1
|
Hammond JE, Baker RE, Verd B. Modularity of the segmentation clock and morphogenesis. eLife 2025; 14:RP106316. [PMID: 40168062 PMCID: PMC11961122 DOI: 10.7554/elife.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Vertebrates have evolved great diversity in the number of segments dividing the trunk body, however, the developmental origin of the evolvability of this trait is poorly understood. The number of segments is thought to be determined in embryogenesis as a product of morphogenesis of the pre-somitic mesoderm (PSM) and the periodicity of a molecular oscillator active within the PSM known as the segmentation clock. Here, we explore whether the clock and PSM morphogenesis exhibit developmental modularity, as independent evolution of these two processes may explain the high evolvability of segment number. Using a computational model of the clock and PSM parameterised for zebrafish, we find that the clock is broadly robust to variation in morphogenetic processes such as cell ingression, motility, compaction, and cell division. We show that this robustness is in part determined by the length of the PSM and the strength of phase coupling in the clock. As previous studies report no changes to morphogenesis upon perturbing the clock, we suggest that the clock and morphogenesis of the PSM exhibit developmental modularity.
Collapse
Affiliation(s)
- James E Hammond
- Biology Department, University of OxfordOxfordUnited Kingdom
| | - Ruth E Baker
- Mathematical Institute, University of OxfordOxfordUnited Kingdom
| | - Berta Verd
- Biology Department, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
2
|
Alpay EE, Zinani OQH, Hu X, Ay A, Özbudak EM. DeltaC and DeltaD ligands play different roles in the segmentation clock dynamics. Nat Commun 2025; 16:2413. [PMID: 40069165 PMCID: PMC11897328 DOI: 10.1038/s41467-025-57645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
The vertebrate segmentation clock drives periodic somite segmentation during embryonic development. Her1 and Her7 clock proteins generate oscillatory expression of their own genes as well as that of deltaC in zebrafish. In turn, DeltaC and DeltaD ligands activate Notch signaling, which then activates transcription of clock genes in neighboring cells. While DeltaC and DeltaD proteins form homo- and heterodimers, only DeltaC-containing oscillatory dimers were expected to be functional. To investigate the contributions of DeltaC and DeltaD proteins on the transcription of her1 and her7 segmentation clock genes, we counted their transcripts by performing single molecule fluorescent in situ hybridization imaging in different genetic backgrounds of zebrafish embryos. Surprisingly, we found that DeltaD homodimers are also functional. We further found that Notch signaling promotes transcription of both deltaC and deltaD genes, thereby creating a previously unnoticed positive feedback loop. Our computational model highlighted the intriguing differential roles of DeltaC and DeltaD dimers on the clock synchronization and transcript numbers, respectively. We anticipate that a mechanistic understanding of the Notch signaling pathway will not only shed light on the mechanism driving robust somite segmentation but also inspire similar quantitative studies in other tissues and organs.
Collapse
Affiliation(s)
- Eslim Esra Alpay
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Oriana Q H Zinani
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiyan Hu
- Department of Mathematics, Colgate University, Hamilton, NY, USA
- Department of Computer Science, Colgate University, Hamilton, NY, USA
| | - Ahmet Ay
- Department of Mathematics, Colgate University, Hamilton, NY, USA
- Department of Biology, Colgate University, Hamilton, NY, USA
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
3
|
Isomura A, Kageyama R. Progress in understanding the vertebrate segmentation clock. Nat Rev Genet 2025:10.1038/s41576-025-00813-6. [PMID: 40038453 DOI: 10.1038/s41576-025-00813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 03/06/2025]
Abstract
The segmentation clock is a molecular oscillator that regulates the periodic formation of somites from the presomitic mesoderm during vertebrate embryogenesis. Synchronous oscillatory expression of a Hairy homologue or Hairy-related basic helix-loop-helix (bHLH) transcriptional repressor in presomitic mesoderm cells regulates periodic expression of downstream factors that control somite segmentation with a periodicity that varies across species. Although many of the key components of the clock have been identified and characterized, less is known about how the clock is synchronized across cells and how species-specific periodicity is achieved. Advances in live imaging, stem cell and organoid technologies, and synthetic approaches have started to uncover the detailed mechanisms underlying these aspects of somitogenesis, providing insight into how morphogenesis is coordinated in space and time during embryonic development.
Collapse
Affiliation(s)
- Akihiro Isomura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto, Japan.
- Japan Science and Technology Agency, PRESTO, Saitama, Japan.
- RIKEN Center for Brain Science, Wako, Japan.
| | - Ryoichiro Kageyama
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto, Japan.
- RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
4
|
Uriu K, Morelli LG. Statistical description of mobile oscillators in embryonic pattern formation. Phys Rev E 2025; 111:024407. [PMID: 40103159 DOI: 10.1103/physreve.111.024407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/27/2025] [Indexed: 03/20/2025]
Abstract
Synchronization of mobile oscillators occurs in numerous contexts, including physical, chemical, biological, and engineered systems. In vertebrate embryonic development, a segmental body structure is generated by a population of mobile oscillators. Cells in this population produce autonomous gene expression rhythms and interact with their neighbors through local signaling. These cells form an extended tissue where frequency and cell mobility gradients coexist. Gene expression kinematic waves travel through this tissue and pattern the segment boundaries. It has been shown that oscillator mobility promotes global synchronization. However, in vertebrate segment formation, mobility may also introduce local fluctuations in kinematic waves and impair segment boundaries. Here, we derive a general framework for mobile oscillators that relates local mobility fluctuations to synchronization dynamics and pattern robustness. We formulate a statistical description of mobile phase oscillators in terms of probability density. We obtain and solve diffusion equations for the average phase and variance, revealing the relationship between local fluctuations and global synchronization in a homogeneous population of oscillators. Analysis of the probability density for large mobility identifies a mean-field onset, where locally coupled oscillators start behaving as if each oscillator was coupled with all the others. We extend the statistical description to inhomogeneous systems to address the gradients present in the vertebrate segmenting tissue. The theory relates pattern stability to mobility, coupling, and pattern wavelength. The general approach of the statistical description may be applied to mobile oscillators in other contexts, as well as to other patterning systems where mobility is present.
Collapse
Affiliation(s)
- Koichiro Uriu
- School of Life Science and Technology, Institute of Science Tokyo, 2-12-1, Ookayama, Meguro-ku Tokyo 152-8550, Japan
- Kanazawa University, Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET/Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, Buenos Aires C1425FQD, Argentina
| |
Collapse
|
5
|
Rohde LA, Bercowsky-Rama A, Valentin G, Naganathan SR, Desai RA, Strnad P, Soroldoni D, Oates AC. Cell-autonomous timing drives the vertebrate segmentation clock's wave pattern. eLife 2024; 13:RP93764. [PMID: 39671306 PMCID: PMC11643631 DOI: 10.7554/elife.93764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024] Open
Abstract
Rhythmic and sequential segmentation of the growing vertebrate body relies on the segmentation clock, a multi-cellular oscillating genetic network. The clock is visible as tissue-level kinematic waves of gene expression that travel through the presomitic mesoderm (PSM) and arrest at the position of each forming segment. Here, we test how this hallmark wave pattern is driven by culturing single maturing PSM cells. We compare their cell-autonomous oscillatory and arrest dynamics to those we observe in the embryo at cellular resolution, finding similarity in the relative slowing of oscillations and arrest in concert with differentiation. This shows that cell-extrinsic signals are not required by the cells to instruct the developmental program underlying the wave pattern. We show that a cell-autonomous timing activity initiates during cell exit from the tailbud, then runs down in the anterior-ward cell flow in the PSM, thereby using elapsed time to provide positional information to the clock. Exogenous FGF lengthens the duration of the cell-intrinsic timer, indicating extrinsic factors in the embryo may regulate the segmentation clock via the timer. In sum, our work suggests that a noisy cell-autonomous, intrinsic timer drives the slowing and arrest of oscillations underlying the wave pattern, while extrinsic factors in the embryo tune this timer's duration and precision. This is a new insight into the balance of cell-intrinsic and -extrinsic mechanisms driving tissue patterning in development.
