1
|
Pavlowsky A, Comyn T, Minatchy J, Geny D, Bun P, Danglot L, Preat T, Plaçais PY. Spaced training activates Miro/Milton-dependent mitochondrial dynamics in neuronal axons to sustain long-term memory. Curr Biol 2024; 34:1904-1917.e6. [PMID: 38642548 DOI: 10.1016/j.cub.2024.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Neurons have differential and fluctuating energy needs across distinct cellular compartments, shaped by brain electrochemical activity associated with cognition. In vitro studies show that mitochondria transport from soma to axons is key to maintaining neuronal energy homeostasis. Nevertheless, whether the spatial distribution of neuronal mitochondria is dynamically adjusted in vivo in an experience-dependent manner remains unknown. In Drosophila, associative long-term memory (LTM) formation is initiated by an early and persistent upregulation of mitochondrial pyruvate flux in the axonal compartment of neurons in the mushroom body (MB). Through behavior experiments, super-resolution analysis of mitochondria morphology in the neuronal soma and in vivo mitochondrial fluorescence recovery after photobleaching (FRAP) measurements in the axons, we show that LTM induction, contrary to shorter-lived memories, is sustained by the departure of some mitochondria from MB neuronal soma and increased mitochondrial dynamics in the axonal compartment. Accordingly, impairing mitochondrial dynamics abolished the increased pyruvate consumption, specifically after spaced training and in the MB axonal compartment, thereby preventing LTM formation. Our results thus promote reorganization of the mitochondrial network in neurons as an integral step in elaborating high-order cognitive processes.
Collapse
Affiliation(s)
- Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Julia Minatchy
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - David Geny
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Philippe Bun
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Lydia Danglot
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
2
|
Fang B, Wang L, Liu S, Zhou M, Ma H, Chang N, Ning G. Sarsasapogenin regulates the immune microenvironment through MAPK/NF-kB signaling pathway and promotes functional recovery after spinal cord injury. Heliyon 2024; 10:e25145. [PMID: 38322941 PMCID: PMC10844052 DOI: 10.1016/j.heliyon.2024.e25145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Spinal cord injury (SCI) occurs as a result of traumatic events that damage the spinal cord, leading to motor, sensory, or autonomic function impairment. Sarsasapogenin (SA), a natural steroidal compound, has been reported to have various pharmacological applications, including the treatment of inflammation, diabetic nephropathy, and neuroprotection. However, the therapeutic efficacy and underlying mechanisms of SA in the context of SCI are still unclear. This research aimed to investigate the therapeutic effects and mechanisms of SA against SCI by integrating network pharmacology analysis and experimental verification. Network pharmacology results suggested that SA may effectively treat SCI by targeting key targets such as TNF, RELA, JUN, MAPK14, and MAPK8. The underlying mechanism of this treatment may involve the MAPK (JNK) signaling pathway and inflammation-related signaling pathways such as TNF and Toll-like receptor signaling pathways. These findings highlight the therapeutic potential of SA in SCI treatment and provide valuable insights into its molecular mechanisms of action. In vivo experiments confirmed the reparative effect of SA on SCI in rats and suggested that SA could repair SCI by modulating the immune microenvironment. In vitro experiments further investigated how SA regulates the immune microenvironment by inhibiting the MAPK/NF-kB pathways. Overall, this study successfully utilized a combination of network pharmacology and experimental verification to establish that SA can regulate the immune microenvironment via the MAPK/NF-kB signaling pathway, ultimately facilitating functional recovery from SCI. Furthermore, these findings emphasize the potential of natural compounds from traditional Chinese medicine as a viable therapy for SCI treatment.
