1
|
Bowman B. Distribution and dynamics of hyphal organelles. Fungal Genet Biol 2025; 178:103982. [PMID: 40154940 DOI: 10.1016/j.fgb.2025.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Filamentous fungi have been very useful organisms for the investigation of organelles in eukaryotic cells. The structure and function of fungal organelles is generally very similar to that observed in animal cells. However, the nature of a "cell" in many filamentous fungi is unusual, because in many of these organisms the filaments are structured as a large syncytium. In the Ascomycota hyphae are typically a very long tube divided into different compartments by an incomplete cell wall called the septum. The pore in the middle of the septum is large enough to allow virtually all organelles to move from one hyphal compartment to another. In this review, I will look at the dynamics of this movement of organelles and describe what we know about how the structure and distribution of organelles varies from one hyphal compartment to another.
Collapse
Affiliation(s)
- Barry Bowman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States..
| |
Collapse
|
2
|
Bittner E, Stehlik T, Freitag J. Sharing the wealth: The versatility of proteins targeted to peroxisomes and other organelles. Front Cell Dev Biol 2022; 10:934331. [PMID: 36225313 PMCID: PMC9549241 DOI: 10.3389/fcell.2022.934331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are eukaryotic organelles with critical functions in cellular energy and lipid metabolism. Depending on the organism, cell type, and developmental stage, they are involved in numerous other metabolic and regulatory pathways. Many peroxisomal functions require factors also relevant to other cellular compartments. Here, we review proteins shared by peroxisomes and at least one different site within the cell. We discuss the mechanisms to achieve dual targeting, their regulation, and functional consequences. Characterization of dual targeting is fundamental to understand how peroxisomes are integrated into the metabolic and regulatory circuits of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
3
|
Hou J, Lin H, Ding J, Feng M, Ying S. Peroxins in Peroxisomal Receptor Export System Contribute to Development, Stress Response, and Virulence of Insect Pathogenic Fungus Beauveria bassiana. J Fungi (Basel) 2022; 8:622. [PMID: 35736105 PMCID: PMC9224678 DOI: 10.3390/jof8060622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
In filamentous fungi, recycling of receptors responsible for protein targeting to peroxisomes depends on the receptor export system (RES), which consists of peroxins Pex1, Pex6, and Pex26. This study seeks to functionally characterize these peroxins in the entomopathogenic fungus Beauveria bassiana. BbPex1, BbPex6, and BbPex26 are associated with peroxisomes and interact with each other. The loss of these peroxins did not completely abolish the peroxisome biogenesis. Three peroxins were all absolutely required for PTS1 pathway; however, only BbPex6 and BbPex26 were required for protein translocation via PTS2 pathway. Three gene disruption mutants displayed the similar phenotypic defects in assimilation of nutrients (e.g., fatty acid, protein, and chitin), stress response (e.g., oxidative and osmotic stress), and virulence. Notably, all disruptant displayed significantly enhanced sensitivity to linoleic acid, a polyunsaturated fatty acid. This study reinforces the essential roles of the peroxisome in the lifecycle of entomopathogenic fungi and highlights peroxisomal roles in combating the host defense system.
Collapse
Affiliation(s)
| | | | | | | | - Shenghua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (H.L.); (J.D.); (M.F.)
| |
Collapse
|
4
|
Paixão FRS, Huarte-Bonnet C, Ribeiro-Silva CDS, Mascarin GM, Fernandes ÉKK, Pedrini N. Tolerance to Abiotic Factors of Microsclerotia and Mycelial Pellets From Metarhizium robertsii, and Molecular and Ultrastructural Changes During Microsclerotial Differentiation. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:654737. [PMID: 37744155 PMCID: PMC10512246 DOI: 10.3389/ffunb.2021.654737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/05/2021] [Indexed: 09/26/2023]
Abstract
Metarhizium species fungi are able to produce resistant structures termed microsclerotia, formed by compact and melanized threads of hyphae. These propagules are tolerant to desiccation and produce infective conidia; thus, they are promising candidates to use in biological control programs. In this study, we investigated the tolerance to both ultraviolet B (UV-B) radiation and heat of microsclerotia of Metarhizium robertsii strain ARSEF 2575. We also adapted the liquid medium and culture conditions to obtain mycelial pellets from the same isolate in order to compare these characteristics between both types of propagules. We followed the peroxisome biogenesis and studied the oxidative stress during differentiation from conidia to microsclerotia by transmission electron microscopy after staining with a peroxidase activity marker and by the expression pattern of genes potentially involved in these processes. We found that despite their twice smaller size, microsclerotia exhibited higher dry biomass, yield, and conidial productivity than mycelial pellets, both with and without UV-B and heat stresses. From the 16 genes measured, we found an induction after 96-h differentiation in the oxidative stress marker genes MrcatA, MrcatP, and Mrgpx; the peroxisome biogenesis factors Mrpex5 and Mrpex14/17; and the photoprotection genes Mrlac1 and Mrlac2; and Mrlac3. We concluded that an oxidative stress scenario is induced during microsclerotia differentiation in M. robertsii and confirmed that because of its tolerance to desiccation, heat, and UV-B, this fungal structure could be an excellent candidate for use in biological control of pests under tropical and subtropical climates where heat and UV radiation are detrimental to entomopathogenic fungi survival and persistence.
