1
|
Li X, Liu B, Wen Y, Wang J, Guo YR, Shi A, Lin L. Coordination of RAB-8 and RAB-11 during unconventional protein secretion. J Cell Biol 2024; 223:e202306107. [PMID: 38019180 PMCID: PMC10686230 DOI: 10.1083/jcb.202306107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Multiple physiology-pertinent transmembrane proteins reach the cell surface via the Golgi-bypassing unconventional protein secretion (UcPS) pathway. By employing C. elegans-polarized intestine epithelia, we recently have revealed that the small GTPase RAB-8/Rab8 serves as an important player in the process. Nonetheless, its function and the relevant UcPS itinerary remain poorly understood. Here, we show that deregulated RAB-8 activity resulted in impaired apical UcPS, which increased sensitivity to infection and environmental stress. We also identified the SNARE VTI-1/Vti1a/b as a new RAB-8-interacting factor involved in the apical UcPS. Besides, RAB-11/Rab11 was capable of recruiting RABI-8/Rabin8 to reduce the guanine nucleotide exchange activity of SMGL-1/GEF toward RAB-8, indicating the necessity of a finely tuned RAB-8/RAB-11 network. Populations of RAB-8- and RAB-11-positive endosomal structures containing the apical UcPS cargo moved toward the apical side. In the absence of RAB-11 or its effectors, the cargo was retained in RAB-8- and RAB-11-positive endosomes, respectively, suggesting that these endosomes are utilized as intermediate carriers for the UcPS.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiabin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yusong R. Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Logue MJE, Farquhar RE, Eckhoff-Björngard Y, Cheung TT, Devor DC, McDonald FJ, Hamilton KL. The exocyst complex is required for the trafficking and delivery of KCa3.1 to the basolateral membrane of polarized epithelia. Am J Physiol Cell Physiol 2023; 324:C1249-C1262. [PMID: 37125772 PMCID: PMC10243536 DOI: 10.1152/ajpcell.00374.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Control of the movement of ions and water across epithelia is essential for homeostasis. Changing the number or activity of ion channels at the plasma membrane is a significant regulator of epithelial transport. In polarized epithelia, the intermediate-conductance calcium-activated potassium channel, KCa3.1 is delivered to the basolateral membrane where it generates and maintains the electrochemical gradients required for epithelial transport. The mechanisms that control the delivery of KCa3.1 to the basolateral membrane are still emerging. Herein, we investigated the role of the highly conserved tethering complex exocyst. In epithelia, exocyst is involved in the tethering of post-Golgi secretory vesicles with the basolateral membrane, which is required before membrane fusion. In our Fisher rat thyroid cell line that stably expresses KCa3.1, siRNA knockdown of either of the exocyst subunits Sec3, Sec6, or Sec8 significantly decreased KCa3.1-specific current. In addition, knockdown of exocyst complex subunits significantly reduced the basolateral membrane protein level of KCa3.1. Finally, co-immunoprecipitation experiments suggest associations between Sec6 and KCa3.1, but not between Sec8 and KCa3.1. Collectively, based on these data and our previous studies, we suggest that components of exocyst complex are crucially important in the tethering of KCa3.1 to the basolateral membrane. After which, Soluble N-ethylmaleimide-sensitive factor (SNF) Attachment Receptors (SNARE) proteins aid in the insertion of KCa3.1-containing vesicles into the basolateral membrane of polarized epithelia.NEW & NOTEWORTHY Our Ussing chamber and immunoblot experiments demonstrate that when subunits of the exocyst complex were transiently knocked down, this significantly reduced the basolateral population and functional expression of KCa3.1. These data suggest, combined with our protein association experiments, that the exocyst complex regulates the tethering of KCa3.1-containing vesicles to the basolateral membrane prior to the SNARE-dependent insertion of channels into the basolateral membrane of epithelial cells.
Collapse
Affiliation(s)
- Matthew J E Logue
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rachel E Farquhar
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Yoakim Eckhoff-Björngard
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel C Devor
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kirk L Hamilton
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Sulpizio A, Herpin L, Gingras R, Liu W, Bretscher A. Generation and characterization of conditional yeast mutants affecting each of the 2 essential functions of the scaffolding proteins Boi1/2 and Bem1. G3 (BETHESDA, MD.) 2022; 12:jkac273. [PMID: 36218417 PMCID: PMC9713459 DOI: 10.1093/g3journal/jkac273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/23/2022] [Indexed: 02/17/2024]
Abstract
Boi1 and Boi2 are closely related yeast scaffolding proteins, either of which can perform an essential function. Previous studies have suggested a role in cell polarity, interacting with lipids, components of the late secretory pathway, and actin nucleators. We report detailed studies of their localization, dynamics, and the generation and characterization of conditional mutants. Boi1/2 are present on the plasma membrane in dynamic patches, then at the bud neck during cytokinesis. These distributions are unaffected by perturbation of the actin cytoskeleton or the secretory pathway. We identify 2 critical aromatic residues, present in both Boi1 and Boi2, in the essential C-terminal Pleckstrin-Homology domain, that cause temperature-sensitive growth resulting in defects in polarized growth leading to cell lysis. The scaffolding protein, Bem1, colocalizes with Boi1 in patches at the growing bud, and at the bud neck, the latter requiring the N-terminal SH3 domain of Boi1p. Loss of function of Boi1-SH3 domain renders Bem1 essential, which can be fully replaced by a fusion of the SH3b and PB1 domains of Bem1. Thus, the 2 essential functions of the Boi1/2/Bem1 proteins can be satisfied by Bem1-SH3b-PB1 and Boi1-Pleckstrin-Homology. Generation and characterization of conditional mutations in the essential function of Bem1 reveal a slow onset of defects in polarized growth, which is difficult to define a specific initial defect. This study provides more details into the functions of Boi1/2 and their relationship with Bem1 and presents the generation of conditional mutants that will be useful for future genetic analysis.
Collapse
Affiliation(s)
- Abigail Sulpizio
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Lancelot Herpin
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Robert Gingras
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Wenyu Liu
- BioAnalytical Sciences, Genentech Inc., South San Francisco, CA 94080, USA
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Gingras RM, Sulpizio AM, Park J, Bretscher A. High-resolution secretory timeline from vesicle formation at the Golgi to fusion at the plasma membrane in S. cerevisiae. eLife 2022; 11:e78750. [PMID: 36331188 PMCID: PMC9671497 DOI: 10.7554/elife.78750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Most of the components in the yeast secretory pathway have been studied, yet a high-resolution temporal timeline of their participation is lacking. Here, we define the order of acquisition, lifetime, and release of critical components involved in late secretion from the Golgi to the plasma membrane. Of particular interest is the timing of the many reported effectors of the secretory vesicle Rab protein Sec4, including the myosin-V Myo2, the exocyst complex, the lgl homolog Sro7, and the small yeast-specific protein Mso1. At the trans-Golgi network (TGN) Sec4's GEF, Sec2, is recruited to Ypt31-positive compartments, quickly followed by Sec4 and Myo2 and vesicle formation. While transported to the bud tip, the entire exocyst complex, including Sec3, is assembled on to the vesicle. Before fusion, vesicles tether for 5 s, during which the vesicle retains the exocyst complex and stimulates lateral recruitment of Rho3 on the plasma membrane. Sec2 and Myo2 are rapidly lost, followed by recruitment of cytosolic Sro7, and finally the SM protein Sec1, which appears for just 2 s prior to fusion. Perturbation experiments reveal an ordered and robust series of events during tethering that provide insights into the function of Sec4 and effector exchange.
Collapse
Affiliation(s)
- Robert M Gingras
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Abigail M Sulpizio
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Joelle Park
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
5
|
Maity D, Bera K, Li Y, Ge Z, Ni Q, Konstantopoulos K, Sun SX. Extracellular Hydraulic Resistance Enhances Cell Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200927. [PMID: 36031406 PMCID: PMC9561764 DOI: 10.1002/advs.202200927] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Cells migrating in vivo encounter microenvironments with varying physical properties. One such physical variable is the fluid viscosity surrounding the cell. Increased viscosity is expected to increase the hydraulic resistance experienced by the cell and decrease cell speed. The authors demonstrate that contrary to this expected result, cells migrate faster in high viscosity media on 2-dimensional substrates. Both actin dynamics and water dynamics driven by ion channel activity are examined. Results show that cells increase in area in high viscosity and actomyosin dynamics remain similar. Inhibiting ion channel fluxes in high viscosity media results in a large reduction in cell speed, suggesting that water flux contributes to the observed speed increase. Moreover, inhibiting actin-dependent vesicular trafficking that transports ion channels to the cell boundary changes ion channel spatial positioning and reduces cell speed in high viscosity media. Cells also display altered Ca2+ activity in high viscosity media, and when cytoplasmic Ca2+ is sequestered, cell speed reduction and altered ion channel positioning are observed. Taken together, it is found that the cytoplasmic actin-phase and water-phase are coupled to drive cell migration in high viscosity media, in agreement with physical modeling that also predicts the observed cell speedup in high viscosity environments.