Collapse
Affiliation(s)
- Bing Fang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Othopaedics, Affiliated Hospital of Qingdao Binhai University, Qingdao, China
| | - Liyue Wang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Song Liu
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Mi Zhou
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongpeng Ma
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Nianwei Chang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangzhi Ning
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Diaz LR, Gil-Ranedo J, Jaworek KJ, Nsek N, Marques JP, Costa E, Hilton DA, Bieluczyk H, Warrington O, Hanemann CO, Futschik ME, Bossing T, Barros CS. Ribogenesis boosts controlled by HEATR1-MYC interplay promote transition into brain tumour growth. EMBO Rep 2024; 25:168-197. [PMID: 38225354 PMCID: PMC10897169 DOI: 10.1038/s44319-023-00017-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/17/2024] Open
Abstract
Cell commitment to tumourigenesis and the onset of uncontrolled growth are critical determinants in cancer development but the early events directing tumour initiating cell (TIC) fate remain unclear. We reveal a single-cell transcriptome profile of brain TICs transitioning into tumour growth using the brain tumour (brat) neural stem cell-based Drosophila model. Prominent changes in metabolic and proteostasis-associated processes including ribogenesis are identified. Increased ribogenesis is a known cell adaptation in established tumours. Here we propose that brain TICs boost ribogenesis prior to tumour growth. In brat-deficient TICs, we show that this dramatic change is mediated by upregulated HEAT-Repeat Containing 1 (HEATR1) to promote ribosomal RNA generation, TIC enlargement and onset of overgrowth. High HEATR1 expression correlates with poor glioma patient survival and patient-derived glioblastoma stem cells rely on HEATR1 for enhanced ribogenesis and tumourigenic potential. Finally, we show that HEATR1 binds the master growth regulator MYC, promotes its nucleolar localisation and appears required for MYC-driven ribogenesis, suggesting a mechanism co-opted in ribogenesis reprogramming during early brain TIC development.
Collapse
Affiliation(s)
- Laura R Diaz
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Jon Gil-Ranedo
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Karolina J Jaworek
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
- School of Biological Sciences, Bangor University, LL57 2UW, Bangor, UK
| | - Nsikan Nsek
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Joao Pinheiro Marques
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Eleni Costa
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - David A Hilton
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth, PL6 8DH, Plymouth, UK
| | - Hubert Bieluczyk
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Oliver Warrington
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, London, UK
| | - C Oliver Hanemann
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Matthias E Futschik
- School of Biomedical Sciences, Faculty of Health, Derriford Research Facility, University of Plymouth, PL6 8BU, Plymouth, UK
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal
| | - Torsten Bossing
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Claudia S Barros
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK.
| |
Collapse
|
4
|
Barros CS, Bossing T. Direct isolation of single cells from living brains of Drosophila melanogaster without dissociation for transcriptome analysis. STAR Protoc 2022; 3:101735. [PMID: 36181682 PMCID: PMC9529598 DOI: 10.1016/j.xpro.2022.101735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/08/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023] Open
Abstract
Here, we describe a protocol to remove single identified cells directly from Drosophila living brains and analyze their transcriptome. We detail the steps to harvest fluorescent cells using a capillary under epifluorescence and transmitted light to avoid contamination. We then outline the procedure to obtain the transcriptome by reverse transcription and amplification. The process from cell harvesting to the initiation of reverse transcription only takes 2 min, thus avoiding transcriptional activation of cell damage response or cell death genes. For complete details on the use and execution of this protocol, please refer to Barros and Bossing (2021), Bossing et al. (2012), Gil-Ranedo et al. (2019), and Liu and Bossing (2016).
Collapse
Affiliation(s)
- Claudia S. Barros
- Peninsula Medical School, University of Plymouth. John Bull Building, 16 Research Way, Plymouth PL6 8BU, UK
| | - Torsten Bossing
- Peninsula Medical School, University of Plymouth. John Bull Building, 16 Research Way, Plymouth PL6 8BU, UK,Corresponding author
| |
Collapse
|
5
|
Kulkarni R, Thakur A, Kumar H. Microtubule Dynamics Following Central and Peripheral Nervous System Axotomy. ACS Chem Neurosci 2022; 13:1358-1369. [PMID: 35451811 DOI: 10.1021/acschemneuro.2c00189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Disturbance in the neuronal network leads to instability in the microtubule (MT) railroad of axons, causing hindrance in the intra-axonal transport and making it difficult to re-establish the broken network. Peripheral nervous system (PNS) neurons can stabilize their MTs, leading to the formation of regeneration-promoting structures called "growth cones". However, central nervous system (CNS) neurons lack this intrinsic reparative capability and, instead, form growth-incompetent structures called "retraction bulbs", which have a disarrayed MT network. It is evident from various studies that although axonal regeneration depends on both cell-extrinsic and cell-intrinsic factors, any therapy that aims at axonal regeneration ultimately converges onto MTs. Understanding the neuronal MT dynamics will help develop effective therapeutic strategies in diseases where the MT network gets disrupted, such as spinal cord injury, traumatic brain injury, multiple sclerosis, and amyotrophic lateral sclerosis. It is also essential to know the factors that aid or inhibit MT stabilization. In this review, we have discussed the MT dynamics postaxotomy in the CNS and PNS, and factors that can directly influence MT stability in various diseases.
