1
|
Díaz-Flores L, Gutiérrez R, González-Gómez M, García MDP, Carrasco-Juan JL, Martín-Vasallo P, Madrid JF, Díaz-Flores L. Phenomena of Intussusceptive Angiogenesis and Intussusceptive Lymphangiogenesis in Blood and Lymphatic Vessel Tumors. Biomedicines 2024; 12:258. [PMID: 38397861 PMCID: PMC10887293 DOI: 10.3390/biomedicines12020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Intussusceptive angiogenesis (IA) and intussusceptive lymphangiogenesis (IL) play a key role in the growth and morphogenesis of vessels. However, there are very few studies in this regard in vessel tumors (VTs). Our objective is to assess the presence, characteristics, and possible mechanisms of the formation of intussusceptive structures in a broad spectrum of VTs. For this purpose, examples of benign and malignant blood and lymphatic VTs were studied via conventional procedures, semithin sections, and immunochemistry and immunofluorescence microscopy. The results demonstrated intussusceptive structures (pillars, meshes, and folds) in benign (lobular capillary hemangioma or pyogenic granuloma, intravascular papillary endothelial hyperplasia or Masson tumor, sinusoidal hemangioma, cavernous hemangioma, glomeruloid hemangioma, angiolipoma, and lymphangiomas), low-grade malignancy (retiform hemangioendothelioma and Dabska tumor), and malignant (angiosarcoma and Kaposi sarcoma) VTs. Intussusceptive structures showed an endothelial cover and a core formed of connective tissue components and presented findings suggesting an origin through vessel loops, endothelialized thrombus, interendothelial bridges, and/or splitting and fusion, and conditioned VT morphology. In conclusion, the findings support the participation of IA and IL, in association with sprouting angiogenesis, in VTs, and therefore in their growth and morphogenesis, which is of pathophysiological interest and lays the groundwork for in-depth molecular studies with therapeutic purposes.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain (J.-L.C.-J.)
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain (J.-L.C.-J.)
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain (J.-L.C.-J.)
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | - Maria del Pino García
- Department of Pathology, Eurofins Megalab-Hospiten Hospitals, 38100 Tenerife, Spain;
| | - Jose-Luis Carrasco-Juan
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain (J.-L.C.-J.)
| | - Pablo Martín-Vasallo
- Department of Bioquímica, Microbiología, Biología Celular y Genética, University of La Laguna, 38206 Tenerife, Spain;
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain;
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain (J.-L.C.-J.)
| |
Collapse
|
2
|
Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model. MICROMACHINES 2019; 10:mi10070451. [PMID: 31277456 PMCID: PMC6680389 DOI: 10.3390/mi10070451] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022]
Abstract
Sprouting angiogenesis-the infiltration and extension of endothelial cells from pre-existing blood vessels-helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ~3 dyn/cm2 applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ~1 µm/s average transvascular flow across the endothelial monolayer with laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis.
Collapse
|
3
|
Chang CW, Seibel AJ, Song JW. Application of microscale culture technologies for studying lymphatic vessel biology. Microcirculation 2019; 26:e12547. [PMID: 30946511 DOI: 10.1111/micc.12547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/04/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022]
Abstract
Immense progress in microscale engineering technologies has significantly expanded the capabilities of in vitro cell culture systems for reconstituting physiological microenvironments that are mediated by biomolecular gradients, fluid transport, and mechanical forces. Here, we examine the innovative approaches based on microfabricated vessels for studying lymphatic biology. To help understand the necessary design requirements for microfluidic models, we first summarize lymphatic vessel structure and function. Next, we provide an overview of the molecular and biomechanical mediators of lymphatic vessel function. Then we discuss the past achievements and new opportunities for microfluidic culture models to a broad range of applications pertaining to lymphatic vessel physiology. We emphasize the unique attributes of microfluidic systems that enable the recapitulation of multiple physicochemical cues in vitro for studying lymphatic pathophysiology. Current challenges and future outlooks of microscale technology for studying lymphatics are also discussed. Collectively, we make the assertion that further progress in the development of microscale models will continue to enrich our mechanistic understanding of lymphatic biology and physiology to help realize the promise of the lymphatic vasculature as a therapeutic target for a broad spectrum of diseases.
Collapse
Affiliation(s)
- Chia-Wen Chang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Alex J Seibel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio.,The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
4
|
Choi D, Park E, Jung E, Cha B, Lee S, Yu J, Kim PM, Lee S, Hong YJ, Koh CJ, Cho CW, Wu Y, Li Jeon N, Wong AK, Shin L, Kumar SR, Bermejo-Moreno I, Srinivasan RS, Cho IT, Hong YK. Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance. JCI Insight 2019; 4:125068. [PMID: 30676326 DOI: 10.1172/jci.insight.125068] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/17/2019] [Indexed: 01/05/2023] Open
Abstract
The lymphatic system plays crucial roles in tissue homeostasis, lipid absorption, and immune cell trafficking. Although lymphatic valves ensure unidirectional lymph flows, the flow itself controls lymphatic valve formation. Here, we demonstrate that a mechanically activated ion channel Piezo1 senses oscillating shear stress (OSS) and incorporates the signal into the genetic program controlling lymphatic valve development and maintenance. Time-controlled deletion of Piezo1 using a pan-endothelial Cre driver (Cdh5[PAC]-CreERT2) or lymphatic-specific Cre driver (Prox1-CreERT2) equally inhibited lymphatic valve formation in newborn mice. Furthermore, Piezo1 deletion in adult lymphatics caused substantial lymphatic valve degeneration. Piezo1 knockdown in cultured lymphatic endothelial cells (LECs) largely abrogated the OSS-induced upregulation of the lymphatic valve signature genes. Conversely, ectopic Piezo1 overexpression upregulated the lymphatic valve genes in the absence of OSS. Remarkably, activation of Piezo1 using chemical agonist Yoda1 not only accelerated lymphatic valve formation in animals, but also triggered upregulation of some lymphatic valve genes in cultured LECs without exposure to OSS. In summary, our studies together demonstrate that Piezo1 is the force sensor in the mechanotransduction pathway controlling lymphatic valve development and maintenance, and Piezo1 activation is a potentially novel therapeutic strategy for congenital and surgery-associated lymphedema.
Collapse
Affiliation(s)
- Dongwon Choi
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Eunkyung Park
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Eunson Jung
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Somin Lee
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - James Yu
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - Paul M Kim
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Sunju Lee
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Yeo Jin Hong
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Chester J Koh
- Division of Pediatric Urology, Texas Children's Hospital, Baylor Collexge of Medicine, Houston, Texas, USA
| | - Chang-Won Cho
- Department of Surgery, and.,Traditional Food Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, South Korea
| | - Yifan Wu
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | | | | | | | - Ivan Bermejo-Moreno
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | | | - Young-Kwon Hong
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|