Collapse
Affiliation(s)
- Debonil Maity
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMDUSA
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
| | - Kaustav Bera
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMDUSA
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
| | - Yizeng Li
- Department of Biomedical EngineeringBinghamton University, State University of New YorkBinghamtonNYUSA
| | - Zhuoxu Ge
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMDUSA
| | - Qin Ni
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMDUSA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMDUSA
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
| | - Sean X. Sun
- Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMDUSA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMDUSA
- Center for Cell DynamicsJohns Hopkins School of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| |
Collapse
|
6
|
A multiscale model of the regulation of aquaporin 2 recycling. NPJ Syst Biol Appl 2022; 8:16. [PMID: 35534498 PMCID: PMC9085758 DOI: 10.1038/s41540-022-00223-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
The response of cells to their environment is driven by a variety of proteins and messenger molecules. In eukaryotes, their distribution and location in the cell are regulated by the vesicular transport system. The transport of aquaporin 2 between membrane and storage region is a crucial part of the water reabsorption in renal principal cells, and its malfunction can lead to Diabetes insipidus. To understand the regulation of this system, we aggregated pathways and mechanisms from literature and derived three models in a hypothesis-driven approach. Furthermore, we combined the models to a single system to gain insight into key regulatory mechanisms of Aquaporin 2 recycling. To achieve this, we developed a multiscale computational framework for the modeling and simulation of cellular systems. The analysis of the system rationalizes that the compartmentalization of cAMP in renal principal cells is a result of the protein kinase A signalosome and can only occur if specific cellular components are observed in conjunction. Endocytotic and exocytotic processes are inherently connected and can be regulated by the same protein kinase A signal.
Collapse
|
7
|
Pepper I, Galkin VE. Actomyosin Complex. Subcell Biochem 2022; 99:421-470. [PMID: 36151385 PMCID: PMC9710302 DOI: 10.1007/978-3-031-00793-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Formation of cross-bridges between actin and myosin occurs ubiquitously in eukaryotic cells and mediates muscle contraction, intracellular cargo transport, and cytoskeletal remodeling. Myosin motors repeatedly bind to and dissociate from actin filaments in a cycle that transduces the chemical energy from ATP hydrolysis into mechanical force generation. While the general layout of surface elements within the actin-binding interface is conserved among myosin classes, sequence divergence within these motifs alters the specific contacts involved in the actomyosin interaction as well as the kinetics of mechanochemical cycle phases. Additionally, diverse lever arm structures influence the motility and force production of myosin molecules during their actin interactions. The structural differences generated by myosin's molecular evolution have fine-tuned the kinetics of its isoforms and adapted them for their individual cellular roles. In this chapter, we will characterize the structural and biochemical basis of the actin-myosin interaction and explain its relationship with myosin's cellular roles, with emphasis on the structural variation among myosin isoforms that enables their functional specialization. We will also discuss the impact of accessory proteins, such as the troponin-tropomyosin complex and myosin-binding protein C, on the formation and regulation of actomyosin cross-bridges.
Collapse
Affiliation(s)
- Ian Pepper
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
8
|
Zhang W, Huang L, Zhang C, Staiger CJ. Arabidopsis myosin XIK interacts with the exocyst complex to facilitate vesicle tethering during exocytosis. THE PLANT CELL 2021; 33:2454-2478. [PMID: 33871640 PMCID: PMC8364239 DOI: 10.1093/plcell/koab116] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/13/2021] [Indexed: 05/17/2023]
Abstract
Myosin motors are essential players in secretory vesicle trafficking and exocytosis in yeast and mammalian cells; however, similar roles in plants remain a matter for debate, at least for diffusely growing cells. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) myosin XIK, via its globular tail domain (GTD), participates in the vesicle tethering step of exocytosis through direct interactions with the exocyst complex. Specifically, myosin XIK GTD bound directly to several exocyst subunits in vitro and functional fluorescently tagged XIK colocalized with multiple exocyst subunits at plasma membrane (PM)-associated stationary foci. Moreover, genetic and pharmacological inhibition of myosin XI activity reduced the rate of appearance and lifetime of stationary exocyst complexes at the PM. By tracking single exocytosis events of cellulose synthase (CESA) complexes with high spatiotemporal resolution imaging and pair-wise colocalization of myosin XIK, exocyst subunits, and CESA6, we demonstrated that XIK associates with secretory vesicles earlier than exocyst and is required for the efficient localization and normal dynamic behavior of exocyst complex at the PM tethering site. This study reveals an important functional role for myosin XI in secretion and provides insights about the dynamic regulation of exocytosis in plants.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lei Huang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, Indiana 47907, USA
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, Indiana 47907, USA
- Author for correspondence:
| |
Collapse
|
9
|
Dünkler A, Leda M, Kromer JM, Neller J, Gronemeyer T, Goryachev AB, Johnsson N. Type V myosin focuses the polarisome and shapes the tip of yeast cells. J Cell Biol 2021; 220:211845. [PMID: 33656555 PMCID: PMC7933982 DOI: 10.1083/jcb.202006193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 11/22/2022] Open
Abstract
The polarisome is a cortical proteinaceous microcompartment that organizes the growth of actin filaments and the fusion of secretory vesicles in yeasts and filamentous fungi. Polarisomes are compact, spotlike structures at the growing tips of their respective cells. The molecular forces that control the form and size of this microcompartment are not known. Here we identify a complex between the polarisome subunit Pea2 and the type V Myosin Myo2 that anchors Myo2 at the cortex of yeast cells. We discovered a point mutation in the cargo-binding domain of Myo2 that impairs the interaction with Pea2 and consequently the formation and focused localization of the polarisome. Cells carrying this mutation grow round instead of elongated buds. Further experiments and biophysical modeling suggest that the interactions between polarisome-bound Myo2 motors and dynamic actin filaments spatially focus the polarisome and sustain its compact shape.
Collapse
Affiliation(s)
- Alexander Dünkler
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm, Germany
| | - Marcin Leda
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Jan-Michael Kromer
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm, Germany
| | - Joachim Neller
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm, Germany
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm, Germany
| |
Collapse
|
10
|
Orr RG, Furt F, Warner EL, Agar EM, Garbarino JM, Cabral SE, Dubuke ML, Butt AM, Munson M, Vidali L. Rab-E and its interaction with myosin XI are essential for polarised cell growth. THE NEW PHYTOLOGIST 2021; 229:1924-1936. [PMID: 33098085 PMCID: PMC8168425 DOI: 10.1111/nph.17023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/12/2020] [Indexed: 05/07/2023]
Abstract
The fundamental process of polarised exocytosis requires the interconnected activity of molecular motors trafficking vesicular cargo within a dynamic cytoskeletal network. In plants, few mechanistic details are known about how molecular motors, such as myosin XI, associate with their secretory cargo to support the ubiquitous processes of polarised growth and cell division. Live-cell imaging coupled with targeted gene knockouts and a high-throughput RNAi assay enabled the first characterisation of the loss of Rab-E function. Yeast two-hybrid and subsequent in silico structural prediction uncovered a specific interaction between Rab-E and myosin XI that is conserved between P. patens and A. thaliana. Rab-E co-localises with myosin XI at sites of active exocytosis, and at the growing tip both proteins are spatiotemporally coupled. Rab-E is required for normal plant growth in P. patens and the rab-E and myosin XI phenotypes are rescued by A. thaliana's Rab-E1c and myosin XI-K/E, respectively. Both PpMyoXI and AtMyoXI-K interact with PpRabE14, and the interaction is specifically mediated by PpMyoXI residue V1422. This interaction is required for polarised growth. Our results suggest that the interaction of Rab-E and myosin XI is a conserved feature of polarised growth in plants.
Collapse
Affiliation(s)
- Robert G Orr
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Fabienne Furt
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Erin L Warner
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Erin M Agar
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Jennifer M Garbarino
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Sarah E Cabral
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Michelle L Dubuke
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Allison M Butt
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| |
Collapse
|
11
|
Wong S, Weisman LS. Roles and regulation of myosin V interaction with cargo. Adv Biol Regul 2021; 79:100787. [PMID: 33541831 PMCID: PMC7920922 DOI: 10.1016/j.jbior.2021.100787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 05/08/2023]
Abstract
A major question in cell biology is, how are organelles and large macromolecular complexes transported within a cell? Myosin V molecular motors play critical roles in the distribution of organelles, vesicles, and mRNA. Mis-localization of organelles that depend on myosin V motors underlie diseases in the skin, gut, and brain. Thus, the delivery of organelles to their proper destination is important for animal physiology and cellular function. Cargoes attach to myosin V motors via cargo specific adaptor proteins, which transiently bridge motors to their cargoes. Regulation of these adaptor proteins play key roles in the regulation of cargo transport. Emerging studies reveal that cargo adaptors play additional essential roles in the activation of myosin V, and the regulation of actin filaments. Here, we review how motor-adaptor interactions are controlled to regulate the proper loading and unloading of cargoes, as well as roles of adaptor proteins in the regulation of myosin V activity and the dynamics of actin filaments.