Collapse
Affiliation(s)
- Riya Kulkarni
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Akshata Thakur
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
6
|
Grespi F, Vianello C, Cagnin S, Giacomello M, De Mario A. The Interplay of Microtubules with Mitochondria–ER Contact Sites (MERCs) in Glioblastoma. Biomolecules 2022; 12:biom12040567. [PMID: 35454156 PMCID: PMC9030160 DOI: 10.3390/biom12040567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Gliomas are heterogeneous neoplasms, classified into grade I to IV according to their malignancy and the presence of specific histological/molecular hallmarks. The higher grade of glioma is known as glioblastoma (GB). Although progress has been made in surgical and radiation treatments, its clinical outcome is still unfavorable. The invasive properties of GB cells and glioma aggressiveness are linked to the reshaping of the cytoskeleton. Recent works suggest that the different susceptibility of GB cells to antitumor immune response is also associated with the extent and function of mitochondria–ER contact sites (MERCs). The presence of MERCs alterations could also explain the mitochondrial defects observed in GB models, including abnormalities of energy metabolism and disruption of apoptotic and calcium signaling. Based on this evidence, the question arises as to whether a MERCs–cytoskeleton crosstalk exists, and whether GB progression is linked to an altered cytoskeleton–MERCs interaction. To address this possibility, in this review we performed a meta-analysis to compare grade I and grade IV GB patients. From this preliminary analysis, we found that GB samples (grade IV) are characterized by altered expression of cytoskeletal and MERCs related genes. Among them, the cytoskeleton-associated protein 4 (CKAP4 or CLIMP-63) appears particularly interesting as it encodes a MERCs protein controlling the ER anchoring to microtubules (MTs). Although further in-depth analyses remain necessary, this perspective review may provide new hints to better understand GB molecular etiopathogenesis, by suggesting that cytoskeletal and MERCs alterations cooperate to exacerbate the cellular phenotype of high-grade GB and that MERCs players can be exploited as novel biomarkers/targets to enhance the current therapy for GB.
Collapse
Affiliation(s)
- Francesca Grespi
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
| | - Caterina Vianello
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
| | - Stefano Cagnin
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
- CRIBI Biotechnology Center, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- CIR-Myo Myology Center, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
| | - Marta Giacomello
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- Correspondence: (M.G.); (A.D.M.)
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- Correspondence: (M.G.); (A.D.M.)
| |
Collapse
|
7
|
Coupe D, Bossing T. Insights into nervous system repair from the fruit fly. Neuronal Signal 2022; 6:NS20210051. [PMID: 35474685 PMCID: PMC9008705 DOI: 10.1042/ns20210051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Millions of people experience injury to the central nervous system (CNS) each year, many of whom are left permanently disabled, providing a challenging hurdle for the field of regenerative medicine. Repair of damage in the CNS occurs through a concerted effort of phagocytosis of debris, cell proliferation and differentiation to produce new neurons and glia, distal axon/dendrite degeneration, proximal axon/dendrite regeneration and axon re-enwrapment. In humans, regeneration is observed within the peripheral nervous system, while in the CNS injured axons exhibit limited ability to regenerate. This has also been described for the fruit fly Drosophila. Powerful genetic tools available in Drosophila have allowed the response to CNS insults to be probed and novel regulators with mammalian orthologs identified. The conservation of many regenerative pathways, despite considerable evolutionary separation, stresses that these signals are principal regulators and may serve as potential therapeutic targets. Here, we highlight the role of Drosophila CNS injury models in providing key insight into regenerative processes by exploring the underlying pathways that control glial and neuronal activation in response to insult, and their contribution to damage repair in the CNS.