Collapse
Affiliation(s)
- Flávia R. S. Paixão
- Instituto de Investigaciones Bioquímicas de La Plata, Centro Científico Tecnológico La Plata Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de La Plata, La Plata, Argentina
| | - Carla Huarte-Bonnet
- Instituto de Investigaciones Bioquímicas de La Plata, Centro Científico Tecnológico La Plata Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Gabriel M. Mascarin
- Laboratório de Microbiologia Ambiental, Empresa Brasileira de Pesquisa Agropecuária–Embrapa Meio Ambiente, Jaguariúna, Brazil
| | - Éverton K. K. Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata, Centro Científico Tecnológico La Plata Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
5
|
Abstract
As cells grow, the size and number of their internal organelles increase in order to keep up with increased metabolic requirements. Abnormal size of organelles is a hallmark of cancer and an important aspect of diagnosis in cytopathology. Most organelles vary in either size or number, or both, as a function of cell size, but the mechanisms that create this variation remain unclear. In some cases, organelle size appears to scale with cell size through processes of relative growth, but in others the size may be set by either active measurement systems or genetic programs that instruct organelle biosynthetic activities to create organelles of a size appropriate to a given cell type.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA;
| |
Collapse
|
6
|
Choubey S, Das D, Majumdar S. Cell-to-cell variability in organelle abundance reveals mechanisms of organelle biogenesis. Phys Rev E 2020; 100:022405. [PMID: 31574672 DOI: 10.1103/physreve.100.022405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 12/20/2022]
Abstract
How cells regulate the number of organelles is a fundamental question in cell biology. While decades of experimental work have uncovered four fundamental processes that regulate organelle biogenesis, namely, de novo synthesis, fission, fusion, and decay, a comprehensive understanding of how these processes together control organelle abundance remains elusive. Recent fluorescence microscopy experiments allow for the counting of organelles at the single-cell level. These measurements provide information about the cell-to-cell variability in organelle abundance in addition to the mean level. Motivated by such measurements, we build upon a recent study and analyze a general stochastic model of organelle biogenesis. We compute the exact analytical expressions for the probability distribution of organelle numbers, their mean, and variance across a population of single cells. It is shown that different mechanisms of organelle biogenesis lead to distinct signatures in the distribution of organelle numbers which allow us to discriminate between these various mechanisms. By comparing our theory against published data for peroxisome abundance measurements in yeast, we show that a widely believed model of peroxisome biogenesis that involves de novo synthesis, fission, and decay is inadequate in explaining the data. Also, our theory predicts bimodality in certain limits of the model. Overall, the framework developed here can be harnessed to gain mechanistic insights into the process of organelle biogenesis.