Collapse
Affiliation(s)
- Sara Wong
- Cell and Molecular Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Lois S Weisman
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, United States.
| |
Collapse
|
12
|
Nguyen V, Smothers J, Ballhorn P, Kottapalli S, Ly A, Villarreal J, Kim K. Myosin V-mediated transport of Snc1 and Vps10 toward the trans-Golgi network. Eur J Cell Biol 2020; 100:151143. [PMID: 33277053 DOI: 10.1016/j.ejcb.2020.151143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 10/30/2020] [Accepted: 11/27/2020] [Indexed: 12/23/2022] Open
Abstract
Retrieval of cargo proteins from the endosome towards the trans-Golgi network (TGN) is a crucial intracellular process for cellular homeostasis. Its dysfunction is associated with pathogenesis of Alzheimer and Parkinson's diseases. Myosin family proteins are cellular motors walking along actin filaments by utilizing the chemical energy from ATP hydrolysis, known to involve in pleiotropic cellular trafficking pathways. However, the question of whether myosins play a role in the trafficking of Snc1 and Vps10 has not been addressed yet. The present study assesses the potential roles of all five yeast myosins in the recycling of two membrane cargo, Snc1 and Vps10. It appears that all myosins except Myo2 are not required for the Snc1 traffic, while it was found that Myo1 and 2 play important roles for Vps10 retrieval from the endosome and the vacuole. Multiple myo2 mutants harboring a point mutation in the actin binding or the cargo binding tail domain were characterized to demonstrate abnormal Vps10-GFP and GFP-Snc1 distribution phenotypes, suggesting a severe defect in their sorting and trafficking at the endosome. Furthermore, Vps10-GFP patches in all tested myo2 mutants were found to be near stationary with quantitative live cell imaging. Finally, we found that actin cables in the myo2 mutant cells were considerably disrupted, which may aggravate the trafficking of Vps10 from the endosome. Together, our results provide novel insights into the function of Myo-family proteins in the recycling traffic of Vps10 and Snc1 destined for the TGN.
Collapse
Affiliation(s)
- Vy Nguyen
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
| | - Jared Smothers
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA; Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75235-8816, USA
| | - Paul Ballhorn
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
| | - Sravya Kottapalli
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
| | - Anh Ly
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
| | - Julia Villarreal
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA.
| |
Collapse
|
13
|
Glutamatergic Receptor Trafficking and Delivery: Role of the Exocyst Complex. Cells 2020; 9:cells9112402. [PMID: 33153008 PMCID: PMC7693776 DOI: 10.3390/cells9112402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022] Open
Abstract
Cells comprise several intracellular membrane compartments that allow them to function properly. One of these functions is cargo movement, typically proteins and membranes within cells. These cargoes ride microtubules through vesicles from Golgi and recycling endosomes to the plasma membrane in order to be delivered and exocytosed. In neurons, synaptic functions employ this cargo trafficking to maintain inter-neuronal communication optimally. One of the complexes that oversee vesicle trafficking and tethering is the exocyst. The exocyst is a protein complex containing eight subunits first identified in yeast and then characterized in multicellular organisms. This complex is related to several cellular processes, including cellular growth, division, migration, and morphogenesis, among others. It has been associated with glutamatergic receptor trafficking and tethering into the synapse, providing the molecular machinery to deliver receptor-containing vesicles into the plasma membrane in a constitutive manner. In this review, we discuss the evidence so far published regarding receptor trafficking and the exocyst complex in both basal and stimulated levels, comparing constitutive trafficking and long-term potentiation-related trafficking.
Collapse
|
14
|
Niu F, Sun K, Wei W, Yu C, Wei Z. F-actin disassembly factor MICAL1 binding to Myosin Va mediates cargo unloading during cytokinesis. SCIENCE ADVANCES 2020; 6:6/45/eabb1307. [PMID: 33158857 PMCID: PMC7673715 DOI: 10.1126/sciadv.abb1307] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/25/2020] [Indexed: 05/08/2023]
Abstract
Motor-mediated intracellular trafficking requires motors to position cargoes at proper locations. Myosin Va (MyoVa), an actin-based motor, is a classic model for studying cargo transport. However, the molecular basis underlying cargo unloading in MyoVa-mediated transport has remained enigmatic. We have identified MICAL1, an F-actin disassembly regulator, as a binding partner of MyoVa and shown that MICAL1-MyoVa interaction is critical for localization of MyoVa at the midbody. By binding to MICAL1, MyoVa-mediated transport is terminated, resulting in vesicle unloading at the midbody for efficient cytokinesis. The MyoVa/MICAL1 complex structure reveals that MICAL1 and F-actin assembly factors, Spires, share an overlapped binding surface on MyoVa, suggesting a regulatory role of F-actin dynamics in cargo unloading. Down-regulating F-actin disassembly by a MICAL1 mutant significantly reduces MyoVa and vesicles accumulating at the midbody. Collectively, our findings demonstrate that MyoVa binds to MICAL1 at the midbody destination and triggers F-actin disassembly to unload the vesicle cargo.
Collapse
Affiliation(s)
- Fengfeng Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kang Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China
| | - Wenjie Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Gingras RM, Lwin KM, Miller AM, Bretscher A. Yeast Rgd3 is a phospho-regulated F-BAR-containing RhoGAP involved in the regulation of Rho3 distribution and cell morphology. Mol Biol Cell 2020; 31:2570-2582. [PMID: 32941095 PMCID: PMC7851877 DOI: 10.1091/mbc.e20-05-0288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Polarized growth requires the integration of polarity pathways with the delivery of exocytic vesicles for cell expansion and counterbalancing endocytic uptake. In budding yeast, the myosin-V Myo2 is aided by the kinesin-related protein Smy1 in carrying out the essential Sec4-dependent transport of secretory vesicles to sites of polarized growth. Overexpression suppressors of a conditional myo2 smy1 mutant identified a novel F-BAR (Fes/CIP4 homology-Bin-Amphiphysin-Rvs protein)-containing RhoGAP, Rgd3, that has activity primarily on Rho3, but also Cdc42. Internally tagged Rho3 is restricted to the plasma membrane in a gradient corresponding to cell polarity that is altered upon Rgd3 overexpression. Rgd3 itself is localized to dynamic polarized vesicles that, while distinct from constitutive secretory vesicles, are dependent on actin and Myo2 function. In vitro Rgd3 associates with liposomes in a PIP2-enhanced manner. Further, the Rgd3 C-terminal region contains several phosphorylatable residues within a reported SH3-binding motif. An unphosphorylated mimetic construct is active and highly polarized, while the phospho-mimetic form is not. Rgd3 is capable of activating Myo2, dependent on its phospho state, and Rgd3 overexpression rescues aberrant Rho3 localization and cell morphologies seen at the restrictive temperature in the myo2 smy1 mutant. We propose a model where Rgd3 functions to modulate and maintain Rho3 polarity during growth.
Collapse
Affiliation(s)
- Robert M Gingras
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Kyaw Myo Lwin
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Abigail M Miller
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
16
|
Glomb O, Wu Y, Rieger L, Rüthnick D, Mulaw MA, Johnsson N. The cell polarity proteins Boi1 and Boi2 direct an actin nucleation complex to sites of exocytosis in Saccharomyces cerevisiae. J Cell Sci 2020; 133:jcs.237982. [PMID: 31964708 DOI: 10.1242/jcs.237982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/19/2019] [Indexed: 01/13/2023] Open
Abstract
Owing to the local enrichment of factors that influence its dynamics and organization, the actin cytoskeleton displays different shapes and functions within the same cell. In yeast cells, post-Golgi vesicles ride on long actin cables to the bud tip. The proteins Boi1 and Boi2 (Boi1/2) participate in tethering and docking these vesicles to the plasma membrane. Here, we show in Saccharomyces cerevisiae that Boi1/2 also recruit nucleation and elongation factors to form actin filaments at sites of exocytosis. Disrupting the connection between Boi1/2 and the nucleation factor Bud6 impairs filament formation, reduces the directed movement of the vesicles to the tip and shortens the vesicles' tethering time at the cortex. Transplanting Boi1 from the bud tip to the peroxisomal membrane partially redirects the actin cytoskeleton and the vesicular flow towards the peroxisome, and creates an alternative, rudimentary vesicle-docking zone. We conclude that Boi1/2, through interactions with Bud6 and Bni1, induce the formation of a cortical actin structure that receives and aligns incoming vesicles before fusion with the membrane.