Collapse
Affiliation(s)
- Laurel A Rohde
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne EPFLLausanneSwitzerland
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Arianne Bercowsky-Rama
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne EPFLLausanneSwitzerland
| | - Guillaume Valentin
- Center of PhenoGenomics, Swiss Federal Institute of Technology in Lausanne EPFLLausanneSwitzerland
| | - Sundar Ram Naganathan
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne EPFLLausanneSwitzerland
- The Francis Crick InstituteLondonUnited Kingdom
| | - Ravi A Desai
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Petr Strnad
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne EPFLLausanneSwitzerland
| | - Daniele Soroldoni
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne EPFLLausanneSwitzerland
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Andrew C Oates
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne EPFLLausanneSwitzerland
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
- The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
6
|
Ho C, Jutras-Dubé L, Zhao ML, Mönke G, Kiss IZ, François P, Aulehla A. Nonreciprocal synchronization in embryonic oscillator ensembles. Proc Natl Acad Sci U S A 2024; 121:e2401604121. [PMID: 39190346 PMCID: PMC11388350 DOI: 10.1073/pnas.2401604121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/10/2024] [Indexed: 08/28/2024] Open
Abstract
Synchronization of coupled oscillators is a universal phenomenon encountered across different scales and contexts, e.g., chemical wave patterns, superconductors, and the unison applause we witness in concert halls. The existence of common underlying coupling rules defines universality classes, revealing a fundamental sameness between seemingly distinct systems. Identifying rules of synchronization in any particular setting is hence of paramount relevance. Here, we address the coupling rules within an embryonic oscillator ensemble linked to vertebrate embryo body axis segmentation. In vertebrates, the periodic segmentation of the body axis involves synchronized signaling oscillations in cells within the presomitic mesoderm (PSM), from which somites, the prevertebrae, form. At the molecular level, it is known that intact Notch-signaling and cell-to-cell contact are required for synchronization between PSM cells. However, an understanding of the coupling rules is still lacking. To identify these, we develop an experimental assay that enables direct quantification of synchronization dynamics within mixtures of oscillating cell ensembles, for which the initial input frequency and phase distribution are known. Our results reveal a "winner-takes-it-all" synchronization outcome, i.e., the emerging collective rhythm matches one of the input rhythms. Using a combination of theory and experimental validation, we develop a coupling model, the "Rectified Kuramoto" (ReKu) model, characterized by a phase-dependent, nonreciprocal interaction in the coupling of oscillatory cells. Such nonreciprocal synchronization rules reveal fundamental similarities between embryonic oscillators and a class of collective behaviors seen in neurons and fireflies, where higher-level computations are performed and linked to nonreciprocal synchronization.
Collapse
Affiliation(s)
- Christine Ho
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | | | - Michael L Zhao
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Gregor Mönke
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - István Z Kiss
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103
| | - Paul François
- Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
7
|
Sung CY, Kadiyala U, Blanchard O, Yourston L, Walker D, Li L, Fu J, Yang Q. Substrate Rigidity Modulates Segmentation Clock Dynamics in Isolated Presomitic Mesoderm Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601712. [PMID: 39005461 PMCID: PMC11244955 DOI: 10.1101/2024.07.02.601712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The segmentation clock, a genetic oscillator in the presomitic mesoderm (PSM), is known to be influenced by biochemical signals, yet its potential regulation by mechanical cues remains unclear. The complex PSM microenvironment has made it challenging to isolate the effects of mechanical perturbations on clock behavior. Here we investigated how mechanical stimuli affect clock oscillations by culturing zebrafish PSM cells on PDMS micropost arrays with tunable rigidities (0.6-1200 kPa). We observed an inverse sigmoidal relationship between surface rigidity and both the percentage of oscillating cells and the number of oscillation cycles, with a switching threshold between 3-6 kPa. The periods of oscillating cells showed a consistently broad distribution across rigidity changes. Moreover, these cells exhibited distinct biophysical properties, such as reduced motility, contractility, and sustained circularity. These findings highlight the crucial role of cell-substrate interactions in regulating segmentation clock behavior, providing insights into the mechanobiology of somitogenesis.
Collapse
Affiliation(s)
- Chun-Yen Sung
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Usha Kadiyala
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Owen Blanchard
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Liam Yourston
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Derek Walker
- Department of Physics, University of Michigan, Ann Arbor, MI 48109
| | - Linyuan Li
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Qiong Yang
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
- Department of Physics, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109
| |
Collapse
|
8
|
Miao Y, Pourquié O. Cellular and molecular control of vertebrate somitogenesis. Nat Rev Mol Cell Biol 2024; 25:517-533. [PMID: 38418851 PMCID: PMC11694818 DOI: 10.1038/s41580-024-00709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Segmentation is a fundamental feature of the vertebrate body plan. This metameric organization is first implemented by somitogenesis in the early embryo, when paired epithelial blocks called somites are rhythmically formed to flank the neural tube. Recent advances in in vitro models have offered new opportunities to elucidate the mechanisms that underlie somitogenesis. Notably, models derived from human pluripotent stem cells introduced an efficient proxy for studying this process during human development. In this Review, we summarize the current understanding of somitogenesis gained from both in vivo studies and in vitro studies. We deconstruct the spatiotemporal dynamics of somitogenesis into four distinct modules: dynamic events in the presomitic mesoderm, segmental determination, somite anteroposterior polarity patterning, and epithelial morphogenesis. We first focus on the segmentation clock, as well as signalling and metabolic gradients along the tissue, before discussing the clock and wavefront and other models that account for segmental determination. We then detail the molecular and cellular mechanisms of anteroposterior polarity patterning and somite epithelialization.
Collapse
Affiliation(s)
- Yuchuan Miao
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
9
|
Doostdar P, Hawley J, Chopra K, Marinopoulou E, Lea R, Arashvand K, Biga V, Papalopulu N, Soto X. Cell coupling compensates for changes in single-cell Her6 dynamics and provides phenotypic robustness. Development 2024; 151:dev202640. [PMID: 38682303 PMCID: PMC11190438 DOI: 10.1242/dev.202640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
This paper investigates the effect of altering the protein expression dynamics of the bHLH transcription factor Her6 at the single-cell level in the embryonic zebrafish telencephalon. Using a homozygote endogenous Her6:Venus reporter and 4D single-cell tracking, we show that Her6 oscillates in neural telencephalic progenitors and that the fusion of protein destabilisation (PEST) domain alters its expression dynamics, causing most cells to downregulate Her6 prematurely. However, counterintuitively, oscillatory cells increase, with some expressing Her6 at high levels, resulting in increased heterogeneity of Her6 expression in the population. These tissue-level changes appear to be an emergent property of coupling between single-cells, as revealed by experimentally disrupting Notch signalling and by computationally modelling alterations in Her6 protein stability. Despite the profound differences in the single-cell Her6 dynamics, the size of the telencephalon is only transiently altered and differentiation markers do not exhibit significant differences early on; however, a small increase is observed at later developmental stages. Our study suggests that cell coupling provides a compensation strategy, whereby an almost normal phenotype is maintained even though single-cell gene expression dynamics are abnormal, granting phenotypic robustness.
