is controlled by mechanisms governing the balance between pluripotency and differentiation. The expression of early lineage-specific genes can vary significantly between species, with implications for developmental control and stem cell derivation. However, the mechanisms involved in patterning the human embryo are still unclear. We analyzed the appearance and localization of lineage-specific transcription factors in staged preimplantation human embryos from the zygote until the blastocyst. We observed that the pluripotency-associated transcription factor OCT4 was initially expressed in 8-cell embryos at 3 days post-fertilization (dpf), and restricted to the inner cell mass (ICM) in 128-256 cell blastocysts (6dpf), approximately 2 days later than the mouse. The trophectoderm (TE)-associated transcription factor CDX2 was upregulated in 5dpf blastocysts and initially coincident with OCT4, indicating a lag in CDX2 initiation in the TE lineage, relative to the mouse. Once established, the TE expressed intracellular and cell-surface proteins cytokeratin-7 (CK7) and fibroblast growth factor receptor-1 (FGFR1), which are thought to be specific to post-implantation human trophoblast progenitor cells. The primitive endoderm (PE)-associated transcription factor SOX17 was initially heterogeneously expressed in the ICM where it co-localized with a sub-set of OCT4 expressing cells at 4-5dpf. SOX17 was progressively restricted to the PE adjacent to the blastocoel cavity together with the transcription factor GATA6 by 6dpf. We observed low levels of Laminin expression in the human PE, though this basement membrane component is thought to play an important role in mouse PE cell sorting, suggesting divergence in differentiation mechanisms between species. Additionally, while stem cell lines representing the three distinct cell types that comprise a mouse blastocyst have been established, the identity of cell types that emerge during early human embryonic stem cell derivation is unclear. We observed that derivation from plating intact human blastocysts resulted predominantly in the outgrowth of TE-like cells, which impairs human embryonic stem cell derivation. Altogether, our findings provide important insight into developmental patterning of preimplantation human embryos with potential consequences for stem cell derivation.
Collapse
Affiliation(s)
- Kathy K Niakan
- The Howard Hughes Medical Institute, Harvard Stem Cell Institute and the Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
15
|
Yamaji M, Ueda J, Hayashi K, Ohta H, Yabuta Y, Kurimoto K, Nakato R, Yamada Y, Shirahige K, Saitou M. PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 2013; 12:368-82. [PMID: 23333148 DOI: 10.1016/j.stem.2012.12.012] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 12/01/2012] [Accepted: 12/21/2012] [Indexed: 01/21/2023]
Abstract
In serum, mouse embryonic stem cells (mESCs) fluctuate between a naive inner cell mass (ICM)-like state and a primed epiblast-like state, but when cultured with inhibitors of the mitogen-activated protein kinase (MAPK) and glycogen synthase kinase 3 pathways (2i), they are harnessed exclusively in a distinct naive pluropotent state, the ground state, that more faithfully recapitulates the ICM. Understanding the mechanism underlying this naive pluripotent state will be critical for realizing the full potential of ESCs. We show here that PRDM14, a PR-domain-containing transcriptional regulator, ensures naive pluripotency through a dual mechanism: antagonizing activation of the fibroblast growth factor receptor (FGFR) signaling by the core pluripotency transcriptional circuitry, and repressing expression of de novo DNA methyltransferases that modify the epigenome to a primed epiblast-like state. PRDM14 exerts these effects by recruiting polycomb repressive complex 2 (PRC2) specifically to key targets and repressing their expression.
Collapse
Affiliation(s)
- Masashi Yamaji
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li L, Bennett SAL, Wang L. Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adh Migr 2012; 6:59-70. [PMID: 22647941 PMCID: PMC3364139 DOI: 10.4161/cam.19583] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The survival, proliferation, self-renewal and differentiation of human pluripotent stem cells (hPSCs, including human embryonic stem cells and human induced pluripotent stem cells) involve a number of processes that require cell-cell and cell-matrix interactions. The cell adhesion molecules (CAMs), a group of cell surface proteins play a pivotal role in mediating such interactions. Recent studies have provided insights into the essential roles and mechanisms of CAMs in the regulation of hPSC fate decisions. Here, we review the latest research progress in this field and focus on how E-cadherin and several other important CAMs including classic cadherins, Ig-superfamily CAMs, integrins and heparin sulfate proteoglycans control survival and differentiation of hPSCs.
Collapse
Affiliation(s)
- Li Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | | | | |
Collapse
|
17
|
Kuijk EW, van Tol LTA, Van de Velde H, Wubbolts R, Welling M, Geijsen N, Roelen BAJ. The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development 2012; 139:871-82. [PMID: 22278923 DOI: 10.1242/dev.071688] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
At the blastocyst stage of mammalian pre-implantation development, three distinct cell lineages have formed: trophectoderm, hypoblast (primitive endoderm) and epiblast. The inability to derive embryonic stem (ES) cell lines in a variety of species suggests divergence between species in the cell signaling pathways involved in early lineage specification. In mouse, segregation of the primitive endoderm lineage from the pluripotent epiblast lineage depends on FGF/MAP kinase signaling, but it is unknown whether this is conserved between species. Here we examined segregation of the hypoblast and epiblast lineages in bovine and human embryos through modulation of FGF/MAP kinase signaling pathways in cultured embryos. Bovine embryos stimulated with FGF4 and heparin form inner cell masses (ICMs) composed entirely of hypoblast cells and no epiblast cells. Inhibition of MEK in bovine embryos results in ICMs with increased epiblast precursors and decreased hypoblast precursors. The hypoblast precursor population was not fully ablated upon MEK inhibition, indicating that other factors are involved in hypoblast differentiation. Surprisingly, inhibition of FGF signaling upstream of MEK had no effects on epiblast and hypoblast precursor numbers in bovine development, suggesting that GATA6 expression is not dependent on FGF signaling. By contrast, in human embryos, inhibition of MEK did not significantly alter epiblast or hypoblast precursor numbers despite the ability of the MEK inhibitor to potently inhibit ERK phosphorylation in human ES cells. These findings demonstrate intrinsic differences in early mammalian development in the role of the FGF/MAP kinase signaling pathways in governing hypoblast versus epiblast lineage choices.
Collapse
Affiliation(s)
- Ewart W Kuijk
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Where do you come from; where do you go? Pluripotency, differentiation and malfunction of stem cells. EMBO Rep 2011; 13:9-11. [PMID: 22157892 DOI: 10.1038/embor.2011.241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The international conference 'Stem Cells in Development and Disease' took place in September 2011 at the Max-Delbrück-Center for Molecular Medicine (MDC) in Berlin. It brought together scientists working on different types of stem cell and covered the latest findings in stem cell biology, including the genetic and epigenetic mechanisms of reprogramming, maintenance of pluripotency and differentiation.
Collapse
|