Collapse
Affiliation(s)
- Sandeep Choubey
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, 01187 Dresden, Germany
| | - Dipjyoti Das
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Saptarshi Majumdar
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, 01187 Dresden, Germany
| |
Collapse
|
7
|
Guder P, Lotz-Havla AS, Woidy M, Reiß DD, Danecka MK, Schatz UA, Becker M, Ensenauer R, Pagel P, Büttner L, Muntau AC, Gersting SW. Isoform-specific domain organization determines conformation and function of the peroxisomal biogenesis factor PEX26. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:518-531. [PMID: 30366024 DOI: 10.1016/j.bbamcr.2018.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Peroxisomal biogenesis factor PEX26 is a membrane anchor for the multi-subunit PEX1-PEX6 protein complex that controls ubiquitination and dislocation of PEX5 cargo receptors for peroxisomal matrix protein import. PEX26 associates with the peroxisomal translocation pore via PEX14 and a splice variant (PEX26Δex5) of unknown function has been reported. Here, we demonstrate PEX26 homooligomerization mediated by two heptad repeat domains adjacent to the transmembrane domain. We show that isoform-specific domain organization determines PEX26 oligomerization and impacts peroxisomal β-oxidation and proliferation. PEX26 and PEX26Δex5 displayed different patterns of interaction with PEX2-PEX10 or PEX13-PEX14 complexes, which relate to distinct pre-peroxisomes in the de novo synthesis pathway. Our data support an alternative PEX14-dependent mechanism of peroxisomal membrane association for the splice variant, which lacks a transmembrane domain. Structure-function relationships of PEX26 isoforms explain an extended function in peroxisomal homeostasis and these findings may improve our understanding of the broad phenotype of PEX26-associated human disorders.
Collapse
Affiliation(s)
- Philipp Guder
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Amelie S Lotz-Havla
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Mathias Woidy
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dunja D Reiß
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Marta K Danecka
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ulrich A Schatz
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Marc Becker
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; Labor Becker Olgemöller und Kollegen, 81671 Munich, Germany
| | - Regina Ensenauer
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; Experimental Pediatrics, Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Pagel
- Lehrstuhl für Genomorientierte Bioinformatik, Technische Universität, 85350 Freising, Germany; numares GmbH, Josef-Engert-Str. 9, 93053 Regensburg, Germany
| | - Lars Büttner
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Ania C Muntau
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Søren W Gersting
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
8
|
Yang J, Pieuchot L, Jedd G. Artificial import substrates reveal an omnivorous peroxisomal importomer. Traffic 2018; 19:786-797. [PMID: 30058098 DOI: 10.1111/tra.12607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 11/30/2022]
Abstract
The peroxisome matrix protein importomer has the remarkable ability to transport oligomeric protein substrates across the bilayer. However, the selectivity and relation between import and overall peroxisome homeostasis remain unclear. Here, we microinject artificial import substrates and employ quantitative microscopy to probe limits and capabilities of the importomer. DNA and polysaccharides are "piggyback" imported when noncovalently bound by a peroxisome targeting signal (PTS)-bearing protein. A dimerization domain that can be tuned to systematically vary the binding dissociation constant (Kd ) shows that a Kd in the millimolar range is sufficient to promote piggyback import. Microinjection of import substrate at high levels results in peroxisome growth and a proportional accumulation of peroxisome membrane proteins (PMPs). However, corresponding PMP mRNAs do not accumulate, suggesting that this response is posttranscriptionally regulated. Together, our data show that the importomer can tolerate diverse macromolecular species. Coupling between matrix import and membrane biogenesis suggests that matrix protein expression levels can be sufficient to regulate peroxisome size.
Collapse
Affiliation(s)
- Jing Yang
- Temasek Life Sciences Laboratory, and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Laurent Pieuchot
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, Mulhouse, France
- Université de Strasbourg, Strasbourg, France
| | - Gregory Jedd
- Temasek Life Sciences Laboratory, and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Suaste-Olmos F, Zirión-Martínez C, Takano-Rojas H, Peraza-Reyes L. Meiotic development initiation in the fungus Podospora anserina requires the peroxisome receptor export machinery. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:572-586. [DOI: 10.1016/j.bbamcr.2018.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 01/19/2023]
|
10
|
The peroxisomal AAA-ATPase Pex1/Pex6 unfolds substrates by processive threading. Nat Commun 2018; 9:135. [PMID: 29321502 PMCID: PMC5762779 DOI: 10.1038/s41467-017-02474-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Pex1 and Pex6 form a heterohexameric motor essential for peroxisome biogenesis and function, and mutations in these AAA-ATPases cause most peroxisome-biogenesis disorders in humans. The tail-anchored protein Pex15 recruits Pex1/Pex6 to the peroxisomal membrane, where it performs an unknown function required for matrix-protein import. Here we determine that Pex1/Pex6 from S. cerevisiae is a protein translocase that unfolds Pex15 in a pore-loop-dependent and ATP-hydrolysis-dependent manner. Our structural studies of Pex15 in isolation and in complex with Pex1/Pex6 illustrate that Pex15 binds the N-terminal domains of Pex6, before its C-terminal disordered region engages with the pore loops of the motor, which then processively threads Pex15 through the central pore. Furthermore, Pex15 directly binds the cargo receptor Pex5, linking Pex1/Pex6 to other components of the peroxisomal import machinery. Our results thus support a role of Pex1/Pex6 in mechanical unfolding of peroxins or their extraction from the peroxisomal membrane during matrix-protein import. Pex1 and Pex6 form a heterohexameric Type-2 AAA-ATPase motor whose function in peroxisomal matrix-protein import is still debated. Here, the authors combine structural, biochemical, and cell-biological approaches to show that Pex1/Pex6 is a protein unfoldase, which supports a role in mechanical unfolding of peroxin proteins.
