1
|
Erickson AG, Kameneva P, Adameyko I. The transcriptional portraits of the neural crest at the individual cell level. Semin Cell Dev Biol 2022; 138:68-80. [PMID: 35260294 PMCID: PMC9441473 DOI: 10.1016/j.semcdb.2022.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 01/15/2023]
Abstract
Since the discovery of this cell population by His in 1850, the neural crest has been under intense study for its important role during vertebrate development. Much has been learned about the function and regulation of neural crest cell differentiation, and as a result, the neural crest has become a key model system for stem cell biology in general. The experiments performed in embryology, genetics, and cell biology in the last 150 years in the neural crest field has given rise to several big questions that have been debated intensely for many years: "How does positional information impact developmental potential? Are neural crest cells individually multipotent or a mixed population of committed progenitors? What are the key factors that regulate the acquisition of stem cell identity, and how does a stem cell decide to differentiate towards one cell fate versus another?" Recently, a marriage between single cell multi-omics, statistical modeling, and developmental biology has shed a substantial amount of light on these questions, and has paved a clear path for future researchers in the field.
Collapse
Affiliation(s)
- Alek G Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Polina Kameneva
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden; Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria.
| |
Collapse
|
2
|
From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Embryonic Development. Int J Mol Sci 2021; 22:ijms22179141. [PMID: 34502050 PMCID: PMC8431582 DOI: 10.3390/ijms22179141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a population of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogenesis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the neural-mesodermal axis.
Collapse
|
3
|
Kahane N, Kalcheim C. Neural tube development depends on notochord-derived sonic hedgehog released into the sclerotome. Development 2020; 147:dev183996. [PMID: 32345743 PMCID: PMC7272346 DOI: 10.1242/dev.183996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
Sonic hedgehog (Shh), produced in the notochord and floor plate, is necessary for both neural and mesodermal development. To reach the myotome, Shh has to traverse the sclerotome and a reduction of sclerotomal Shh affects myotome differentiation. By investigating loss and gain of Shh function, and floor-plate deletions, we report that sclerotomal Shh is also necessary for neural tube development. Reducing the amount of Shh in the sclerotome using a membrane-tethered hedgehog-interacting protein or Patched1, but not dominant active Patched, decreased the number of Olig2+ motoneuron progenitors and Hb9+ motoneurons without a significant effect on cell survival or proliferation. These effects were a specific and direct consequence of Shh reduction in the mesoderm. In addition, grafting notochords in a basal but not apical location, vis-à-vis the tube, profoundly affected motoneuron development, suggesting that initial ligand presentation occurs at the basal side of epithelia corresponding to the sclerotome-neural tube interface. Collectively, our results reveal that the sclerotome is a potential site of a Shh gradient that coordinates the development of mesodermal and neural progenitors.
Collapse
Affiliation(s)
- Nitza Kahane
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, P.O. Box 12272, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, P.O. Box 12272, Israel
| |
Collapse
|
4
|
Abstract
Neural crest cells are the embryonic precursors of most neurons and all glia of the peripheral nervous system, pigment cells, some endocrine components, and connective tissue of the head, face, neck, and heart. Following induction, crest cells undergo an epithelial to mesenchymal transition that enables them to migrate along specific pathways culminating in their phenotypic differentiation. Researching this unique embryonic population has revealed important understandings of basic biological and developmental principles. These principles are likely to assist in clarifying the etiology and help in finding strategies for the treatment of neural crest diseases, collectively termed neurocristopathies. The progress achieved in neural crest research is made feasible thanks to the continuous development of species-specific in vivo and in vitro paradigms and more recently the possibility to produce neural crest cells and specific derivatives from embryonic or induced pluripotent stem cells. All of the above assist us in elucidating mechanisms that regulate neural crest development using state-of-the art cellular, molecular, and imaging approaches.
Collapse
Affiliation(s)
- Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel.
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
5
|
McColl J, Mok GF, Lippert AH, Ponjavic A, Muresan L, Münsterberg A. 4D imaging reveals stage dependent random and directed cell motion during somite morphogenesis. Sci Rep 2018; 8:12644. [PMID: 30139994 PMCID: PMC6107556 DOI: 10.1038/s41598-018-31014-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/10/2018] [Indexed: 12/26/2022] Open
Abstract
Somites are paired embryonic segments that form in a regular sequence from unsegmented mesoderm during vertebrate development. Although transient structures they are of fundamental importance as they generate cell lineages of the musculoskeletal system in the trunk such as cartilage, tendon, bone, endothelial cells and skeletal muscle. Surprisingly, very little is known about cellular dynamics underlying the morphological transitions during somite differentiation. Here, we address this by examining cellular rearrangements and morphogenesis in differentiating somites using live multi-photon imaging of transgenic chick embryos, where all cells express a membrane-bound GFP. We specifically focussed on the dynamic cellular changes in two principle regions within the somite, the medial and lateral domains, to investigate extensive morphological transformations. Furthermore, by using quantitative analysis and cell tracking, we capture for the first time a directed movement of dermomyotomal progenitor cells towards the rostro-medial domain of the dermomyotome, where skeletal muscle formation initiates.