Collapse
Affiliation(s)
- Oliver Glomb
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Yehui Wu
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Lucia Rieger
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Diana Rüthnick
- ZMBH, University of Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Medhanie A Mulaw
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| |
Collapse
|
17
|
Zhang W, Cai C, Staiger CJ. Myosins XI Are Involved in Exocytosis of Cellulose Synthase Complexes. PLANT PHYSIOLOGY 2019; 179:1537-1555. [PMID: 30705068 PMCID: PMC6446754 DOI: 10.1104/pp.19.00018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/20/2019] [Indexed: 05/18/2023]
Abstract
In plants, cellulose is synthesized at the cell surface by plasma membrane (PM)-localized cellulose synthase (CESA) complexes (CSCs). The molecular and cellular mechanisms that underpin delivery of CSCs to the PM, however, are poorly understood. Cortical microtubules have been shown to interact with CESA-containing compartments and mark the site for CSC delivery, but are not required for the delivery itself. Here, we demonstrate that myosin XI and the actin cytoskeleton mediate CSC delivery to the PM by coordinating the exocytosis of CESA-containing compartments. Measurement of cellulose content indicated that cellulose biosynthesis was significantly reduced in a myosin xik xi1 xi2 triple-knockout mutant. By combining genetic and pharmacological disruption of myosin activity with quantitative live-cell imaging, we observed decreased abundance of PM-localized CSCs and reduced delivery rate of CSCs in myosin-deficient cells. These phenotypes correlated with a significant increase in failed vesicle secretion events at the PM as well as an abnormal accumulation of CESA-containing compartments at the cell cortex. Through high-resolution spatiotemporal assays of cortical vesicle behavior, we identified defects in CSC vesicle tethering and fusion at the PM. Furthermore, disruption of myosin activity reduced the delivery of several other secretory markers to the PM and reduced constitutive and receptor-mediated endocytosis. These findings reveal a previously undescribed role for myosin in vesicle secretion and cellulose production at the cytoskeleton-PM-cell wall nexus.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Chao Cai
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
18
|
Ahmed SM, Nishida-Fukuda H, Li Y, McDonald WH, Gradinaru CC, Macara IG. Exocyst dynamics during vesicle tethering and fusion. Nat Commun 2018; 9:5140. [PMID: 30510181 PMCID: PMC6277416 DOI: 10.1038/s41467-018-07467-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/01/2018] [Indexed: 11/15/2022] Open
Abstract
The exocyst is a conserved octameric complex that tethers exocytic vesicles to the plasma membrane prior to fusion. Exocyst assembly and delivery mechanisms remain unclear, especially in mammalian cells. Here we tagged multiple endogenous exocyst subunits with sfGFP or Halo using Cas9 gene-editing, to create single and double knock-in lines of mammary epithelial cells, and interrogated exocyst dynamics by high-speed imaging and correlation spectroscopy. We discovered that mammalian exocyst is comprised of tetrameric subcomplexes that can associate independently with vesicles and plasma membrane and are in dynamic equilibrium with octamer and monomers. Membrane arrival times are similar for subunits and vesicles, but with a small delay (~80msec) between subcomplexes. Departure of SEC3 occurs prior to fusion, whereas other subunits depart just after fusion. About 9 exocyst complexes are associated per vesicle. These data reveal the mammalian exocyst as a remarkably dynamic two-part complex and provide important insights into assembly/disassembly mechanisms. Exocyst complex tethers vesicles to plasma membranes, but assembly mechanisms remain unclear. Here, the authors use Cas9 gene editing to tag exocyst components in epithelial cells, and find that exocyst subcomplexes are recruited to membranes independently, but are both needed for vesicle fusion.
Collapse
Affiliation(s)
- Syed Mukhtar Ahmed
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA.
| | - Hisayo Nishida-Fukuda
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, 7910295, Japan.,Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, 7910295, Japan.,Department of Genome Editing, Institute of Biomedical Sciences, Kansai Medical University, Hirakata, 5731010, Japan
| | - Yuchong Li
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada.,Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - W Hayes McDonald
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada.,Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA.
| |
Collapse
|
19
|
Zhu YH, Hyun J, Pan YZ, Hopper JE, Rizo J, Wu JQ. Roles of the fission yeast UNC-13/Munc13 protein Ync13 in late stages of cytokinesis. Mol Biol Cell 2018; 29:2259-2279. [PMID: 30044717 PMCID: PMC6249806 DOI: 10.1091/mbc.e18-04-0225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cytokinesis is a complicated yet conserved step of the cell-division cycle that requires the coordination of multiple proteins and cellular processes. Here we describe a previously uncharacterized protein, Ync13, and its roles during fission yeast cytokinesis. Ync13 is a member of the UNC-13/Munc13 protein family, whose animal homologues are essential priming factors for soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex assembly during exocytosis in various cell types, but no roles in cytokinesis have been reported. We find that Ync13 binds to lipids in vitro and dynamically localizes to the plasma membrane at cell tips during interphase and at the division site during cytokinesis. Deletion of Ync13 leads to defective septation and exocytosis, uneven distribution of cell-wall enzymes and components of cell-wall integrity pathway along the division site and massive cell lysis during cell separation. Interestingly, loss of Ync13 compromises endocytic site selection at the division plane. Collectively, we find that Ync13 has a novel function as an UNC-13/Munc13 protein in coordinating exocytosis, endocytosis, and cell-wall integrity during fission yeast cytokinesis.
Collapse
Affiliation(s)
- Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Joanne Hyun
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Yun-Zu Pan
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - James E Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
20
|
Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis. Nat Cell Biol 2018; 20:175-185. [DOI: 10.1038/s41556-017-0018-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022]
|
21
|
Abstract
Polarized exocytosis is generally considered as the multistep vesicular trafficking process in which membrane-bounded carriers are transported from the Golgi or endosomal compartments to specific sites of the plasma membrane. Polarized exocytosis in cells is achieved through the coordinated actions of membrane trafficking machinery and cytoskeleton orchestrated by signaling molecules such as the Rho family of small GTPases. Elucidating the molecular mechanisms of polarized exocytosis is essential to our understanding of a wide range of pathophysiological processes from neuronal development to tumor invasion.
Collapse
Affiliation(s)
- Jingwen Zeng
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Shanshan Feng
- Key Laboratory for Regenerative Medicine of Ministry of Education and Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, P.R. China
| | - Bin Wu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| |
Collapse
|
22
|
Abstract
A conserved molecular machinery centered on the Cdc42 GTPase regulates cell polarity in diverse organisms. Here we review findings from budding and fission yeasts that reveal both a conserved core polarity circuit and several adaptations that each organism exploits to fulfill the needs of its lifestyle. The core circuit involves positive feedback by local activation of Cdc42 to generate a cluster of concentrated GTP-Cdc42 at the membrane. Species-specific pathways regulate the timing of polarization during the cell cycle, as well as the location and number of polarity sites.
Collapse
Affiliation(s)
- Jian-Geng Chiou
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| | - Mohan K Balasubramanian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| |
Collapse
|
23
|
Inoshita M, Mima J. Human Rab small GTPase- and class V myosin-mediated membrane tethering in a chemically defined reconstitution system. J Biol Chem 2017; 292:18500-18517. [PMID: 28939769 DOI: 10.1074/jbc.m117.811356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Membrane tethering is a fundamental process essential for the compartmental specificity of intracellular membrane trafficking in eukaryotic cells. Rab-family small GTPases and specific sets of Rab-interacting effector proteins, including coiled-coil tethering proteins and multisubunit tethering complexes, are reported to be responsible for membrane tethering. However, whether and how these key components directly and specifically tether subcellular membranes remains enigmatic. Using chemically defined proteoliposomal systems reconstituted with purified human Rab proteins and synthetic liposomal membranes to study the molecular basis of membrane tethering, we established here that Rab-family GTPases have a highly conserved function to directly mediate membrane tethering, even in the absence of any types of Rab effectors such as the so-called tethering proteins. Moreover, we demonstrate that membrane tethering mediated by endosomal Rab11a is drastically and selectively stimulated by its cognate Rab effectors, class V myosins (Myo5A and Myo5B), in a GTP-dependent manner. Of note, Myo5A and Myo5B exclusively recognized and cooperated with the membrane-anchored form of their cognate Rab11a to support membrane tethering mediated by trans-Rab assemblies on opposing membranes. Our findings support the novel concept that Rab-family proteins provide a bona fide membrane tether to physically and specifically link two distinct lipid bilayers of subcellular membranes. They further indicate that Rab-interacting effector proteins, including class V myosins, can regulate these Rab-mediated membrane-tethering reactions.