Collapse
Affiliation(s)
- Parnian Doostdar
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Joshua Hawley
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kunal Chopra
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Elli Marinopoulou
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Robert Lea
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kiana Arashvand
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Veronica Biga
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ximena Soto
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
10
|
Chandel AS, Keseroglu K, Özbudak EM. Oscillatory control of embryonic development. Development 2024; 151:dev202191. [PMID: 38727565 PMCID: PMC11128281 DOI: 10.1242/dev.202191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Proper embryonic development depends on the timely progression of a genetic program. One of the key mechanisms for achieving precise control of developmental timing is to use gene expression oscillations. In this Review, we examine how gene expression oscillations encode temporal information during vertebrate embryonic development by discussing the gene expression oscillations occurring during somitogenesis, neurogenesis, myogenesis and pancreas development. These oscillations play important but varied physiological functions in different contexts. Oscillations control the period of somite formation during somitogenesis, whereas they regulate the proliferation-to-differentiation switch of stem cells and progenitor cells during neurogenesis, myogenesis and pancreas development. We describe the similarities and differences of the expression pattern in space (i.e. whether oscillations are synchronous or asynchronous across neighboring cells) and in time (i.e. different time scales) of mammalian Hes/zebrafish Her genes and their targets in different tissues. We further summarize experimental evidence for the functional role of their oscillations. Finally, we discuss the outstanding questions for future research.
Collapse
Affiliation(s)
- Angad Singh Chandel
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kemal Keseroglu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ertuğrul M. Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
11
|
Richard CA, Seum C, Gonzalez-Gaitan M. Microtubule polarity determines the lineage of embryonic neural precursor in zebrafish spinal cord. Commun Biol 2024; 7:439. [PMID: 38600297 PMCID: PMC11006876 DOI: 10.1038/s42003-024-06018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
The phenomenal diversity of neuronal types in the central nervous system is achieved in part by the asymmetric division of neural precursors. In zebrafish neural precursors, asymmetric dispatch of Sara endosomes (with its Notch signaling cargo) functions as fate determinant which mediates asymmetric division. Here, we found two distinct pools of neural precursors based on Sara endosome inheritance and spindle-microtubule enrichment. Symmetric or asymmetric levels of spindle-microtubules drive differently Sara endosomes inheritance and predict neural precursor lineage. We uncover that CAMSAP2a/CAMSAP3a and KIF16Ba govern microtubule asymmetry and endosome motility, unveiling the heterogeneity of neural precursors. Using a plethora of physical and cell biological assays, we determined the physical parameters and molecular mechanisms behind microtubule asymmetries and biased endosome motility. Evolutionarily, the values of those parameters explain why all sensory organ precursor cells are asymmetric in flies while, in zebrafish spinal cord, two populations of neural precursors (symmetric vs asymmetric) are possible.
Collapse
Affiliation(s)
- Clément-Alexis Richard
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 Quai Ernest Ansermet, Geneva, 1205, Switzerland.
| | - Carole Seum
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 Quai Ernest Ansermet, Geneva, 1205, Switzerland
| | - Marcos Gonzalez-Gaitan
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 Quai Ernest Ansermet, Geneva, 1205, Switzerland.
| |
Collapse
|
12
|
Ramesh PS, Chu LF. Species-specific roles of the Notch ligands, receptors, and targets orchestrating the signaling landscape of the segmentation clock. Front Cell Dev Biol 2024; 11:1327227. [PMID: 38348091 PMCID: PMC10859470 DOI: 10.3389/fcell.2023.1327227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 02/15/2024] Open
Abstract
Somitogenesis is a hallmark feature of all vertebrates and some invertebrate species that involves the periodic formation of block-like structures called somites. Somites are transient embryonic segments that eventually establish the entire vertebral column. A highly conserved molecular oscillator called the segmentation clock underlies this periodic event and the pace of this clock regulates the pace of somite formation. Although conserved signaling pathways govern the clock in most vertebrates, the mechanisms underlying the species-specific divergence in various clock characteristics remain elusive. For example, the segmentation clock in classical model species such as zebrafish, chick, and mouse embryos tick with a periodicity of ∼30, ∼90, and ∼120 min respectively. This enables them to form the species-specific number of vertebrae during their overall timespan of somitogenesis. Here, we perform a systematic review of the species-specific features of the segmentation clock with a keen focus on mouse embryos. We perform this review using three different perspectives: Notch-responsive clock genes, ligand-receptor dynamics, and synchronization between neighboring oscillators. We further review reports that use non-classical model organisms and in vitro model systems that complement our current understanding of the segmentation clock. Our review highlights the importance of comparative developmental biology to further our understanding of this essential developmental process.
Collapse
Affiliation(s)
- Pranav S. Ramesh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
13
|
McDaniel C, Simsek MF, Chandel AS, Özbudak EM. Spatiotemporal control of pattern formation during somitogenesis. SCIENCE ADVANCES 2024; 10:eadk8937. [PMID: 38277458 PMCID: PMC10816718 DOI: 10.1126/sciadv.adk8937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Spatiotemporal patterns widely occur in biological, chemical, and physical systems. Particularly, embryonic development displays a diverse gamut of repetitive patterns established in many tissues and organs. Branching treelike structures in lungs, kidneys, livers, pancreases, and mammary glands as well as digits and bones in appendages, teeth, and palates are just a few examples. A fascinating instance of repetitive patterning is the sequential segmentation of the primary body axis, which is conserved in all vertebrates and many arthropods and annelids. In these species, the body axis elongates at the posterior end of the embryo containing an unsegmented tissue. Meanwhile, segments sequentially bud off from the anterior end of the unsegmented tissue, laying down an exquisite repetitive pattern and creating a segmented body plan. In vertebrates, the paraxial mesoderm is sequentially divided into somites. In this review, we will discuss the most prominent models, the most puzzling experimental data, and outstanding questions in vertebrate somite segmentation.
Collapse
Affiliation(s)
- Cassandra McDaniel
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - M. Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Angad Singh Chandel
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ertuğrul M. Özbudak
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
14
|
Eck E, Moretti B, Schlomann BH, Bragantini J, Lange M, Zhao X, VijayKumar S, Valentin G, Loureiro C, Soroldoni D, Royer LA, Oates AC, Garcia HG. Single-cell transcriptional dynamics in a living vertebrate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574108. [PMID: 38260569 PMCID: PMC10802376 DOI: 10.1101/2024.01.03.574108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The ability to quantify transcriptional dynamics in individual cells via live imaging has revolutionized our understanding of gene regulation. However, such measurements are lacking in the context of vertebrate embryos. We addressed this deficit by applying MS2-MCP mRNA labeling to the quantification of transcription in zebrafish, a model vertebrate. We developed a platform of transgenic organisms, light sheet fluorescence microscopy, and optimized image analysis that enables visualization and quantification of MS2 reporters. We used these tools to obtain the first single-cell, real-time measurements of transcriptional dynamics of the segmentation clock. Our measurements challenge the traditional view of smooth clock oscillations and instead suggest a model of discrete transcriptional bursts that are organized in space and time. Together, these results highlight how measuring single-cell transcriptional activity can reveal unexpected features of gene regulation and how this data can fuel the dialogue between theory and experiment.