Collapse
Affiliation(s)
- James McColl
- 0000 0001 1092 7967grid.8273.eSchool of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK ,0000000121885934grid.5335.0Chemistry Department, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Gi Fay Mok
- 0000 0001 1092 7967grid.8273.eSchool of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Anna H. Lippert
- 0000000121885934grid.5335.0Chemistry Department, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Aleks Ponjavic
- 0000000121885934grid.5335.0Chemistry Department, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Leila Muresan
- Cambridge Advanced Imaging Centre (CAIC), Downing Street, Cambridge, CB2 3DY UK
| | - Andrea Münsterberg
- 0000 0001 1092 7967grid.8273.eSchool of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
6
|
The neural crest and evolution of the head/trunk interface in vertebrates. Dev Biol 2018; 444 Suppl 1:S60-S66. [PMID: 29408469 DOI: 10.1016/j.ydbio.2018.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
The migration and distribution patterns of neural crest (NC) cells reflect the distinct embryonic environments of the head and trunk: cephalic NC cells migrate predominantly along the dorsolateral pathway to populate the craniofacial and pharyngeal regions, whereas trunk crest cells migrate along the ventrolateral pathways to form the dorsal root ganglia. These two patterns thus reflect the branchiomeric and somitomeric architecture, respectively, of the vertebrate body plan. The so-called vagal NC occupies a postotic, intermediate level between the head and trunk NC. This level of NC gives rise to both trunk- and cephalic-type (circumpharyngeal) NC cells. The anatomical pattern of the amphioxus, a basal chordate, suggests that somites and pharyngeal gills coexist along an extensive length of the body axis, indicating that the embryonic environment is similar to that of vertebrate vagal NC cells and may have been ancestral for vertebrates. The amniote-like condition in which the cephalic and trunk domains are distinctly separated would have been brought about, in part, by anteroposterior reduction of the pharyngeal domain.
Collapse
|
7
|
Kalcheim C. Neural crest emigration: From start to stop. Genesis 2018; 56:e23090. [DOI: 10.1002/dvg.23090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Chaya Kalcheim
- Department of Medical Neurobiology, IMRIC and ELSC; Hebrew University of Jerusalem-Hadassah Medical School; Jerusalem 9112102 Israel
| |
Collapse
|
8
|
Buckingham M, Relaix F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol 2015; 44:115-25. [PMID: 26424495 DOI: 10.1016/j.semcdb.2015.09.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Like other subclasses within the PAX transcription factor family, PAX3 and PAX7 play important roles in the emergence of a number of different tissues during development. PAX3 regulates neural crest and, together with its orthologue PAX7, is also expressed in parts of the central nervous system. In this chapter we will focus on their role in skeletal muscle. Both factors are key regulators of myogenesis where Pax3 plays a major role during early skeletal muscle formation in the embryo while Pax7 predominates during post-natal growth and muscle regeneration in the adult. We review the expression and functions of these factors in the myogenic context. We also discuss mechanistic aspects of PAX3/7 function and modulation of their activity by interaction with other proteins, as well as the post-transcriptional and transcriptional regulation of their expression.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.
| | - Frédéric Relaix
- INSERM U955 IMRB, Team 10, 94000 Creteil, France; UPEC Paris Est-Creteil University, Faculty of Medicine, F-94000 Creteil, France; Etablissement Français du Sang, 94017 Creteil, France; Université Paris Est, Ecole Nationale Veterinaire d'Alfort, 94700 Maison Alfort, France.
| |
Collapse
|
9
|
Klhl31 attenuates β-catenin dependent Wnt signaling and regulates embryo myogenesis. Dev Biol 2015; 402:61-71. [DOI: 10.1016/j.ydbio.2015.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 11/19/2022]
|
10
|
Wang G, Li Y, Wang XY, Chuai M, Yeuk-Hon Chan J, Lei J, Münsterberg A, Lee KKH, Yang X. Misexpression of BRE gene in the developing chick neural tube affects neurulation and somitogenesis. Mol Biol Cell 2015; 26:978-92. [PMID: 25568339 PMCID: PMC4342032 DOI: 10.1091/mbc.e14-06-1144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This is the first study of the role of BRE in embryonic development using early chick embryos. BRE is expressed in the developing neural tube, neural crest cells, and somites. BRE thus plays an important role in regulating neurogenesis and indirectly somitogenesis during early chick embryo development. The brain and reproductive expression (BRE) gene is expressed in numerous adult tissues and especially in the nervous and reproductive systems. However, little is known about BRE expression in the developing embryo or about its role in embryonic development. In this study, we used in situ hybridization to reveal the spatiotemporal expression pattern for BRE in chick embryo during development. To determine the importance of BRE in neurogenesis, we overexpressed BRE and also silenced BRE expression specifically in the neural tube. We established that overexpressing BRE in the neural tube indirectly accelerated Pax7+ somite development and directly increased HNK-1+ neural crest cell (NCC) migration and TuJ-1+ neurite outgrowth. These altered morphogenetic processes were associated with changes in the cell cycle of NCCs and neural tube cells. The inverse effect was obtained when BRE expression was silenced in the neural tube. We also determined that BMP4 and Shh expression in the neural tube was affected by misexpression of BRE. This provides a possible mechanism for how altering BRE expression was able to affect somitogenesis, neurogenesis, and NCC migration. In summary, our results demonstrate that BRE plays an important role in regulating neurogenesis and indirectly somite differentiation during early chick embryo development.