Collapse
Affiliation(s)
- Motoki Inoshita
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Joji Mima
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Feng Q, Bonder EM, Engevik AC, Zhang L, Tyska MJ, Goldenring JR, Gao N. Disruption of Rab8a and Rab11a causes formation of basolateral microvilli in neonatal enteropathy. J Cell Sci 2017; 130:2491-2505. [PMID: 28596241 DOI: 10.1242/jcs.201897] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022] Open
Abstract
Misplaced formation of microvilli to basolateral domains and intracellular inclusions in enterocytes are pathognomonic features in congenital enteropathy associated with mutation of the apical plasma membrane receptor syntaxin 3 (STX3). Although the demonstrated binding of Myo5b to the Rab8a and Rab11a small GTPases in vitro implicates cytoskeleton-dependent membrane sorting, the mechanisms underlying the microvillar location defect remain unclear. By selective or combinatory disruption of Rab8a and Rab11a membrane traffic in vivo, we demonstrate that transport of distinct cargo to the apical brush border rely on either individual or both Rab regulators, whereas certain basolateral cargos are redundantly transported by both factors. Enterocyte-specific Rab8a and Rab11a double-knockout mouse neonates showed immediate postnatal lethality and more severe enteropathy than single knockouts, with extensive formation of microvilli along basolateral surfaces. Notably, following an inducible Rab11a deletion from neonatal enterocytes, basolateral microvilli were induced within 3 days. These data identify a potentially important and distinct mechanism for a characteristic microvillus defect exhibited by enterocytes of patients with neonatal enteropathy.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Amy C Engevik
- Department of Surgery, and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lanjing Zhang
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA.,Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ 08536, USA.,Rutgers Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08903, USA
| | - Matthew J Tyska
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - James R Goldenring
- Department of Surgery, and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Nashville VA Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA .,Rutgers Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08903, USA
| |
Collapse
|
25
|
Kustermann J, Wu Y, Rieger L, Dedden D, Phan T, Walther P, Dünkler A, Johnsson N. The cell polarity proteins Boi1p and Boi2p stimulate vesicle fusion at the plasma membrane of yeast cells. J Cell Sci 2017; 130:2996-3008. [DOI: 10.1242/jcs.206334] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic cells can direct secretion to defined regions of their plasma membrane. These regions are distinguished by an elaborate architecture of proteins and lipids that are specialized to capture and fuse post-Golgi vesicles. Here we show that the proteins Boi1p and Boi2p are important elements of this area of active exocytosis at the tip of growing yeast cells. Cells lacking Boi1p and Boi2p accumulate secretory vesicles in their bud. The essential PH domains of Boi1p and Boi2p interact with Sec1p, a protein required for SNARE complex formation and vesicle fusion. Sec1p loses its tip localization in cells depleted of Boi1p and Boi2p but can partially compensate for their loss upon overexpression. The capacity to simultaneously bind phospholipids, Sec1p, multiple subunits of the exocyst, Cdc42p, and the module for generating active Cdc42p identify Boi1p and Boi2p as essential mediators between exocytosis and polar growth.
Collapse
Affiliation(s)
- Jochen Kustermann
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Yehui Wu
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Lucia Rieger
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Dirk Dedden
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Tamara Phan
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Paul Walther
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Alexander Dünkler
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| |
Collapse
|
26
|
Loss of cargo binding in the human myosin VI deafness mutant (R1166X) leads to increased actin filament binding. Biochem J 2016; 473:3307-19. [PMID: 27474411 PMCID: PMC5074368 DOI: 10.1042/bcj20160571] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022]
Abstract
Mutations in myosin VI have been associated with autosomal-recessive (DFNB37) and autosomal-dominant (DFNA22) deafness in humans. Here, we characterise an myosin VI nonsense mutation (R1166X) that was identified in a family with hereditary hearing loss in Pakistan. This mutation leads to the deletion of the C-terminal 120 amino acids of the myosin VI cargo-binding domain, which includes the WWY-binding motif for the adaptor proteins LMTK2, Tom1 as well as Dab2. Interestingly, compromising myosin VI vesicle-binding ability by expressing myosin VI with the R1166X mutation or with single point mutations in the adaptor-binding sites leads to increased F-actin binding of this myosin in vitro and in vivo As our results highlight the importance of cargo attachment for regulating actin binding to the motor domain, we perform a detailed characterisation of adaptor protein binding and identify single amino acids within myosin VI required for binding to cargo adaptors. We not only show that the adaptor proteins can directly interact with the cargo-binding tail of myosin VI, but our in vitro studies also suggest that multiple adaptor proteins can bind simultaneously to non-overlapping sites in the myosin VI tail. In conclusion, our characterisation of the human myosin VI deafness mutant (R1166X) suggests that defects in cargo binding may leave myosin VI in a primed/activated state with an increased actin-binding ability.
Collapse
|
27
|
Woods B, Lai H, Wu CF, Zyla TR, Savage NS, Lew DJ. Parallel Actin-Independent Recycling Pathways Polarize Cdc42 in Budding Yeast. Curr Biol 2016; 26:2114-26. [PMID: 27476596 DOI: 10.1016/j.cub.2016.06.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/03/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022]
Abstract
The highly conserved Rho-family GTPase Cdc42 is an essential regulator of polarity in many different cell types. During polarity establishment, Cdc42 becomes concentrated at a cortical site, where it interacts with downstream effectors to orient the cytoskeleton along the front-back axis. To concentrate Cdc42, loss of Cdc42 by diffusion must be balanced by recycling to the front. In Saccharomyces cerevisiae, the guanine nucleotide dissociation inhibitor (GDI) Rdi1 recycles Cdc42 through the cytoplasm. Loss of Rdi1 slowed but did not eliminate Cdc42 accumulation at the front, suggesting the existence of other recycling pathways. One proposed pathway involves actin-directed trafficking of vesicles carrying Cdc42 to the front. However, we found no role for F-actin in Cdc42 concentration, even in rdi1Δ cells. Instead, Cdc42 was still able to exchange between the membrane and cytoplasm in rdi1Δ cells, albeit at a reduced rate. Membrane-cytoplasm exchange of GDP-Cdc42 was faster than that of GTP-Cdc42, and computational modeling indicated that such exchange would suffice to promote polarization. We also uncovered a novel role for the Cdc42-directed GTPase-activating protein (GAP) Bem2 in Cdc42 polarization. Bem2 was known to act in series with Rdi1 to promote recycling of Cdc42, but we found that rdi1Δ bem2Δ mutants were synthetically lethal, suggesting that they also act in parallel. We suggest that GAP activity cooperates with the GDI to counteract the dissipative effect of a previously unappreciated pathway whereby GTP-Cdc42 escapes from the polarity site through the cytoplasm.
Collapse
Affiliation(s)
- Benjamin Woods
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Helen Lai
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Chi-Fang Wu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Trevin R Zyla
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Natasha S Savage
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Lwin KM, Li D, Bretscher A. Kinesin-related Smy1 enhances the Rab-dependent association of myosin-V with secretory cargo. Mol Biol Cell 2016; 27:2450-62. [PMID: 27307583 PMCID: PMC4966985 DOI: 10.1091/mbc.e16-03-0185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/08/2016] [Indexed: 01/21/2023] Open
Abstract
Smy1 is a kinesin-related protein that enhances the association of the Myo2 myosin-V motor with its receptor, the Rab Sec4, on secretory vesicles. This function requires Smy1’s head, coiled-coil, and tail domains and is specific for secretory vesicle transport but not for mitochondrial segregation by Myo2, which also uses a Rab protein, Ypt11. The mechanisms by which molecular motors associate with specific cargo is a central problem in cell organization. The kinesin-like protein Smy1 of budding yeast was originally identified by the ability of elevated levels to suppress a conditional myosin-V mutation (myo2-66), but its function with Myo2 remained mysterious. Subsequently, Myo2 was found to provide an essential role in delivery of secretory vesicles for polarized growth and in the transport of mitochondria for segregation. By isolating and characterizing myo2 smy1 conditional mutants, we uncover the molecular function of Smy1 as a factor that enhances the association of Myo2 with its receptor, the Rab Sec4, on secretory vesicles. The tail of Smy1—which binds Myo2—its central dimerization domain, and its kinesin-like head domain are all necessary for this function. Consistent with this model, overexpression of full-length Smy1 enhances the number of Sec4 receptors and Myo2 motors per transporting secretory vesicle. Rab proteins Sec4 and Ypt11, receptors for essential transport of secretory vesicles and mitochondria, respectively, bind the same region on Myo2, yet Smy1 functions selectively in the transport of secretory vesicles. Thus a kinesin-related protein can function intimately with a myosin-V and its receptor in the transport of a specific cargo.