Collapse
Affiliation(s)
- Elizabeth Eck
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, USA
| | - Bruno Moretti
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| | - Brandon H. Schlomann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Merlin Lange
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| | - Xiang Zhao
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Loïc A. Royer
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| | - Andrew C. Oates
- Institute of Bioengineering, EPFL; Lausanne, CH
- Department of Cell and Developmental Biology, UCL; London, UK
- The Francis Crick Institute; London, UK
| | - Hernan G. Garcia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Loureiro C, Venzin OF, Oates AC. Generation of patterns in the paraxial mesoderm. Curr Top Dev Biol 2023; 159:372-405. [PMID: 38729682 DOI: 10.1016/bs.ctdb.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called "Clock and Wavefront" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the "Clock and Wavefront" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the "Clock and Wavefront" model into three elements, "Clock", "Wavefront" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.
Collapse
Affiliation(s)
- Cristina Loureiro
- Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology Lausanne EPFL, Switzerland
| | - Olivier F Venzin
- Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology Lausanne EPFL, Switzerland
| | - Andrew C Oates
- Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology Lausanne EPFL, Switzerland.
| |
Collapse
|
16
|
Keseroglu K, Zinani OQH, Keskin S, Seawall H, Alpay EE, Özbudak EM. Stochastic gene expression and environmental stressors trigger variable somite segmentation phenotypes. Nat Commun 2023; 14:6497. [PMID: 37838784 PMCID: PMC10576776 DOI: 10.1038/s41467-023-42220-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Mutations of several genes cause incomplete penetrance and variable expressivity of phenotypes, which are usually attributed to modifier genes or gene-environment interactions. Here, we show stochastic gene expression underlies the variability of somite segmentation defects in embryos mutant for segmentation clock genes her1 or her7. Phenotypic strength is further augmented by low temperature and hypoxia. By performing live imaging of the segmentation clock reporters, we further show that groups of cells with higher oscillation amplitudes successfully form somites while those with lower amplitudes fail to do so. In unfavorable environments, the number of cycles with high amplitude oscillations and the number of successful segmentations proportionally decrease. These results suggest that individual oscillation cycles stochastically fail to pass a threshold amplitude, resulting in segmentation defects in mutants. Our quantitative methodology is adaptable to investigate variable phenotypes of mutant genes in different tissues.
Collapse
Affiliation(s)
- Kemal Keseroglu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Oriana Q H Zinani
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Sevdenur Keskin
- Allergy and Immunology, University of Arkansas for Medical Science and Arkansas Children's Hospital, Little Rock, AR, 72202, USA
| | - Hannah Seawall
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Eslim E Alpay
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
17
|
Moretti B, Rodriguez Alvarez SN, Grecco HE. Nfinder: automatic inference of cell neighborhood in 2D and 3D using nuclear markers. BMC Bioinformatics 2023; 24:230. [PMID: 37270479 DOI: 10.1186/s12859-023-05284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/12/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND In tissues and organisms, the coordination of neighboring cells is essential to maintain their properties and functions. Therefore, knowing which cells are adjacent is crucial to understand biological processes that involve physical interactions among them, e.g. cell migration and proliferation. In addition, some signaling pathways, such as Notch or extrinsic apoptosis, are highly dependent on cell-cell communication. While this is straightforward to obtain from membrane images, nuclei labelling is much more ubiquitous for technical reasons. However, there are no automatic and robust methods to find neighboring cells based only on nuclear markers. RESULTS In this work, we describe Nfinder, a method to assess the cell's local neighborhood from images with nuclei labeling. To achieve this goal, we approximate the cell-cell interaction graph by the Delaunay triangulation of nuclei centroids. Then, links are filtered by automatic thresholding in cell-cell distance (pairwise interaction) and the maximum angle that a pair of cells subtends with shared neighbors (non-pairwise interaction). We systematically characterized the detection performance by applying Nfinder to publicly available datasets from Drosophila melanogaster, Tribolium castaneum, Arabidopsis thaliana and C. elegans. In each case, the result of the algorithm was compared to a cell neighbor graph generated by manually annotating the original dataset. On average, our method detected 95% of true neighbors, with only 6% of false discoveries. Remarkably, our findings indicate that taking into account non-pairwise interactions might increase the Positive Predictive Value up to + 11.5%. CONCLUSION Nfinder is the first robust and automatic method for estimating neighboring cells in 2D and 3D based only on nuclear markers and without any free parameters. Using this tool, we found that taking non-pairwise interactions into account improves the detection performance significantly. We believe that using our method might improve the effectiveness of other workflows to study cell-cell interactions from microscopy images. Finally, we also provide a reference implementation in Python and an easy-to-use napari plugin.
Collapse
Affiliation(s)
- Bruno Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina.
- CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, USA.
| | - Santiago N Rodriguez Alvarez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Hernán E Grecco
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina.
- CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
| |
Collapse
|
18
|
Yabe T, Uriu K, Takada S. Ripply suppresses Tbx6 to induce dynamic-to-static conversion in somite segmentation. Nat Commun 2023; 14:2115. [PMID: 37055428 PMCID: PMC10102234 DOI: 10.1038/s41467-023-37745-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
The metameric pattern of somites is created based on oscillatory expression of clock genes in presomitic mesoderm. However, the mechanism for converting the dynamic oscillation to a static pattern of somites is still unclear. Here, we provide evidence that Ripply/Tbx6 machinery is a key regulator of this conversion. Ripply1/Ripply2-mediated removal of Tbx6 protein defines somite boundary and also leads to cessation of clock gene expression in zebrafish embryos. On the other hand, activation of ripply1/ripply2 mRNA and protein expression is periodically regulated by clock oscillation in conjunction with an Erk signaling gradient. Whereas Ripply protein decreases rapidly in embryos, Ripply-triggered Tbx6 suppression persists long enough to complete somite boundary formation. Mathematical modeling shows that a molecular network based on results of this study can reproduce dynamic-to-static conversion in somitogenesis. Furthermore, simulations with this model suggest that sustained suppression of Tbx6 caused by Ripply is crucial in this conversion.
Collapse
Affiliation(s)
- Taijiro Yabe
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
| | - Koichiro Uriu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
19
|
Yaman YI, Ramanathan S. Controlling human organoid symmetry breaking reveals signaling gradients drive segmentation clock waves. Cell 2023; 186:513-527.e19. [PMID: 36657441 PMCID: PMC10025047 DOI: 10.1016/j.cell.2022.12.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023]
Abstract
Axial development of mammals involves coordinated morphogenetic events, including axial elongation, somitogenesis, and neural tube formation. To gain insight into the signals controlling the dynamics of human axial morphogenesis, we generated axially elongating organoids by inducing anteroposterior symmetry breaking of spatially coupled epithelial cysts derived from human pluripotent stem cells. Each organoid was composed of a neural tube flanked by presomitic mesoderm sequentially segmented into somites. Periodic activation of the somite differentiation gene MESP2 coincided in space and time with anteriorly traveling segmentation clock waves in the presomitic mesoderm of the organoids, recapitulating critical aspects of somitogenesis. Timed perturbations demonstrated that FGF and WNT signaling play distinct roles in axial elongation and somitogenesis, and that FGF signaling gradients drive segmentation clock waves. By generating and perturbing organoids that robustly recapitulate the architecture of multiple axial tissues in human embryos, this work offers a means to dissect mechanisms underlying human embryogenesis.