Collapse
|
11
|
Kalel VC, Erdmann R. Unraveling of the Structure and Function of Peroxisomal Protein Import Machineries. Subcell Biochem 2018; 89:299-321. [PMID: 30378029 DOI: 10.1007/978-981-13-2233-4_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peroxisomes are dynamic organelles of eukaryotic cells performing a wide range of functions including fatty acid oxidation, peroxide detoxification and ether-lipid synthesis in mammals. Peroxisomes lack their own DNA and therefore have to import proteins post-translationally. Peroxisomes can import folded, co-factor bound and even oligomeric proteins. The involvement of cycling receptors is a special feature of peroxisomal protein import. Complex machineries of peroxin (PEX) proteins mediate peroxisomal matrix and membrane protein import. Identification of PEX genes was dominated by forward genetic techniques in the early 90s. However, recent developments in proteomic techniques has revolutionized the detailed characterization of peroxisomal protein import. Here, we summarize the current knowledge on peroxisomal protein import with emphasis on the contribution of proteomic approaches to our understanding of the composition and function of the peroxisomal protein import machineries.
Collapse
Affiliation(s)
- Vishal C Kalel
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Ralf Erdmann
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
12
|
How peroxisomes partition between cells. A story of yeast, mammals and filamentous fungi. Curr Opin Cell Biol 2016; 41:73-80. [PMID: 27128775 DOI: 10.1016/j.ceb.2016.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/21/2022]
Abstract
Eukaryotic cells are subcompartmentalized into discrete, membrane-enclosed organelles. These organelles must be preserved in cells over many generations to maintain the selective advantages afforded by compartmentalization. Cells use complex molecular mechanisms of organelle inheritance to achieve high accuracy in the sharing of organelles between daughter cells. Here we focus on how a multi-copy organelle, the peroxisome, is partitioned in yeast, mammalian cells, and filamentous fungi, which differ in their mode of cell division. Cells achieve equidistribution of their peroxisomes through organelle transport and retention processes that act coordinately, although the strategies employed vary considerably by organism. Nevertheless, we propose that mechanisms common across species apply to the partitioning of all membrane-enclosed organelles.
Collapse
|
13
|
The first minutes in the life of a peroxisomal matrix protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:814-20. [PMID: 26408939 DOI: 10.1016/j.bbamcr.2015.09.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 01/30/2023]
Abstract
In the field of intracellular protein sorting, peroxisomes are most famous by their capacity to import oligomeric proteins. The data supporting this remarkable property are abundant and, understandably, have inspired a variety of hypothetical models on how newly synthesized (cytosolic) proteins reach the peroxisome matrix. However, there is also accumulating evidence suggesting that many peroxisomal oligomeric proteins actually arrive at the peroxisome still as monomers. In support of this idea, recent data suggest that PEX5, the shuttling receptor for peroxisomal matrix proteins, is also a chaperone/holdase, binding newly synthesized peroxisomal proteins in the cytosol and blocking their oligomerization. Here we review the data behind these two different perspectives and discuss their mechanistic implications on this protein sorting pathway.