Collapse
Affiliation(s)
- David Coupe
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| | - Torsten Bossing
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| |
Collapse
|
8
|
Barros CS, Bossing T. Microtubule disruption upon CNS damage triggers mitotic entry via TNF signaling activation. Cell Rep 2021; 36:109325. [PMID: 34233183 DOI: 10.1016/j.celrep.2021.109325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/12/2020] [Accepted: 06/08/2021] [Indexed: 01/15/2023] Open
Abstract
Repair after traumatic injury often starts with mitotic activation around the lesion edges. Early midline cells in the Drosophila embryonic CNS can enter into division following the traumatic disruption of microtubules. We demonstrate that microtubule disruption activates non-canonical TNF signaling by phosphorylation of TGF-β activated kinase 1 (Tak1) and its target IkappaB kinase (Ik2), culminating in Dorsal/NfkappaB nuclear translocation and Jra/Jun expression. Tak1 and Ik2 are necessary for the damaged-induced divisions. Microtubule disruption caused by Tau accumulation is also reported in Alzheimer's disease (AD). Human Tau expression in Drosophila midline cells is sufficient to induce Tak1 phosphorylation, Dorsal and Jra/Jun expression, and entry into mitosis. Interestingly, activation of Tak1 and Tank binding kinase 1 (Tbk1), the human Ik2 ortholog, and NfkappaB upregulation are observed in AD brains.
Collapse
Affiliation(s)
- Claudia S Barros
- Peninsula Medical School, Faculty of Health, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, UK
| | - Torsten Bossing
- Peninsula Medical School, Faculty of Health, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, UK.
| |
Collapse
|
9
|
Gil-Ranedo J, Gonzaga E, Jaworek KJ, Berger C, Bossing T, Barros CS. STRIPAK Members Orchestrate Hippo and Insulin Receptor Signaling to Promote Neural Stem Cell Reactivation. Cell Rep 2020; 27:2921-2933.e5. [PMID: 31167138 PMCID: PMC6581792 DOI: 10.1016/j.celrep.2019.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/14/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Adult stem cells reactivate from quiescence to maintain tissue homeostasis and in response to injury. How the underlying regulatory signals are integrated is largely unknown. Drosophila neural stem cells (NSCs) also leave quiescence to generate adult neurons and glia, a process that is dependent on Hippo signaling inhibition and activation of the insulin-like receptor (InR)/PI3K/Akt cascade. We performed a transcriptome analysis of individual quiescent and reactivating NSCs harvested directly from Drosophila brains and identified the conserved STRIPAK complex members mob4, cka, and PP2A (microtubule star, mts). We show that PP2A/Mts phosphatase, with its regulatory subunit Widerborst, maintains NSC quiescence, preventing premature activation of InR/PI3K/Akt signaling. Conversely, an increase in Mob4 and Cka levels promotes NSC reactivation. Mob4 and Cka are essential to recruit PP2A/Mts into a complex with Hippo kinase, resulting in Hippo pathway inhibition. We propose that Mob4/Cka/Mts functions as an intrinsic molecular switch coordinating Hippo and InR/PI3K/Akt pathways and enabling NSC reactivation. Transcriptional profiling of reactivating versus quiescent NSCs identifies STRIPAK members PP2A/Mts phosphatase inhibits Akt activation, maintaining NSC quiescence Mob4 and Cka target Mts to Hippo to inhibit its activity and promote NSC reactivation Mob4/Cka/Mts coordinate Hippo and InR/PI3K/Akt signaling in NSCs
Collapse
Affiliation(s)
- Jon Gil-Ranedo
- Faculty of Medicine and Dentistry, University of Plymouth, PL6 8BU Plymouth, UK
| | - Eleanor Gonzaga
- Faculty of Medicine and Dentistry, University of Plymouth, PL6 8BU Plymouth, UK
| | - Karolina J Jaworek
- Faculty of Medicine and Dentistry, University of Plymouth, PL6 8BU Plymouth, UK
| | - Christian Berger
- Institute of Genetics, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Torsten Bossing
- Faculty of Medicine and Dentistry, University of Plymouth, PL6 8BU Plymouth, UK
| | - Claudia S Barros
- Faculty of Medicine and Dentistry, University of Plymouth, PL6 8BU Plymouth, UK.
| |
Collapse
|
10
|
Crews ST. Drosophila Embryonic CNS Development: Neurogenesis, Gliogenesis, Cell Fate, and Differentiation. Genetics 2019; 213:1111-1144. [PMID: 31796551 PMCID: PMC6893389 DOI: 10.1534/genetics.119.300974] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023] Open
Abstract
The Drosophila embryonic central nervous system (CNS) is a complex organ consisting of ∼15,000 neurons and glia that is generated in ∼1 day of development. For the past 40 years, Drosophila developmental neuroscientists have described each step of CNS development in precise molecular genetic detail. This has led to an understanding of how an intricate nervous system emerges from a single cell. These studies have also provided important, new concepts in developmental biology, and provided an essential model for understanding similar processes in other organisms. In this article, the key genes that guide Drosophila CNS development and how they function is reviewed. Features of CNS development covered in this review are neurogenesis, gliogenesis, cell fate specification, and differentiation.