Collapse
Affiliation(s)
- Yusuf Ilker Yaman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Sharad Ramanathan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
20
|
Uriu K, Morelli LG. Orchestration of tissue shape changes and gene expression patterns in development. Semin Cell Dev Biol 2023; 147:24-33. [PMID: 36631335 DOI: 10.1016/j.semcdb.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
In development, tissue shape changes and gene expression patterns give rise to morphogenesis. Understanding tissue shape changes requires the analysis of mechanical properties of the tissue such as tissue rigidity, cell influx from neighboring tissues, cell shape changes and cell proliferation. Local and global gene expression patterns can be influenced by neighbor exchange and tissue shape changes. Here we review recent studies on the mechanisms for tissue elongation and its influences on dynamic gene expression patterns by focusing on vertebrate somitogenesis. We first introduce mechanical and biochemical properties of the segmenting tissue that drive tissue elongation. Then, we discuss patterning in the presence of cell mixing, scaling of signaling gradients, and dynamic phase waves of rhythmic gene expression under tissue shape changes. We also highlight the importance of theoretical approaches to address the relation between tissue shape changes and patterning.
Collapse
Affiliation(s)
- Koichiro Uriu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 Japan.
| | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina; Departamento de Física, FCEyN UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
| |
Collapse
|
21
|
Blatnik MC, Gallagher TL, Amacher SL. Keeping development on time: Insights into post-transcriptional mechanisms driving oscillatory gene expression during vertebrate segmentation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1751. [PMID: 35851751 PMCID: PMC9840655 DOI: 10.1002/wrna.1751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 01/31/2023]
Abstract
Biological time keeping, or the duration and tempo at which biological processes occur, is a phenomenon that drives dynamic molecular and morphological changes that manifest throughout many facets of life. In some cases, the molecular mechanisms regulating the timing of biological transitions are driven by genetic oscillations, or periodic increases and decreases in expression of genes described collectively as a "molecular clock." In vertebrate animals, molecular clocks play a crucial role in fundamental patterning and cell differentiation processes throughout development. For example, during early vertebrate embryogenesis, the segmentation clock regulates the patterning of the embryonic mesoderm into segmented blocks of tissue called somites, which later give rise to axial skeletal muscle and vertebrae. Segmentation clock oscillations are characterized by rapid cycles of mRNA and protein expression. For segmentation clock oscillations to persist, the transcript and protein molecules of clock genes must be short-lived. Faithful, rhythmic, genetic oscillations are sustained by precise regulation at many levels, including post-transcriptional regulation, and such mechanisms are essential for proper vertebrate development. This article is categorized under: RNA Export and Localization > RNA Localization RNA Turnover and Surveillance > Regulation of RNA Stability Translation > Regulation.
Collapse
Affiliation(s)
- Monica C. Blatnik
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, 43210-1132, United States
| | - Thomas L. Gallagher
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, 43210-1132, United States
| | - Sharon L. Amacher
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, 43210-1132, United States
| |
Collapse
|
22
|
Periodic inhibition of Erk activity drives sequential somite segmentation. Nature 2023; 613:153-159. [PMID: 36517597 PMCID: PMC9846577 DOI: 10.1038/s41586-022-05527-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/04/2022] [Indexed: 12/23/2022]
Abstract
Sequential segmentation creates modular body plans of diverse metazoan embryos1-4. Somitogenesis establishes the segmental pattern of the vertebrate body axis. A molecular segmentation clock in the presomitic mesoderm sets the pace of somite formation4. However, how cells are primed to form a segment boundary at a specific location remains unclear. Here we developed precise reporters for the clock and double-phosphorylated Erk (ppErk) gradient in zebrafish. We show that the Her1-Her7 oscillator drives segmental commitment by periodically lowering ppErk, therefore projecting its oscillation onto the ppErk gradient. Pulsatile inhibition of the ppErk gradient can fully substitute for the role of the clock, and kinematic clock waves are dispensable for sequential segmentation. The clock functions upstream of ppErk, which in turn enables neighbouring cells to discretely establish somite boundaries in zebrafish5. Molecularly divergent clocks and morphogen gradients were identified in sequentially segmenting species3,4,6-8. Our findings imply that versatile clocks may establish sequential segmentation in diverse species provided that they inhibit gradients.
Collapse
|
23
|
Carraco G, Martins-Jesus AP, Andrade RP. The vertebrate Embryo Clock: Common players dancing to a different beat. Front Cell Dev Biol 2022; 10:944016. [PMID: 36036002 PMCID: PMC9403190 DOI: 10.3389/fcell.2022.944016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Vertebrate embryo somitogenesis is the earliest morphological manifestation of the characteristic patterned structure of the adult axial skeleton. Pairs of somites flanking the neural tube are formed periodically during early development, and the molecular mechanisms in temporal control of this early patterning event have been thoroughly studied. The discovery of a molecular Embryo Clock (EC) underlying the periodicity of somite formation shed light on the importance of gene expression dynamics for pattern formation. The EC is now known to be present in all vertebrate organisms studied and this mechanism was also described in limb development and stem cell differentiation. An outstanding question, however, remains unanswered: what sets the different EC paces observed in different organisms and tissues? This review aims to summarize the available knowledge regarding the pace of the EC, its regulation and experimental manipulation and to expose new questions that might help shed light on what is still to unveil.
Collapse
Affiliation(s)
- Gil Carraco
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | | | - Raquel P. Andrade
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal
- *Correspondence: Raquel P. Andrade,
| |
Collapse
|
24
|
Falk HJ, Tomita T, Mönke G, McDole K, Aulehla A. Imaging the onset of oscillatory signaling dynamics during mouse embryo gastrulation. Development 2022; 149:275659. [PMID: 35686648 PMCID: PMC9340547 DOI: 10.1242/dev.200083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/25/2022] [Indexed: 01/24/2023]
Abstract
A fundamental requirement for embryonic development is the coordination of signaling activities in space and time. A notable example in vertebrate embryos is found during somitogenesis, where gene expression oscillations linked to the segmentation clock are synchronized across cells in the presomitic mesoderm (PSM) and result in tissue-level wave patterns. To examine their onset during mouse embryo development, we studied the dynamics of the segmentation clock gene Lfng during gastrulation. To this end, we established an imaging setup using selective plane illumination microscopy (SPIM) that enables culture and simultaneous imaging of up to four embryos (‘SPIM- for-4’). Using SPIM-for-4, combined with genetically encoded signaling reporters, we detected the onset of Lfng oscillations within newly formed mesoderm at presomite stages. Functionally, we found that initial synchrony and the first ∼6-8 oscillation cycles occurred even when Notch signaling was impaired, revealing similarities to previous findings made in zebrafish embryos. Finally, we show that a spatial period gradient is present at the onset of oscillatory activity, providing a potential mechanism accounting for our observation that wave patterns build up gradually over the first oscillation cycles. Summary: A versatile light-sheet imaging setup enabling simultaneous live imaging of multiple mouse embryos for 48 h, an approach that offers insight into the onset of oscillatory signaling dynamics and the segmentation clock.