Collapse
|
14
|
Colletotrichum orbiculare FAM1 Encodes a Novel Woronin Body-Associated Pex22 Peroxin Required for Appressorium-Mediated Plant Infection. mBio 2015; 6:e01305-15. [PMID: 26374121 PMCID: PMC4600112 DOI: 10.1128/mbio.01305-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED The cucumber anthracnose fungus Colletotrichum orbiculare forms specialized cells called appressoria for host penetration. We identified a gene, FAM1, encoding a novel peroxin protein that is essential for peroxisome biogenesis and that associates with Woronin bodies (WBs), dense-core vesicles found only in filamentous ascomycete fungi which function to maintain cellular integrity. The fam1 disrupted mutants were unable to grow on medium containing oleic acids as the sole carbon source and were nonpathogenic, being defective in both appressorium melanization and host penetration. Fluorescent proteins carrying peroxisomal targeting signals (PTSs) were not imported into the peroxisomes of fam1 mutants, suggesting that FAM1 is a novel peroxisomal biogenesis gene (peroxin). FAM1 did not show significant homology to any Saccharomyces cerevisiae peroxins but resembled conserved filamentous ascomycete-specific Pex22-like proteins which contain a predicted Pex4-binding site and are potentially involved in recycling PTS receptors from peroxisomes to the cytosol. C. orbiculare FAM1 complemented the peroxisomal matrix protein import defect of the S. cerevisiae pex22 mutant. Confocal microscopy of Fam1-GFP (green fluorescent protein) fusion proteins and immunoelectron microscopy with anti-Fam1 antibodies showed that Fam1 localized to nascent WBs budding from peroxisomes and mature WBs. Association of Fam1 with WBs was confirmed by colocalization with WB matrix protein CoHex1 (C. orbiculare Hex1) and WB membrane protein CoWsc (C. orbiculare Wsc) and by subcellular fractionation and Western blotting with antibodies to Fam1 and CoHex1. In WB-deficient cohex1 mutants, Fam1 was redirected to the peroxisome membrane. Our results show that Fam1 is a WB-associated peroxin required for pathogenesis and raise the possibility that localized receptor recycling occurs in WBs. IMPORTANCE Colletotrichum orbiculare is a fungus causing damaging disease on Cucurbitaceae plants. In this paper, we characterize a novel peroxisome biogenesis gene from this pathogen called FAM1. Although no genes with significant homology are present in Saccharomyces cerevisiae, FAM1 contains a predicted Pex4-binding site typical of Pex22 proteins, which function in the recycling of PTS receptors from peroxisomes to the cytosol. We show that FAM1 complements the defect in peroxisomal matrix protein import of S. cerevisiae pex22 mutants and that fam1 mutants are completely defective in peroxisome function, fatty acid metabolism, and pathogenicity. Remarkably, we found that this novel peroxin is specifically localized on the bounding membrane of Woronin bodies, which are small peroxisome-derived organelles unique to filamentous ascomycete fungi that function in septal pore plugging. Our finding suggests that these fungi have coopted the Woronin body for localized receptor recycling during matrix protein import.
Collapse
|
15
|
Abstract
Organelle function is often directly related to organelle size. However, it is not necessarily absolute size but the organelle-to-cell-size ratio that is critical. Larger cells generally have increased metabolic demands, must segregate DNA over larger distances, and require larger cytokinetic rings to divide. Thus, organelles often must scale to the size of the cell. The need for scaling is particularly acute during early development during which cell size can change rapidly. Here, we highlight scaling mechanisms for cellular structures as diverse as centrosomes, nuclei, and the mitotic spindle, and distinguish them from more general mechanisms of size control. In some cases, scaling is a consequence of the underlying mechanism of organelle size control. In others, size-control mechanisms are not obviously related to cell size, implying that scaling results indirectly from cell-size-dependent regulation of size-control mechanisms.
Collapse
Affiliation(s)
- Simone Reber
- Max Planck Institute of Molecular Genetics and Cell Biology, 01307 Dresden, Germany Integrative Research Institute (IRI) for the Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Nathan W Goehring
- The Francis Crick Institute, WC2A 3LY London, United Kingdom MRC Laboratory of Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom
| |
Collapse
|
16
|
Pieuchot L, Lai J, Loh R, Leong F, Chiam KH, Stajich J, Jedd G. Cellular Subcompartments through Cytoplasmic Streaming. Dev Cell 2015; 34:410-20. [DOI: 10.1016/j.devcel.2015.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/26/2015] [Accepted: 07/30/2015] [Indexed: 01/16/2023]
|
17
|
Brown AI, Rutenberg AD. Cluster coarsening on drops exhibits strong and sudden size-selectivity. SOFT MATTER 2015; 11:3786-3793. [PMID: 25846269 DOI: 10.1039/c5sm00284b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Autophagy, an important process for degradation of cellular components, requires the targeting of autophagy receptor proteins to potential substrates. Receptor proteins have been observed to form clusters on membranes. To understand how receptor clusters might affect autophagy selectivity, we model cluster coarsening on a polydisperse collection of spherical drop-like substrates. Our model receptor corresponds to NBR1, which supports peroxisome autophagy. We recover dynamical scaling of cluster sizes, but find that changing the drop size distribution changes the cluster-size scaling distribution. The magnitude of this effect is similar to how changing the spatial-dimension affects scaling in bulk systems. We also observe a sudden onset of size-selection of the remaining drops with clusters, due to clusters evaporating from smaller drops and growing on larger drops. This coarsening-driven size selection provides a physical mechanism for autophagy selectivity, and may explain reports of size selection during peroxisome degradation.