Collapse
Affiliation(s)
- Kyaw Myo Lwin
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Donghao Li
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
29
|
Vogel GF, Klee KMC, Janecke AR, Müller T, Hess MW, Huber LA. Cargo-selective apical exocytosis in epithelial cells is conducted by Myo5B, Slp4a, Vamp7, and Syntaxin 3. J Cell Biol 2016; 211:587-604. [PMID: 26553929 PMCID: PMC4639860 DOI: 10.1083/jcb.201506112] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The motor protein Myo5B and t-SNARE Stx3 drive cargo-selective apical exocytosis in polarized epithelial cells in a pathway dependent on v-SNARE–like Slp4a, v-SNARE Vamp7, Sec1/Munc18-like protein Munc18-2, and the Rab11/8 cascade. Mutations in the motor protein Myosin Vb (Myo5B) or the soluble NSF attachment protein receptor Syntaxin 3 (Stx3) disturb epithelial polarity and cause microvillus inclusion disease (MVID), a lethal hereditary enteropathy affecting neonates. To understand the molecular mechanism of Myo5B and Stx3 interplay, we used genome editing to introduce a defined Myo5B patient mutation in a human epithelial cell line. Our results demonstrate a selective role of Myo5B and Stx3 for apical cargo exocytosis in polarized epithelial cells. Apical exocytosis of NHE3, CFTR (cystic fibrosis transmembrane conductance regulator), and GLUT5 required an interaction cascade of Rab11, Myo5B, Slp4a, Munc18-2, and Vamp7 with Stx3, which cooperate in the final steps of this selective apical traffic pathway. The brush border enzymes DPPIV and sucrase-isomaltase still correctly localize at the apical plasma membrane independent of this pathway. Hence, our work demonstrates how Myo5B, Stx3, Slp4a, Vamp7, Munc18-2, and Rab8/11 cooperate during selective apical cargo trafficking and exocytosis in epithelial cells and thereby provides further insight into MVID pathophysiology.
Collapse
Affiliation(s)
- Georg F Vogel
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria Division of Histology and Embryology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Katharina M C Klee
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria Institute of Molecular Biology, University of Innsbruck, 6020 Innsbruck, Austria Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas R Janecke
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michael W Hess
- Division of Histology and Embryology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
30
|
Heissler SM, Sellers JR. Various Themes of Myosin Regulation. J Mol Biol 2016; 428:1927-46. [PMID: 26827725 DOI: 10.1016/j.jmb.2016.01.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 10/24/2022]
Abstract
Members of the myosin superfamily are actin-based molecular motors that are indispensable for cellular homeostasis. The vast functional and structural diversity of myosins accounts for the variety and complexity of the underlying allosteric regulatory mechanisms that determine the activation or inhibition of myosin motor activity and enable precise timing and spatial aspects of myosin function at the cellular level. This review focuses on the molecular basis of posttranslational regulation of eukaryotic myosins from different classes across species by allosteric intrinsic and extrinsic effectors. First, we highlight the impact of heavy and light chain phosphorylation. Second, we outline intramolecular regulatory mechanisms such as autoinhibition and subsequent activation. Third, we discuss diverse extramolecular allosteric mechanisms ranging from actin-linked regulatory mechanisms to myosin:cargo interactions. At last, we briefly outline the allosteric regulation of myosins with synthetic compounds.
Collapse
Affiliation(s)
- Sarah M Heissler
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, B50/3529, Bethesda, MD 20892-8015, USA.
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, B50/3529, Bethesda, MD 20892-8015, USA
| |
Collapse
|
31
|
Heider MR, Gu M, Duffy CM, Mirza AM, Marcotte LL, Walls AC, Farrall N, Hakhverdyan Z, Field MC, Rout MP, Frost A, Munson M. Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nat Struct Mol Biol 2016; 23:59-66. [PMID: 26656853 PMCID: PMC4752824 DOI: 10.1038/nsmb.3146] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/19/2015] [Indexed: 01/12/2023]
Abstract
The exocyst is a hetero-octameric complex that has been proposed to serve as the tethering complex for exocytosis, although it remains poorly understood at the molecular level. Here, we purified endogenous exocyst complexes from Saccharomyces cerevisiae and showed that they are stable and consist of all eight subunits with equal stoichiometry. Using a combination of biochemical and auxin induced-degradation experiments in yeast, we mapped the subunit connectivity, identified two stable four-subunit modules within the octamer and demonstrated that several known exocyst-binding partners are not necessary for exocyst assembly and stability. Furthermore, we visualized the structure of the yeast complex by using negative-stain electron microscopy; our results indicate that the exocyst exists predominantly as a stable, octameric complex with an elongated architecture that suggests that the subunits are contiguous helical bundles packed together into a bundle of long rods.
Collapse
Affiliation(s)
- Margaret R. Heider
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mingyu Gu
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Caroline M. Duffy
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anne M. Mirza
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laura L. Marcotte
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexandra C. Walls
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nicholas Farrall
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Zhanna Hakhverdyan
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Mark C. Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Adam Frost
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
32
|
Peremyslov VV, Cole RA, Fowler JE, Dolja VV. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development. PLoS One 2015; 10:e0139331. [PMID: 26426395 PMCID: PMC4591342 DOI: 10.1371/journal.pone.0139331] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/11/2015] [Indexed: 01/08/2023] Open
Abstract
Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6-1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.
Collapse
Affiliation(s)
- Valera V. Peremyslov
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, United States of America
| | - Rex A. Cole
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, United States of America
| | - John E. Fowler
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, United States of America
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, United States of America
| |
Collapse
|
33
|
Short B. A timeline for exocytosis. J Biophys Biochem Cytol 2015. [PMCID: PMC4508902 DOI: 10.1083/jcb.2102if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Researchers track the tethering and fusion of individual secretory vesicles in budding yeast.
Collapse
|
34
|
Donovan KW, Bretscher A. Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process. J Cell Biol 2015; 210:181-9. [PMID: 26169352 PMCID: PMC4508886 DOI: 10.1083/jcb.201501118] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/15/2015] [Indexed: 11/22/2022] Open
Abstract
Post-Golgi secretory vesicle trafficking is a coordinated process, with transport and regulatory mechanisms to ensure appropriate exocytosis. While the contributions of many individual regulatory proteins to this process are well studied, the timing and dependencies of events have not been defined. Here we track individual secretory vesicles and associated proteins in vivo during tethering and fusion in budding yeast. Secretory vesicles tether to the plasma membrane very reproducibly for ∼18 s, which is extended in cells defective for membrane fusion and significantly lengthened and more variable when GTP hydrolysis of the exocytic Rab is delayed. Further, the myosin-V Myo2p regulates the tethering time in a mechanism unrelated to its interaction with exocyst component Sec15p. Two-color imaging of tethered vesicles with Myo2p, the GEF Sec2p, and several exocyst components allowed us to document a timeline for yeast exocytosis in which Myo2p leaves 4 s before fusion, whereas Sec2p and all the components of the exocyst disperse coincident with fusion.
Collapse
Affiliation(s)
- Kirk W Donovan
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
35
|
Jose M, Tollis S, Nair D, Mitteau R, Velours C, Massoni-Laporte A, Royou A, Sibarita JB, McCusker D. A quantitative imaging-based screen reveals the exocyst as a network hub connecting endocytosis and exocytosis. Mol Biol Cell 2015; 26:2519-34. [PMID: 25947137 PMCID: PMC4571305 DOI: 10.1091/mbc.e14-11-1527] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/29/2015] [Indexed: 12/15/2022] Open
Abstract
The mechanisms governing the spatial organization of endocytosis and exocytosis are ill defined. A quantitative imaging screen and high-density single-vesicle tracking are used to identify mutants that are defective in endocytic and exocytic vesicle organization. The screen identifies a role for the exocyst complex in connecting the two pathways. The coupling of endocytosis and exocytosis underlies fundamental biological processes ranging from fertilization to neuronal activity and cellular polarity. However, the mechanisms governing the spatial organization of endocytosis and exocytosis require clarification. Using a quantitative imaging-based screen in budding yeast, we identified 89 mutants displaying defects in the localization of either one or both pathways. High-resolution single-vesicle tracking revealed that the endocytic and exocytic mutants she4∆ and bud6∆ alter post-Golgi vesicle dynamics in opposite ways. The endocytic and exocytic pathways display strong interdependence during polarity establishment while being more independent during polarity maintenance. Systems analysis identified the exocyst complex as a key network hub, rich in genetic interactions with endocytic and exocytic components. Exocyst mutants displayed altered endocytic and post-Golgi vesicle dynamics and interspersed endocytic and exocytic domains compared with control cells. These data are consistent with an important role for the exocyst in coordinating endocytosis and exocytosis.