Collapse
Affiliation(s)
- Henning J Falk
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Takehito Tomita
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Gregor Mönke
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Katie McDole
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
25
|
Abstract
Tight spatiotemporal control of cellular behavior and cell fate decisions is paramount to the formation of multicellular organisms during embryonic development. Intercellular communication via signaling pathways mediates this control. Interestingly, these signaling pathways are not static, but dynamic and change in activity over time. Signaling oscillations as a specific type of dynamics are found in various signaling pathways and model systems. Functions of oscillations include the regulation of periodic events or the transmission of information by encoding signals in the dynamic properties of a signaling pathway. For instance, signaling oscillations in neural or pancreatic progenitor cells modulate their proliferation and differentiation. Oscillations between neighboring cells can also be synchronized, leading to the emergence of waves traveling through the tissue. Such population-wide signaling oscillations regulate for example the consecutive segmentation of vertebrate embryos, a process called somitogenesis. Here, we outline our current understanding of signaling oscillations in embryonic development, how signaling oscillations are generated, how they are studied and how they contribute to the regulation of embryonic development.
Collapse
|
26
|
Pourquié O. A brief history of the segmentation clock. Dev Biol 2022; 485:24-36. [DOI: 10.1016/j.ydbio.2022.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
|
27
|
Kuyyamudi C, Menon SN, Sinha S. Morphogen-regulated contact-mediated signaling between cells can drive the transitions underlying body segmentation in vertebrates. Phys Biol 2021; 19. [PMID: 34670199 DOI: 10.1088/1478-3975/ac31a3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/20/2021] [Indexed: 11/12/2022]
Abstract
We propose a unified mechanism that reproduces the sequence of dynamical transitions observed during somitogenesis, the process of body segmentation during embryonic development, that is invariant across all vertebrate species. This is achieved by combining inter-cellular interactions mediated via receptor-ligand coupling with global spatial heterogeneity introduced through a morphogen gradient known to occur along the anteroposterior axis. Our model reproduces synchronized oscillations in the gene expression in cells at the anterior of the presomitic mesoderm as it grows by adding new cells at its posterior, followed by travelling waves and subsequent arrest of activity, with the eventual appearance of somite-like patterns. This framework integrates a boundary-organized pattern formation mechanism, which uses positional information provided by a morphogen gradient, with the coupling-mediated self-organized emergence of collective dynamics, to explain the processes that lead to segmentation.
Collapse
Affiliation(s)
- Chandrashekar Kuyyamudi
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
28
|
Diaz-Cuadros M, Pourquié O, El-Sherif E. Patterning with clocks and genetic cascades: Segmentation and regionalization of vertebrate versus insect body plans. PLoS Genet 2021; 17:e1009812. [PMID: 34648490 PMCID: PMC8516289 DOI: 10.1371/journal.pgen.1009812] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oscillatory and sequential processes have been implicated in the spatial patterning of many embryonic tissues. For example, molecular clocks delimit segmental boundaries in vertebrates and insects and mediate lateral root formation in plants, whereas sequential gene activities are involved in the specification of regional identities of insect neuroblasts, vertebrate neural tube, vertebrate limb, and insect and vertebrate body axes. These processes take place in various tissues and organisms, and, hence, raise the question of what common themes and strategies they share. In this article, we review 2 processes that rely on the spatial regulation of periodic and sequential gene activities: segmentation and regionalization of the anterior-posterior (AP) axis of animal body plans. We study these processes in species that belong to 2 different phyla: vertebrates and insects. By contrasting 2 different processes (segmentation and regionalization) in species that belong to 2 distantly related phyla (arthropods and vertebrates), we elucidate the deep logic of patterning by oscillatory and sequential gene activities. Furthermore, in some of these organisms (e.g., the fruit fly Drosophila), a mode of AP patterning has evolved that seems not to overtly rely on oscillations or sequential gene activities, providing an opportunity to study the evolution of pattern formation mechanisms.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ezzat El-Sherif
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Wolf S, Wan Y, McDole K. Current approaches to fate mapping and lineage tracing using image data. Development 2021; 148:dev198994. [PMID: 34498046 DOI: 10.1242/dev.198994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Visualizing, tracking and reconstructing cell lineages in developing embryos has been an ongoing effort for well over a century. Recent advances in light microscopy, labelling strategies and computational methods to analyse complex image datasets have enabled detailed investigations into the fates of cells. Combined with powerful new advances in genomics and single-cell transcriptomics, the field of developmental biology is able to describe the formation of the embryo like never before. In this Review, we discuss some of the different strategies and applications to lineage tracing in live-imaging data and outline software methodologies that can be applied to various cell-tracking challenges.
Collapse
Affiliation(s)
- Steffen Wolf
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Yinan Wan
- Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Katie McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
30
|
Boareto M, Tomka T, Iber D. Positional information encoded in the dynamic differences between neighboring oscillators during vertebrate segmentation. Cells Dev 2021; 168:203737. [PMID: 34481980 DOI: 10.1016/j.cdev.2021.203737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 01/24/2023]
Abstract
A central problem in developmental biology is to understand how cells interpret their positional information to give rise to spatial patterns, such as the process of periodic segmentation of the vertebrate embryo into somites. For decades, somite formation has been interpreted according to the clock-and-wavefront model. In this conceptual framework, molecular oscillators set the frequency of somite formation while the positional information is encoded in signaling gradients. Recent experiments using ex vivo explants have challenged this interpretation, suggesting that positional information is encoded in the properties of the oscillators, independent of long-range modulations such as signaling gradients. Here, we propose that positional information is encoded in the difference in the levels of neighboring oscillators. The differences gradually increase because both the amplitude and the period of the oscillators increase with time. When this difference exceeds a certain threshold, the segmentation program starts. Using this framework, we quantitatively fit experimental data from in vivo and ex vivo mouse segmentation, and propose mechanisms of somite scaling. Our results suggest a novel mechanism of spatial pattern formation based on the local interactions between dynamic molecular oscillators.
Collapse
Affiliation(s)
- Marcelo Boareto
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Tomas Tomka
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
31
|
Abstract
The temporal coordination of events at cellular and tissue scales is essential for the proper development of organisms, and involves cell-intrinsic processes that can be coupled by local cellular signalling and instructed by global signalling, thereby creating spatial patterns of cellular states that change over time. The timing and structure of these patterns determine how an organism develops. Traditional developmental genetic methods have revealed the complex molecular circuits regulating these processes but are limited in their ability to predict and understand the emergent spatio-temporal dynamics. Increasingly, approaches from physics are now being used to help capture the dynamics of the system by providing simplified, generic descriptions. Combined with advances in imaging and computational power, such approaches aim to provide insight into timing and patterning in developing systems.