Collapse
Affiliation(s)
- Aidan I Brown
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, CanadaB3H 4R2.
| | | |
Collapse
|
18
|
Damage response involves mechanisms conserved across plants, animals and fungi. Curr Genet 2015; 61:359-72. [PMID: 25572693 DOI: 10.1007/s00294-014-0467-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/10/2014] [Accepted: 12/18/2014] [Indexed: 12/22/2022]
Abstract
All organisms are constantly exposed to adverse environmental conditions including mechanical damage, which may alter various physiological aspects of growth, development and reproduction. In plant and animal systems, the damage response mechanism has been widely studied. Both systems posses a conserved and sophisticated mechanism that in general is aimed at repairing and preventing future damage, and causes dramatic changes in their transcriptomes, proteomes, and metabolomes. These damage-induced changes are mediated by elaborate signaling networks, which include receptors/sensors, calcium (Ca(2+)) influx, ATP release, kinase cascades, reactive oxygen species (ROS), and oxylipin signaling pathways. In contrast, our current knowledge of how fungi respond to injury is limited, even though various reports indicate that mechanical damage triggers reproductive processes. In fungi, the damage response mechanism has been studied more in depth in Trichoderma atroviride. Interestingly, these studies indicate that the mechanical damage response involves ROS, Ca(2+), kinase cascades, and lipid signaling pathways. Here we compare the response to mechanical damage in plants, animals and fungi and provide evidence that they appear to share signaling molecules and pathways, suggesting evolutionary conservation across the three kingdoms.
Collapse
|
19
|
Abstract
Peroxisomes carry out various oxidative reactions that are tightly regulated to adapt to the changing needs of the cell and varying external environments. Accordingly, they are remarkably fluid and can change dramatically in abundance, size, shape and content in response to numerous cues. These dynamics are controlled by multiple aspects of peroxisome biogenesis that are coordinately regulated with each other and with other cellular processes. Ongoing studies are deciphering the diverse molecular mechanisms that underlie biogenesis and how they cooperate to dynamically control peroxisome utility. These important challenges should lead to an understanding of peroxisome dynamics that can be capitalized upon for bioengineering and the development of therapies to improve human health.
Collapse
Affiliation(s)
- Jennifer J Smith
- 1] Seattle Biomedical Research Institute, 307 Westlake Avenue North, 98109-5240, USA. [2] Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5219, USA
| | | |
Collapse
|
20
|
Mohanty A, McBride HM. Emerging roles of mitochondria in the evolution, biogenesis, and function of peroxisomes. Front Physiol 2013; 4:268. [PMID: 24133452 PMCID: PMC3783979 DOI: 10.3389/fphys.2013.00268] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/10/2013] [Indexed: 12/19/2022] Open
Abstract
In the last century peroxisomes were thought to have an endosymbiotic origin. Along with mitochondria and chloroplasts, peroxisomes primarily regulate their numbers through the growth and division of pre-existing organelles, and they house specific machinery for protein import. These features were considered unique to endosymbiotic organelles, prompting the idea that peroxisomes were key cellular elements that helped facilitate the evolution of multicellular organisms. The functional similarities to mitochondria within mammalian systems expanded these ideas, as both organelles scavenge peroxide and reactive oxygen species, both organelles oxidize fatty acids, and at least in higher eukaryotes, the biogenesis of both organelles is controlled by common nuclear transcription factors of the PPAR family. Over the last decade it has been demonstrated that the fission machinery of both organelles is also shared, and that both organelles act as critical signaling platforms for innate immunity and other pathways. Taken together it is clear that the mitochondria and peroxisomes are functionally coupled, regulating cellular metabolism and signaling through a number of common mechanisms. However, recent work has focused primarily on the role of the ER in the biogenesis of peroxisomes, potentially overshadowing the critical importance of the mitochondria as a functional partner. In this review, we explore the mechanisms of functional coupling of the peroxisomes to the mitochondria/ER networks, providing some new perspectives on the potential contribution of the mitochondria to peroxisomal biogenesis.