Collapse
Affiliation(s)
- Mini Jose
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Sylvain Tollis
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université Bordeaux, F-33000 Bordeaux, France
| | - Romain Mitteau
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| | - Christophe Velours
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| | - Aurelie Massoni-Laporte
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| | - Anne Royou
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| | - Jean-Baptiste Sibarita
- Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université Bordeaux, F-33000 Bordeaux, France
| | - Derek McCusker
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
36
|
Donovan KW, Bretscher A. Head-to-tail regulation is critical for the in vivo function of myosin V. ACTA ACUST UNITED AC 2015; 209:359-65. [PMID: 25940346 PMCID: PMC4427785 DOI: 10.1083/jcb.201411010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/02/2015] [Indexed: 11/22/2022]
Abstract
Myo2p is regulated by a head-to-tail interaction and defects in this regulatory mechanism lead to a host of cellular problems in vivo, including impaired cargo capture and delayed motor recycling Cell organization requires regulated cargo transport along cytoskeletal elements. Myosin V motors are among the most conserved organelle motors and have been well characterized in both yeast and mammalian systems. Biochemical data for mammalian myosin V suggest that a head-to-tail autoinhibitory interaction is a primary means of regulation, but the in vivo significance of this interaction has not been studied. Here we generated and characterized mutations in the yeast myosin V Myo2p to reveal that it is regulated by a head-to-tail interaction and that loss of regulation renders the myosin V constitutively active. We show that an unregulated motor is very deleterious for growth, resulting in severe defects in Myo2-mediated transport processes, including secretory vesicle transport, mitochondrial inheritance, and nuclear orientation. All of the defects associated with motor misregulation could be rescued by artificially restoring regulation. Thus, spatial and temporal regulation of myosin V in vivo by a head-to-tail interaction is critical for the normal delivery functions of the motor.
Collapse
Affiliation(s)
- Kirk W Donovan
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
37
|
Baker A, Paudyal R. The life of the peroxisome: from birth to death. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:39-47. [PMID: 25261594 DOI: 10.1016/j.pbi.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/24/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
Peroxisomes are dynamic and metabolically plastic organelles. Their multiplicity of functions impacts on many aspects of plant development and survival. New functions for plant peroxisomes such as in the synthesis of biotin, ubiquinone and phylloquinone are being uncovered and their role in generating reactive oxygen species (ROS) and reactive nitrogen species (RNS) as signalling hubs in defence and development is becoming appreciated. Understanding of the biogenesis of peroxisomes, mechanisms of import and turnover of their protein complement, and the wholesale destruction of the organelle by specific autophagic processes is giving new insight into the ways that plants can adjust peroxisome function in response to changing needs.
Collapse
Affiliation(s)
- Alison Baker
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Rupesh Paudyal
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
38
|
Buelto D, Duncan MC. Cellular energetics: actin and myosin abstain from ATP during starvation. Curr Biol 2014; 24:R1004-6. [PMID: 25442847 DOI: 10.1016/j.cub.2014.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Destiney Buelto
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mara C Duncan
- Department of Cell and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
39
|
Xu L, Bretscher A. Rapid glucose depletion immobilizes active myosin V on stabilized actin cables. Curr Biol 2014; 24:2471-9. [PMID: 25308080 DOI: 10.1016/j.cub.2014.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/24/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
Polarization of eukaryotic cells requires organelles and protein complexes to be transported to their proper destinations along the cytoskeleton. When nutrients are abundant, budding yeast grows rapidly transporting secretory vesicles for localized growth and actively segregating organelles. This is mediated by myosin Vs transporting cargos along F-actin bundles known as actin cables. Actin cables are dynamic structures regulated by assembly, stabilization, and disassembly. Polarized growth and actin filament dynamics consume energy. For most organisms, glucose is the preferred energy source and generally represses alternative carbon source usage. Thus, upon abrupt glucose depletion, yeast shuts down pathways consuming large amounts of energy, including the vacuolar-ATPase, translation, and phosphoinositide metabolism. Here we show that glucose withdrawal rapidly (<1 min) depletes ATP levels and that the yeast myosin V, Myo2, responds by relocalizing to actin cables, making it the fastest response documented. Myo2 immobilized on cables releases its secretory cargo, defining a new rigor-like state of a myosin V in vivo. Only actively transporting Myo2 can be converted to the rigor-like state. Glucose depletion has differential effects on the actin cytoskeleton, resulting in disassembly of actin patches with concomitant inhibition of endocytosis and strong stabilization of actin cables, thereby revealing a selective and previously unappreciated ATP requirement for actin cable disassembly. A similar response is seen in HeLa cells to ATP depletion. These findings reveal a new fast-acting energy conservation strategy halting growth by immobilizing myosin V in a newly described state on selectively stabilized actin cables.
Collapse
Affiliation(s)
- Li Xu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
40
|
Ling Y, Hayano S, Novick P. Osh4p is needed to reduce the level of phosphatidylinositol-4-phosphate on secretory vesicles as they mature. Mol Biol Cell 2014; 25:3389-400. [PMID: 25165144 PMCID: PMC4214785 DOI: 10.1091/mbc.e14-06-1087] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In yeast, the oxysterol-binding proteins Osh1–Osh7 are collectively needed to maintain the normal distribution of PI4P. Osh4p is recruited to secretory vesicles in a PI4P-dependent manner and plays an important role in vesicle maturation. Phosphatidylinositol-4-phosphate (PI4P) is produced on both the Golgi and the plasma membrane. Despite extensive vesicular traffic between these compartments, genetic analysis suggests that the two pools of PI4P do not efficiently mix with one another. Several lines of evidence indicate that the PI4P produced on the Golgi is normally incorporated into secretory vesicles, but the fate of that pool has been unclear. We show here that in yeast the oxysterol-binding proteins Osh1–Osh7 are collectively needed to maintain the normal distribution of PI4P and that Osh4p is critical in this function. Osh4p associates with secretory vesicles at least in part through its interaction with PI4P and is needed, together with lipid phosphatases, to reduce the level of PI4P as vesicles approach sites of exocytosis. This reduction in PI4P is necessary for a switch in the regulation of the Sec4p exchange protein, Sec2p, from an interaction with the upstream Rab, Ypt31/32, to an interaction with a downstream Sec4p effector, Sec15p. Spatial regulation of PI4P levels thereby plays an important role in vesicle maturation.
Collapse
Affiliation(s)
- Yading Ling
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Scott Hayano
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
41
|
Pantazopoulou A, Pinar M, Xiang X, Peñalva MA. Maturation of late Golgi cisternae into RabE(RAB11) exocytic post-Golgi carriers visualized in vivo. Mol Biol Cell 2014; 25:2428-43. [PMID: 24943841 PMCID: PMC4142615 DOI: 10.1091/mbc.e14-02-0710] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mechanism(s) by which proteins traverse and exit the Golgi are incompletely understood. Using Aspergillus nidulans hyphae, we show that late Golgi cisternae undergo changes in composition to gradually lose Golgi identity while acquiring post-Golgi RabE(RAB11) identity. This behavior of late Golgi cisternae is consistent with the cisternal maturation model. Post-Golgi RabE(RAB11) carriers travel to, and accumulate at, the apex, indicating that fusion is rate limiting for exocytosis. These carriers, which are loaded with kinesin, dynein, and MyoE(MYO5), move on a microtubule-based bidirectional conveyor belt relaying them to actin, which ultimately focuses exocytosis at the apex. Dynein drags RabE(RAB11) carriers away if engagement of MyoE(MYO5) to actin cables fails. Microtubules seemingly cooperating with F-actin capture can sustain secretion if MyoE(MYO5) is absent. Thus, filamentous fungal secretion involving post-Golgi carriers is remarkably similar, mechanistically, to the transport of melanosomes in melanocyte dendrites, even though melanosome biogenesis involves lysosomes rather than Golgi.
Collapse
Affiliation(s)
- Areti Pantazopoulou
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| | - Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| |
Collapse
|
42
|
Winding M, Gelfand VI. Breaking up isn't easy: myosin V and its cargoes need Dma1 ubiquitin ligase's help. Dev Cell 2014; 28:479-80. [PMID: 24636254 DOI: 10.1016/j.devcel.2014.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this issue of Developmental Cell, Yau et al. (2014) report that degradation of cargo adapters releases yeast vacuoles and peroxisomes from myosin V (Myo2) and terminates organelle transport from the mother cell to the bud.
Collapse
Affiliation(s)
- Michael Winding
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
43
|
Wang N, Lo Presti L, Zhu YH, Kang M, Wu Z, Martin SG, Wu JQ. The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis. ACTA ACUST UNITED AC 2014; 205:357-75. [PMID: 24798735 PMCID: PMC4018781 DOI: 10.1083/jcb.201308146] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.