Collapse
Affiliation(s)
- Stephen T Crews
- Department of Biochemistry and Biophysics, Integrative Program for Biological and Genome Sciences, School of Medicine, The University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
11
|
Myachina F, Bosshardt F, Bischof J, Kirschmann M, Lehner CF. Drosophila beta-tubulin 97EF is upregulated at low temperature and stabilizes microtubules. Development 2017; 144:4573-4587. [DOI: 10.1242/dev.156109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/20/2017] [Indexed: 12/22/2022]
Abstract
Cells in ectotherms function normally within an often wide temperature range. As temperature dependence is not uniform across all the distinct biological processes, acclimation presumably requires complex regulation. The molecular mechanisms coping with the disruptive effects of temperature variation are still poorly understood. Interestingly, one of five different beta-tubulin paralogs, betaTub97EF, was among the genes up-regulated at low temperature in cultured Drosophila cells. As microtubules are known to be cold-sensitive, we analyzed whether betaTub97EF protects microtubules at low temperatures. During development at the optimal temperature (25°C), betaTub97EF was expressed in a tissue-specific pattern primarily in the gut. There, as well as in hemocytes, expression was increased at low temperature (14°C). While betaTub97EF mutants were viable and fertile at 25°C, their sensitivity within the well-tolerated range was slightly enhanced during embryogenesis specifically at low temperatures. Changing beta-tubulin isoform ratios in hemocytes demonstrated that beta-Tubulin 97EF has a pronounced microtubule stabilizing effect. Moreover, betaTub97EF is required for normal microtubule stability in the gut. These results suggest that betaTub97EF up-regulation at low temperature contributes to acclimation by stabilizing microtubules.
Collapse
Affiliation(s)
- Faina Myachina
- Institute of Molecular Life Sciences (IMLS), University of Zurich, 8057 Zurich, Switzerland
| | - Fritz Bosshardt
- Institute of Molecular Life Sciences (IMLS), University of Zurich, 8057 Zurich, Switzerland
| | - Johannes Bischof
- Institute of Molecular Life Sciences (IMLS), University of Zurich, 8057 Zurich, Switzerland
| | - Moritz Kirschmann
- Center for Microscopy and Image Analysis, University of Zurich, 8057 Zurich, Switzerland
| | - Christian F. Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Liu B, Bossing T. Single neuron transcriptomics identify SRSF/SR protein B52 as a regulator of axon growth and Choline acetyltransferase splicing. Sci Rep 2016; 6:34952. [PMID: 27725692 PMCID: PMC5057162 DOI: 10.1038/srep34952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/21/2016] [Indexed: 01/14/2023] Open
Abstract
We removed single identified neurons from living Drosophila embryos to gain insight into the transcriptional control of developing neuronal networks. The microarray analysis of the transcriptome of two sibling neurons revealed seven differentially expressed transcripts between both neurons (threshold: log21.4). One transcript encodes the RNA splicing factor B52. Loss of B52 increases growth of axon branches. B52 function is also required for Choline acetyltransferase (ChAT ) splicing. At the end of embryogenesis, loss of B52 function impedes splicing of ChAT, reduces acetylcholine synthesis, and extends the period of uncoordinated muscle twitches during larval hatching. ChAT regulation by SRSF proteins may be a conserved feature since changes in SRSF5 expression and increased acetylcholine levels in brains of bipolar disease patients have been reported recently.