Collapse
Affiliation(s)
- Guang Wang
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Yan Li
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xiao-Yu Wang
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - John Yeuk-Hon Chan
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Jian Lei
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Kenneth Ka Ho Lee
- Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xuesong Yang
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Applebaum M, Kalcheim C. Mechanisms of myogenic specification and patterning. Results Probl Cell Differ 2015; 56:77-98. [PMID: 25344667 DOI: 10.1007/978-3-662-44608-9_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesodermal somites are initially composed of columnar cells arranged as a pseudostratified epithelium that undergoes sequential and spatially restricted changes to generate the sclerotome and dermomyotome, intermediate structures that develop into vertebrae, striated muscles of the body and limbs, dermis, smooth muscle, and endothelial cells. Regional cues were elucidated that impart differential traits upon the originally multipotent progenitors. How do somite cells and their intermediate progenitors interpret these extrinsic cues and translate them into various levels and/or modalities of intracellular signaling that lead to differential gene expression profiles remains a significant challenge. So is the understanding of how differential fate specification relates to complex cellular migrations prefiguring the formation of body muscles and vertebrae. Research in the past years has largely transited from a descriptive phase in which the lineages of distinct somite-derived progenitors and their cellular movements were traced to a more mechanistic understanding of the local function of genes and regulatory networks underlying lineage segregation and tissue organization. In this chapter, we focus on some major advances addressing the segregation of lineages from the dermomyotome, while discussing both cellular as well as molecular mechanisms, where possible.
Collapse
Affiliation(s)
- Mordechai Applebaum
- Department of Medical Neurobiology, IMRIC and ELSC-Hebrew University-Hadassah Medical School, Jerusalem, 9101201, 12272, Israel,
| | | |
Collapse
|
12
|
Kalcheim C, Storey KG. Neural-mesodermal progenitor interactions in pattern formation: an introduction to the collection. F1000Res 2014; 3:275. [PMID: 25580236 PMCID: PMC4288398 DOI: 10.12688/f1000research.5657.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2014] [Indexed: 11/20/2022] Open
Abstract
Mesodermal and spinal cord progenitors originate from common founder cells from which they segregate during development. Moreover, neural and mesodermal tissues closely interact during embryogenesis to ensure timely patterning and differentiation of both head and trunk structures. For instance, the fate and morphogenesis of neural progenitors is dependent on signals produced by mesodermal cells and vice-versa. While some of the cellular and molecular signals that mediate these interactions have been described, much more remains to be uncovered. The scope of this collection will cover these interactions between neural (CNS or PNS) and mesodermal progenitors in patterning body plans and specific body systems in vertebrate embryos. This includes, but is not limited to, interactions influencing the formation of body axes, neural tube formation, neural crest migration, gut development, muscle patterning and myogenesis.
Collapse
Affiliation(s)
- Chaya Kalcheim
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kate G. Storey
- College of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
13
|
Nitzan E, Kalcheim C. Neural crest and somitic mesoderm as paradigms to investigate cell fate decisions during development. Dev Growth Differ 2012; 55:60-78. [PMID: 23043365 DOI: 10.1111/dgd.12004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/02/2012] [Accepted: 09/02/2012] [Indexed: 12/25/2022]
Abstract
The dorsal domains of the neural tube and somites are transient embryonic epithelia; they constitute the source of neural crest progenitors that generate the peripheral nervous system, pigment cells and ectomesenchyme, and of the dermomyotome that develops into myocytes, dermis and vascular cells, respectively. Based on the variety of derivatives produced by each type of epithelium, a classical yet still highly relevant question is whether these embryonic epithelia are composed of homogeneous multipotent progenitors or, alternatively, of subsets of fate-restricted cells. Growing evidence substantiates the notion that both the dorsal tube and the dermomyotome are heterogeneous epithelia composed of multipotent as well as fate-restricted precursors that emerge as such in a spatio-temporally regulated manner. Elucidation of the state of commitment of the precedent progenitors is of utmost significance for deciphering the mechanisms that regulate fate segregation during embryogenesis. In addition, it will contribute to understanding the nature of well documented neural crest-somite interactions shown to modulate the timing of neural crest cell emigration, their segmental migration, and myogenesis.
Collapse
Affiliation(s)
- Erez Nitzan
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, and Edmond and Lily Safra Center for Brain Sciences, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|