Collapse
|
32
|
Abstract
Arthropod segmentation and vertebrate somitogenesis are leading fields in the experimental and theoretical interrogation of developmental patterning. However, despite the sophistication of current research, basic conceptual issues remain unresolved. These include: (i) the mechanistic origins of spatial organization within the segment addition zone (SAZ); (ii) the mechanistic origins of segment polarization; (iii) the mechanistic origins of axial variation; and (iv) the evolutionary origins of simultaneous patterning. Here, I explore these problems using coarse-grained models of cross-regulating dynamical processes. In the morphogenetic framework of a row of cells undergoing axial elongation, I simulate interactions between an 'oscillator', a 'switch' and up to three 'timers', successfully reproducing essential patterning behaviours of segmenting systems. By comparing the output of these largely cell-autonomous models to variants that incorporate positional information, I find that scaling relationships, wave patterns and patterning dynamics all depend on whether the SAZ is regulated by temporal or spatial information. I also identify three mechanisms for polarizing oscillator output, all of which functionally implicate the oscillator frequency profile. Finally, I demonstrate significant dynamical and regulatory continuity between sequential and simultaneous modes of segmentation. I discuss these results in the context of the experimental literature.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, 210 Longwood Ave, Boston, MA 02115, USA
- Trinity College Cambridge, University of Cambridge, Trinity Street, Cambridge CB2 1TQ, UK
| |
Collapse
|
33
|
Betjes MA, Zheng X, Kok RNU, van Zon JS, Tans SJ. Cell Tracking for Organoids: Lessons From Developmental Biology. Front Cell Dev Biol 2021; 9:675013. [PMID: 34150770 PMCID: PMC8209328 DOI: 10.3389/fcell.2021.675013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
Organoids have emerged as powerful model systems to study organ development and regeneration at the cellular level. Recently developed microscopy techniques that track individual cells through space and time hold great promise to elucidate the organizational principles of organs and organoids. Applied extensively in the past decade to embryo development and 2D cell cultures, cell tracking can reveal the cellular lineage trees, proliferation rates, and their spatial distributions, while fluorescent markers indicate differentiation events and other cellular processes. Here, we review a number of recent studies that exemplify the power of this approach, and illustrate its potential to organoid research. We will discuss promising future routes, and the key technical challenges that need to be overcome to apply cell tracking techniques to organoid biology.
Collapse
Affiliation(s)
| | | | | | | | - Sander J Tans
- AMOLF, Amsterdam, Netherlands.,Bionanoscience Department, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
34
|
Uriu K, Liao BK, Oates AC, Morelli LG. From local resynchronization to global pattern recovery in the zebrafish segmentation clock. eLife 2021; 10:61358. [PMID: 33587039 PMCID: PMC7984840 DOI: 10.7554/elife.61358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 01/26/2023] Open
Abstract
Integrity of rhythmic spatial gene expression patterns in the vertebrate segmentation clock requires local synchronization between neighboring cells by Delta-Notch signaling and its inhibition causes defective segment boundaries. Whether deformation of the oscillating tissue complements local synchronization during patterning and segment formation is not understood. We combine theory and experiment to investigate this question in the zebrafish segmentation clock. We remove a Notch inhibitor, allowing resynchronization, and analyze embryonic segment recovery. We observe unexpected intermingling of normal and defective segments, and capture this with a new model combining coupled oscillators and tissue mechanics. Intermingled segments are explained in the theory by advection of persistent phase vortices of oscillators. Experimentally observed changes in recovery patterns are predicted in the theory by temporal changes in tissue length and cell advection pattern. Thus, segmental pattern recovery occurs at two length and time scales: rapid local synchronization between neighboring cells, and the slower transport of the resulting patterns across the tissue through morphogenesis.
Collapse
Affiliation(s)
- Koichiro Uriu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Bo-Kai Liao
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.,Department of Cell and Developmental Biology, University College London, Gower Street, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew C Oates
- Department of Cell and Developmental Biology, University College London, Gower Street, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Buenos Aires, Argentina.,Departamento de Física, FCEyN UBA, Ciudad Universitaria, Buenos Aires, Argentina.,Max Planck Institute for Molecular Physiology, Department of Systemic Cell Biology, Dortmund, Germany
| |
Collapse
|
35
|
Yoshioka-Kobayashi K, Kageyama R. Imaging and manipulating the segmentation clock. Cell Mol Life Sci 2021; 78:1221-1231. [PMID: 33015720 PMCID: PMC11072046 DOI: 10.1007/s00018-020-03655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/21/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
During embryogenesis, the processes that control how cells differentiate and interact to form particular tissues and organs with precise timing and shape are of fundamental importance. One prominent example of such processes is vertebrate somitogenesis, which is governed by a molecular oscillator called the segmentation clock. The segmentation clock system is initiated in the presomitic mesoderm in which a set of genes and signaling pathways exhibit coordinated spatiotemporal dynamics to establish regularly spaced boundaries along the body axis; these boundaries provide a blueprint for the development of segment-like structures such as spines and skeletal muscles. The highly complex and dynamic nature of this in vivo event and the design principles and their regulation in both normal and abnormal embryogenesis are not fully understood. Recently, live-imaging has been used to quantitatively analyze the dynamics of selected components of the circuit, particularly in combination with well-designed experiments to perturb the system. Here, we review recent progress from studies using live imaging and manipulation, including attempts to recapitulate the segmentation clock in vitro. In combination with mathematical modeling, these techniques have become essential for disclosing novel aspects of the clock.
Collapse
Affiliation(s)
- Kumiko Yoshioka-Kobayashi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan.
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
36
|
Zinani OQH, Keseroğlu K, Ay A, Özbudak EM. Pairing of segmentation clock genes drives robust pattern formation. Nature 2020; 589:431-436. [PMID: 33361814 PMCID: PMC7932681 DOI: 10.1038/s41586-020-03055-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Gene expression is an inherently stochastic process 1,2; however, organismal development and homeostasis require that cells spatiotemporally coordinate the expression of large sets of genes. Coexpressed gene pairs in metazoans often reside in the same chromosomal neighborhood, with gene pairs representing 10% - 50% of all genes depending on species 3–6. As shared upstream regulators can ensure correlated gene expression, the selective advantage of maintaining adjacent gene pairs remains unknown 6. Here, using two linked zebrafish segmentation clock genes, her1 and her7, and combining single-cell transcript counting, genetic engineering, real-time imaging and computational modeling, we reveal that gene pairing boosts correlated transcription and provides phenotypic robustness for developmental pattern formation. Our results demonstrate that disrupting gene pairing disrupts oscillations and segmentation, identifying the selective pressure retaining correlated transcription to sustain a robust and rapid developmental clock. We anticipate that these findings will inspire investigating advantages of gene pairing in other systems and engineering precise synthetic clocks in embryos and organoids.
Collapse
Affiliation(s)
- Oriana Q H Zinani
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kemal Keseroğlu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ahmet Ay
- Department of Biology, Colgate University, Hamilton, NY, USA.,Department of Mathematics, Colgate University, Hamilton, NY, USA
| | - Ertuğrul M Özbudak
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
37
|
Naganathan S, Oates A. Patterning and mechanics of somite boundaries in zebrafish embryos. Semin Cell Dev Biol 2020; 107:170-178. [DOI: 10.1016/j.semcdb.2020.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/12/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
|
38
|
Jutras-Dubé L, El-Sherif E, François P. Geometric models for robust encoding of dynamical information into embryonic patterns. eLife 2020; 9:55778. [PMID: 32773041 PMCID: PMC7470844 DOI: 10.7554/elife.55778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
During development, cells gradually assume specialized fates via changes of transcriptional dynamics, sometimes even within the same developmental stage. For anterior-posterior (AP) patterning in metazoans, it has been suggested that the gradual transition from a dynamic genetic regime to a static one is encoded by different transcriptional modules. In that case, the static regime has an essential role in pattern formation in addition to its maintenance function. In this work, we introduce a geometric approach to study such transition. We exhibit two types of genetic regime transitions arising through local or global bifurcations, respectively. We find that the global bifurcation type is more generic, more robust, and better preserves dynamical information. This could parsimoniously explain common features of metazoan segmentation, such as changes of periods leading to waves of gene expressions, ‘speed/frequency-gradient’ dynamics, and changes of wave patterns. Geometric approaches appear as possible alternatives to gene regulatory networks to understand development.