Collapse
Affiliation(s)
- Boyin Liu
- School of Biological Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, U.K
| | - Torsten Bossing
- School of Biomedical and Healthcare Sciences, Plymouth University, John Bull Building, Plymouth, PL6 8BU, U.K
| |
Collapse
|
13
|
McClure CD, Southall TD. Getting Down to Specifics: Profiling Gene Expression and Protein-DNA Interactions in a Cell Type-Specific Manner. ADVANCES IN GENETICS 2015; 91:103-151. [PMID: 26410031 PMCID: PMC4604662 DOI: 10.1016/bs.adgen.2015.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The majority of multicellular organisms are comprised of an extraordinary range of cell types, with different properties and gene expression profiles. Understanding what makes each cell type unique and how their individual characteristics are attributed are key questions for both developmental and neurobiologists alike. The brain is an excellent example of the cellular diversity expressed in the majority of eukaryotes. The mouse brain comprises of approximately 75 million neurons varying in morphology, electrophysiology, and preferences for synaptic partners. A powerful process in beginning to pick apart the mechanisms that specify individual characteristics of the cell, as well as their fate, is to profile gene expression patterns, chromatin states, and transcriptional networks in a cell type-specific manner, i.e., only profiling the cells of interest in a particular tissue. Depending on the organism, the questions being investigated, and the material available, certain cell type-specific profiling methods are more suitable than others. This chapter reviews the approaches presently available for selecting and isolating specific cell types and evaluates their key features.
Collapse
Affiliation(s)
- Colin D. McClure
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Tony D. Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
14
|
Lee KS, Lu B. The myriad roles of Miro in the nervous system: axonal transport of mitochondria and beyond. Front Cell Neurosci 2014; 8:330. [PMID: 25389385 PMCID: PMC4211407 DOI: 10.3389/fncel.2014.00330] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/30/2014] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial rho GTPase (Miro) is a mitochondrial outer membrane protein containing two GTPase domains and two helix-loop-helix Ca2+-binding domains called EF hands. Pioneering genetic studies in Drosophila first revealed a key function of Miro in regulating the axonal transport of mitochondria, during which Miro forms a multi-protein transport complex with Milton and Kinesin heavy chain (KHC) to link trafficking mitochondria with the microtubule (MT) cytoskeleton. Recent studies showed that through binding to the EF hands of Miro and causing conformational changes of Miro and alteration of protein-protein interactions within the transport complex, Ca2+ can alter the engagement of mitochondria with the MT/kinesin network, offering one mechanism to match mitochondrial distribution with neuronal activity. Despite the importance of the Miro/Milton/Kinesin complex in regulating mitochondrial transport in metazoans, not all components of the transport complex are conserved in lower organisms, and transport-independent functions of Miro are emerging. Here we review the diverse functions of the evolutionarily conserved Miro proteins that are relevant to the development, maintenance, and functioning of the nervous system and discuss the potential contribution of Miro dysfunction to the pathogenesis of diseases of the nervous system.
Collapse
Affiliation(s)
- Kyu-Sun Lee
- Department of Pathology, Stanford University School of Medicine Stanford, CA, USA
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
15
|
Prokop A, Beaven R, Qu Y, Sánchez-Soriano N. Using fly genetics to dissect the cytoskeletal machinery of neurons during axonal growth and maintenance. J Cell Sci 2013; 126:2331-41. [PMID: 23729743 DOI: 10.1242/jcs.126912] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The extension of long slender axons is a key process of neuronal circuit formation, both during brain development and regeneration. For this, growth cones at the tips of axons are guided towards their correct target cells by signals. Growth cone behaviour downstream of these signals is implemented by their actin and microtubule cytoskeleton. In the first part of this Commentary, we discuss the fundamental roles of the cytoskeleton during axon growth. We present the various classes of actin- and microtubule-binding proteins that regulate the cytoskeleton, and highlight the important gaps in our understanding of how these proteins functionally integrate into the complex machinery that implements growth cone behaviour. Deciphering such machinery requires multidisciplinary approaches, including genetics and the use of simple model organisms. In the second part of this Commentary, we discuss how the application of combinatorial genetics in the versatile genetic model organism Drosophila melanogaster has started to contribute to the understanding of actin and microtubule regulation during axon growth. Using the example of dystonin-linked neuron degeneration, we explain how knowledge acquired by studying axonal growth in flies can also deliver new understanding in other aspects of neuron biology, such as axon maintenance in higher animals and humans.
Collapse
Affiliation(s)
- Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|
16
|
Abstract
Injured tissues can replace damaged cells by proliferating. In this issue of Developmental Cell, Bossing et al. (2012) provide evidence that developing nervous system cells sense injury using their microtubule cytoskeleton and respond by dividing to replace the missing cells.
Collapse
|