Collapse
Affiliation(s)
- Abhishek Mohanty
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | | |
Collapse
|
21
|
Beck J, Echtenacher B, Ebel F. Woronin bodies, their impact on stress resistance and virulence of the pathogenic mouldAspergillus fumigatusand their anchoring at the septal pore of filamentousAscomycota. Mol Microbiol 2013; 89:857-71. [DOI: 10.1111/mmi.12316] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Julia Beck
- Max-von-Pettenkofer-Institute; Ludwig-Maximilians-University; Munich; Germany
| | - Bernd Echtenacher
- Institute for Immunology; University of Regensburg; Regensburg; Germany
| | | |
Collapse
|
22
|
Maruyama JI, Kitamoto K. Expanding functional repertoires of fungal peroxisomes: contribution to growth and survival processes. Front Physiol 2013; 4:177. [PMID: 23882222 PMCID: PMC3713238 DOI: 10.3389/fphys.2013.00177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/23/2013] [Indexed: 11/14/2022] Open
Abstract
It has long been regarded that the primary function of fungal peroxisomes is limited to the β-oxidation of fatty acids, as mutants lacking peroxisomal function fail to grow in minimal medium containing fatty acids as the sole carbon source. However, studies in filamentous fungi have revealed that peroxisomes have diverse functional repertoires. This review describes the essential roles of peroxisomes in the growth and survival processes of filamentous fungi. One such survival mechanism involves the Woronin body, a Pezizomycotina-specific organelle that plugs the septal pore upon hyphal lysis to prevent excessive cytoplasmic loss. A number of reports have demonstrated that Woronin bodies are derived from peroxisomes. Specifically, the Woronin body protein Hex1 is targeted to peroxisomes by peroxisomal targeting sequence 1 (PTS1) and forms a self-assembled structure that buds from peroxisomes to form the Woronin body. Peroxisomal deficiency reduces the ability of filamentous fungi to prevent excessive cytoplasmic loss upon hyphal lysis, indicating that peroxisomes contribute to the survival of these multicellular organisms. Peroxisomes were also recently found to play a vital role in the biosynthesis of biotin, which is an essential cofactor for various carboxylation and decarboxylation reactions. In biotin-prototrophic fungi, peroxisome-deficient mutants exhibit growth defects when grown on glucose as a carbon source due to biotin auxotrophy. The biotin biosynthetic enzyme BioF (7-keto-8-aminopelargonic acid synthase) contains a PTS1 motif that is required for both peroxisomal targeting and biotin biosynthesis. In plants, the BioF protein contains a conserved PTS1 motif and is also localized in peroxisomes. These findings indicate that the involvement of peroxisomes in biotin biosynthesis is evolutionarily conserved between fungi and plants, and that peroxisomes play a key role in fungal growth.
Collapse
|
23
|
Jedd G, Pieuchot L. Multiple modes for gatekeeping at fungal cell-to-cell channels. Mol Microbiol 2012; 86:1291-4. [PMID: 23127137 DOI: 10.1111/mmi.12074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2012] [Indexed: 12/23/2022]
Abstract
Cell-to-cell channels appear to be indispensable for successful multicellular organization and arose independently in animals, plants and fungi. Most of the fungi obtain nutrients from the environment by growing in an exploratory and invasive manner, and this ability depends on multicellular filaments known as hyphae. These cells grow by tip extension and can be divided into compartments by cell walls that typically retain a central pore that allows intercellular transport and cooperation. In the major clade of filamentous Ascomycota, integrity of this coenocytic organization is maintained by Woronin body organelles, which function as emergency patches of septal pores. In this issue of Molecular Microbiology, Bleichrodt and co-workers show that Woronin bodies can also form tight reversible associations with the pore and further link this to variation in levels of compartmental gene expression. These data define an additional modality of Woronin body-dependent gatekeeping. This commentary focuses on the implications of this work and the potential role of different modes of pore gating in controlling the growth and development of fungal tissues.