Collapse
Affiliation(s)
- Ning Wang
- Department of Molecular Genetics, 2 Department of Molecular and Cellular Biochemistry, and 3 Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | | | | | | | | | |
Collapse
|
44
|
Synek L, Sekereš J, Žárský V. The exocyst at the interface between cytoskeleton and membranes in eukaryotic cells. FRONTIERS IN PLANT SCIENCE 2014; 4:543. [PMID: 24427163 PMCID: PMC3877765 DOI: 10.3389/fpls.2013.00543] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/12/2013] [Indexed: 05/07/2023]
Abstract
Delivery and final fusion of the secretory vesicles with the relevant target membrane are hierarchically organized and reciprocally interconnected multi-step processes involving not only specific protein-protein interactions, but also specific protein-phospholipid interactions. The exocyst was discovered as a tethering complex mediating initial encounter of arriving exocytic vesicles with the plasma membrane. The exocyst complex is regulated by Rab and Rho small GTPases, resulting in docking of exocytic vesicles to the plasma membrane (PM) and finally their fusion mediated by specific SNARE complexes. In model Opisthokont cells, the exocyst was shown to directly interact with both microtubule and microfilament cytoskeleton and related motor proteins as well as with the PM via phosphatidylinositol 4, 5-bisphosphate specific binding, which directly affects cortical cytoskeleton and PM dynamics. Here we summarize the current knowledge on exocyst-cytoskeleton-PM interactions in order to open a perspective for future research in this area in plant cells.
Collapse
Affiliation(s)
- Lukáš Synek
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Juraj Sekereš
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech RepublicPrague, Czech Republic
- Laboratory of Plant Cell Biology, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech RepublicPrague, Czech Republic
- Laboratory of Plant Cell Biology, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
- *Correspondence: Viktor Žárský, Laboratory of Plant Cell Biology, Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844 Prague, Czech Republic e-mail:
| |
Collapse
|
45
|
Kanerva K, Uronen RL, Blom T, Li S, Bittman R, Lappalainen P, Peränen J, Raposo G, Ikonen E. LDL cholesterol recycles to the plasma membrane via a Rab8a-Myosin5b-actin-dependent membrane transport route. Dev Cell 2013; 27:249-62. [PMID: 24209575 DOI: 10.1016/j.devcel.2013.09.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/09/2013] [Accepted: 09/16/2013] [Indexed: 12/27/2022]
Abstract
Mammalian cells acquire cholesterol, a major membrane constituent, via low-density lipoprotein (LDL) uptake. However, the mechanisms by which LDL cholesterol reaches the plasma membrane (PM) have remained obscure. Here, we applied LDL labeled with BODIPY cholesteryl linoleate to identify this pathway in living cells. The egress of BODIPY cholesterol (BC) from late endosomal (LE) organelles was dependent on acid lipase and Niemann-Pick C1 (NPC1) protein, as for natural cholesterol. We show that NPC1 was needed to recruit Rab8a to BC-containing LEs, and Rab8a enhanced the motility and segregation of BC- and CD63-positive organelles from lysosomes. The BC carriers docked to the cortical actin by a Rab8a- and Myosin5b (Myo5b)-dependent mechanism, typically in the proximity of focal adhesions (FAs). LDL increased the number and dynamics of FAs and stimulated cell migration in an acid lipase, NPC1, and Rab8a-dependent fashion, providing evidence that this cholesterol delivery route to the PM is important for cell movement.
Collapse
Affiliation(s)
- Kristiina Kanerva
- Institute of Biomedicine, Anatomy, University of Helsinki, FI-00014 Helsinki, Finland; Minerva Foundation Institute for Medical Research, FI-00290 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Peremyslov VV, Morgun EA, Kurth EG, Makarova KS, Koonin EV, Dolja VV. Identification of myosin XI receptors in Arabidopsis defines a distinct class of transport vesicles. THE PLANT CELL 2013; 25:3022-38. [PMID: 23995081 PMCID: PMC3784596 DOI: 10.1105/tpc.113.113704] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
To characterize the mechanism through which myosin XI-K attaches to its principal endomembrane cargo, a yeast two-hybrid library of Arabidopsis thaliana cDNAs was screened using the myosin cargo binding domain as bait. This screen identified two previously uncharacterized transmembrane proteins (hereinafter myosin binding proteins or MyoB1/2) that share a myosin binding, conserved domain of unknown function 593 (DUF593). Additional screens revealed that MyoB1/2 also bind myosin XI-1, whereas myosin XI-I interacts with the distantly related MyoB7. The in vivo interactions of MyoB1/2 with myosin XI-K were confirmed by immunoprecipitation and colocalization analyses. In epidermal cells, the yellow fluorescent protein-tagged MyoB1/2 localize to vesicles that traffic in a myosin XI-dependent manner. Similar to myosin XI-K, MyoB1/2 accumulate in the tip-growing domain of elongating root hairs. Gene knockout analysis demonstrated that functional cooperation between myosin XI-K and MyoB proteins is required for proper plant development. Unexpectedly, the MyoB1-containing vesicles did not correspond to brefeldin A-sensitive Golgi and post-Golgi or prevacuolar compartments and did not colocalize with known exocytic or endosomal compartments. Phylogenomic analysis suggests that DUF593 emerged in primitive land plants and founded a multigene family that is conserved in all flowering plants. Collectively, these findings indicate that MyoB are membrane-anchored myosin receptors that define a distinct, plant-specific transport vesicle compartment.
Collapse
Affiliation(s)
- Valera V. Peremyslov
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - Eva A. Morgun
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Elizabeth G. Kurth
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Address correspondence to
| |
Collapse
|
47
|
De Matteis MA, Wilson C, D'Angelo G. Phosphatidylinositol-4-phosphate: The Golgi and beyond. Bioessays 2013; 35:612-22. [DOI: 10.1002/bies.201200180] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine; Naples; Italy
| | - Giovanni D'Angelo
- Institute of Protein Biochemistry; National Research Council (CNR); Naples; Italy
| |
Collapse
|
48
|
Barlan K, Rossow MJ, Gelfand VI. The journey of the organelle: teamwork and regulation in intracellular transport. Curr Opin Cell Biol 2013; 25:483-8. [PMID: 23510681 DOI: 10.1016/j.ceb.2013.02.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/18/2013] [Accepted: 02/21/2013] [Indexed: 12/27/2022]
Abstract
Specific subsets of biochemical reactions in eukaryotic cells are restricted to individual membrane compartments, or organelles. Cells, therefore, face the monumental task of moving the products of those reactions between individual organelles. Because of the high density of the cytoplasm and the large size of membrane organelles, simple diffusion is grossly insufficient for this task. Proper trafficking between membrane organelles thus relies on cytoskeletal elements and the activity of motor proteins, that act both in transport of membrane compartments and as tethering agents to ensure their proper distribution and to facilitate organelle interactions.
Collapse
Affiliation(s)
- Kari Barlan
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
49
|
Lewandowska A, Macfarlane J, Shaw JM. Mitochondrial association, protein phosphorylation, and degradation regulate the availability of the active Rab GTPase Ypt11 for mitochondrial inheritance. Mol Biol Cell 2013; 24:1185-95. [PMID: 23427260 PMCID: PMC3623639 DOI: 10.1091/mbc.e12-12-0848] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
There are conflicting models regarding the role of the Ypt11 GTPase in mitochondrial inheritance during yeast budding. This study demonstrates that Ypt11 function requires mitochondrial membrane targeting and GTPase domain–dependent effector interactions. In addition, the abundance of active Ypt11 forms is controlled by phosphorylation and degradation. The Rab GTPase Ypt11 is a Myo2-binding protein implicated in mother-to-bud transport of the cortical endoplasmic reticulum (ER), late Golgi, and mitochondria during yeast division. However, its reported subcellular localization does not reflect all of these functions. Here we show that Ypt11 is normally a low-abundance protein whose ER localization is only detected when the protein is highly overexpressed. Although it has been suggested that ER-localized Ypt11 and ER–mitochondrial contact sites might mediate passive transport of mitochondria into the bud, we found that mitochondrial, but not ER, association is essential for Ypt11 function in mitochondrial inheritance. Our studies also reveal that Ypt11 function is regulated at multiple levels. In addition to membrane targeting and GTPase domain–dependent effector interactions, the abundance of active Ypt11 forms is controlled by phosphorylation status and degradation. We present a model that synthesizes these new features of Ypt11 function and regulation in mitochondrial inheritance.
Collapse
Affiliation(s)
- Agnieszka Lewandowska
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
50
|
Contractile Vacuole Complex—Its Expanding Protein Inventory. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:371-416. [DOI: 10.1016/b978-0-12-407694-5.00009-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|