Collapse
Affiliation(s)
- Gregory Jedd
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore.
| | | |
Collapse
|
24
|
Pieuchot L, Jedd G. Peroxisome Assembly and Functional Diversity in Eukaryotic Microorganisms. Annu Rev Microbiol 2012; 66:237-63. [DOI: 10.1146/annurev-micro-092611-150126] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laurent Pieuchot
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 117604 Singapore; ,
| | - Gregory Jedd
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 117604 Singapore; ,
| |
Collapse
|
25
|
Beach A, Burstein MT, Richard VR, Leonov A, Levy S, Titorenko VI. Integration of peroxisomes into an endomembrane system that governs cellular aging. Front Physiol 2012; 3:283. [PMID: 22936916 PMCID: PMC3424522 DOI: 10.3389/fphys.2012.00283] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/28/2012] [Indexed: 01/01/2023] Open
Abstract
The peroxisome is an organelle that has long been known for its essential roles in oxidation of fatty acids, maintenance of reactive oxygen species (ROS) homeostasis and anaplerotic replenishment of tricarboxylic acid (TCA) cycle intermediates destined for mitochondria. Growing evidence supports the view that these peroxisome-confined metabolic processes play an essential role in defining the replicative and chronological age of a eukaryotic cell. Much progress has recently been made in defining molecular mechanisms that link cellular aging to fatty acid oxidation, ROS turnover, and anaplerotic metabolism in peroxisomes. Emergent studies have revealed that these organelles not only house longevity-defining metabolic reactions but can also regulate cellular aging via their dynamic communication with other cellular compartments. Peroxisomes communicate with other organelles by establishing extensive physical contact with lipid bodies, maintaining an endoplasmic reticulum (ER) to peroxisome connectivity system, exchanging certain metabolites, and being involved in the bidirectional flow of some of their protein and lipid constituents. The scope of this review is to summarize the evidence that peroxisomes are dynamically integrated into an endomembrane system that governs cellular aging. We discuss recent progress in understanding how communications between peroxisomes and other cellular compartments within this system influence the development of a pro- or anti-aging cellular pattern. We also propose a model for the integration of peroxisomes into the endomembrane system governing cellular aging and critically evaluate several molecular mechanisms underlying such integration.
Collapse
Affiliation(s)
- Adam Beach
- Department of Biology, Concordia University, Montreal PQ, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cell size varies widely among different organisms as well as within the same organism in different tissue types and during development, which places variable metabolic and functional demands on organelles and internal structures. A fundamental question is how essential subcellular components scale to accommodate cell size differences. Nuclear transport has emerged as a conserved means of scaling nuclear size. A meiotic spindle scaling factor has been identified as the microtubule-severing protein katanin, which is differentially regulated by phosphorylation in two different-sized frog species. Anaphase mechanisms and levels of chromatin compaction both act to coordinate cell size with spindle and chromosome dimensions to ensure accurate genome distribution during cell division. Scaling relationships and mechanisms for many membrane-bound compartments remain largely unknown and are complicated by their heterogeneity and dynamic nature. This review summarizes cell and organelle size relationships and the experimental approaches that have elucidated mechanisms of intracellular scaling.
Collapse
Affiliation(s)
- Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA.
| | | |
Collapse
|
27
|
Bartoszewska M, Williams C, Kikhney A, Opaliński Ł, van Roermund CWT, de Boer R, Veenhuis M, van der Klei IJ. Peroxisomal proteostasis involves a Lon family protein that functions as protease and chaperone. J Biol Chem 2012; 287:27380-95. [PMID: 22733816 DOI: 10.1074/jbc.m112.381566] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins are subject to continuous quality control for optimal proteostasis. The knowledge of peroxisome quality control systems is still in its infancy. Here we show that peroxisomes contain a member of the Lon family of proteases (Pln). We show that Pln is a heptameric protein and acts as an ATP-fueled protease and chaperone. Hence, Pln is the first chaperone identified in fungal peroxisomes. In cells of a PLN deletion strain peroxisomes contain protein aggregates, a major component of which is catalase-peroxidase. We show that this enzyme is sensitive to oxidative damage. The oxidatively damaged, but not the native protein, is a substrate of the Pln protease. Cells of the pln strain contain enhanced levels of catalase-peroxidase protein but reduced catalase-peroxidase enzyme activities. Together with the observation that Pln has chaperone activity in vitro, our data suggest that catalase-peroxidase aggregates accumulate in peroxisomes of pln cells due to the combined absence of Pln protease and chaperone activities.
Collapse
Affiliation(s)
- Magdalena Bartoszewska
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kluyver Centre for Genomics of Industrial Fermentation, P. O. Box 11103, 9700CC Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|