Collapse
Affiliation(s)
| | - Ezzat El-Sherif
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paul François
- Department of Physics, McGill University, Montreal, Canada
| |
Collapse
|
39
|
Bocci F, Onuchic JN, Jolly MK. Understanding the Principles of Pattern Formation Driven by Notch Signaling by Integrating Experiments and Theoretical Models. Front Physiol 2020; 11:929. [PMID: 32848867 PMCID: PMC7411240 DOI: 10.3389/fphys.2020.00929] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Notch signaling is an evolutionary conserved cell-cell communication pathway. Besides regulating cell-fate decisions at an individual cell level, Notch signaling coordinates the emergent spatiotemporal patterning in a tissue through ligand-receptor interactions among transmembrane molecules of neighboring cells, as seen in embryonic development, angiogenesis, or wound healing. Due to its ubiquitous nature, Notch signaling is also implicated in several aspects of cancer progression, including tumor angiogenesis, stemness of cancer cells and cellular invasion. Here, we review experimental and computational models that help understand the operating principles of cell patterning driven by Notch signaling. First, we discuss the basic mechanisms of spatial patterning via canonical lateral inhibition and lateral induction mechanisms, including examples from angiogenesis, inner ear development and cancer metastasis. Next, we analyze additional layers of complexity in the Notch pathway, including the effect of varying cell sizes and shapes, ligand-receptor binding within the same cell, variable binding affinity of different ligand/receptor subtypes, and filopodia. Finally, we discuss some recent evidence of mechanosensitivity in the Notch pathway in driving collective epithelial cell migration and cardiovascular morphogenesis.
Collapse
Affiliation(s)
- Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Rice University, Houston, TX, United States
- Department of Chemistry, Rice University, Houston, TX, United States
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
40
|
Soto X, Biga V, Kursawe J, Lea R, Doostdar P, Thomas R, Papalopulu N. Dynamic properties of noise and Her6 levels are optimized by miR-9, allowing the decoding of the Her6 oscillator. EMBO J 2020; 39:e103558. [PMID: 32395844 PMCID: PMC7298297 DOI: 10.15252/embj.2019103558] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023] Open
Abstract
Noise is prevalent in biology and has been widely quantified using snapshot measurements. This static view obscures our understanding of dynamic noise properties and how these affect gene expression and cell state transitions. Using a CRISPR/Cas9 Zebrafish her6::Venus reporter combined with mathematical and in vivo experimentation, we explore how noise affects the protein dynamics of Her6, a basic helix-loop-helix transcriptional repressor. During neurogenesis, Her6 expression transitions from fluctuating to oscillatory at single-cell level. We identify that absence of miR-9 input generates high-frequency noise in Her6 traces, inhibits the transition to oscillatory protein expression and prevents the downregulation of Her6. Together, these impair the upregulation of downstream targets and cells accumulate in a normally transitory state where progenitor and early differentiation markers are co-expressed. Computational modelling and double smFISH of her6 and the early neurogenesis marker, elavl3, suggest that the change in Her6 dynamics precedes the downregulation in Her6 levels. This sheds light onto the order of events at the moment of cell state transition and how this is influenced by the dynamic properties of noise. Our results suggest that Her/Hes oscillations, facilitated by dynamic noise optimization by miR-9, endow progenitor cells with the ability to make a cell state transition.
Collapse
Affiliation(s)
- Ximena Soto
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Veronica Biga
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Jochen Kursawe
- School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
| | - Robert Lea
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Parnian Doostdar
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Riba Thomas
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| | - Nancy Papalopulu
- Faculty of Biology Medicine and HealthSchool of Medical SciencesThe University of ManchesterManchesterUK
| |
Collapse
|
41
|
Oates AC. Waiting on the Fringe: cell autonomy and signaling delays in segmentation clocks. Curr Opin Genet Dev 2020; 63:61-70. [PMID: 32505051 DOI: 10.1016/j.gde.2020.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
The rhythmic and sequential segmentation of the vertebrate body axis into somites during embryogenesis is governed by a multicellular, oscillatory patterning system called the segmentation clock. Despite many overt similarities between vertebrates, differences in genetic and dynamic regulation have been reported, raising intriguing questions about the evolution and conservation of this fundamental patterning process. Recent studies have brought insights into two important and related issues: (1) whether individual cells of segmentation clocks are autonomous oscillators or require cell-cell communication for their rhythm; and (2) the role of delays in the cell-cell communication that synchronizes the population of genetic oscillators. Although molecular details differ between species, conservation may exist at the level of the dynamics, hinting at rules for evolutionary trajectories in the system.
Collapse
Affiliation(s)
- Andrew C Oates
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédéral de Lausanne (EPFL), CH-1015, Switzerland.
| |
Collapse
|
42
|
Venzin OF, Oates AC. What are you synching about? Emerging complexity of Notch signaling in the segmentation clock. Dev Biol 2020; 460:40-54. [DOI: 10.1016/j.ydbio.2019.06.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/30/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
|
43
|
Tietz KT, Gallagher TL, Mannings MC, Morrow ZT, Derr NL, Amacher SL. Pumilio response and AU-rich elements drive rapid decay of Pnrc2-regulated cyclic gene transcripts. Dev Biol 2020; 462:129-140. [PMID: 32246943 DOI: 10.1016/j.ydbio.2020.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/18/2020] [Accepted: 03/20/2020] [Indexed: 01/06/2023]
Abstract
Vertebrate segmentation is regulated by the segmentation clock, a biological oscillator that controls periodic formation of somites, or embryonic segments, which give rise to many mesodermal tissue types. This molecular oscillator generates cyclic gene expression with the same periodicity as somite formation in the presomitic mesoderm (PSM), an area of mesenchymal cells that give rise to mature somites. Molecular components of the clock include the Hes/her family of genes that encode transcriptional repressors, but additional genes cycle. Cyclic gene transcripts are cleared rapidly, and clearance depends upon the pnrc2 (proline-rich nuclear receptor co-activator 2) gene that encodes an mRNA decay adaptor. Previously, we showed that the her1 3'UTR confers instability to otherwise stable transcripts in a Pnrc2-dependent manner, however, the molecular mechanism(s) by which cyclic gene transcripts are cleared remained largely unknown. To identify features of the her1 3'UTR that are critical for Pnrc2-mediated decay, we developed an array of transgenic inducible reporter lines carrying different regions of the 3'UTR. We find that the terminal 179 nucleotides (nts) of the her1 3'UTR are necessary and sufficient to confer rapid instability. Additionally, we show that the 3'UTR of another cyclic gene, deltaC (dlc), also confers Pnrc2-dependent instability. Motif analysis reveals that both her1 and dlc 3'UTRs contain terminally-located Pumilio response elements (PREs) and AU-rich elements (AREs), and we show that the PRE and ARE in the last 179 nts of the her1 3'UTR drive rapid turnover of reporter mRNA. Finally, we show that mutation of Pnrc2 residues and domains that are known to facilitate interaction of human PNRC2 with decay factors DCP1A and UPF1 reduce the ability of Pnrc2 to restore normal cyclic gene expression in pnrc2 mutant embryos. Our findings suggest that Pnrc2 interacts with decay machinery components and cooperates with Pumilio (Pum) proteins and ARE-binding proteins to promote rapid turnover of cyclic gene transcripts during somitogenesis.
Collapse
Affiliation(s)
- Kiel T Tietz
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Thomas L Gallagher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Monica C Mannings
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Zachary T Morrow
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicolas L Derr
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
44
|
Bhavna R. Segmentation clock dynamics is strongly synchronized in the forming somite. Dev Biol 2020; 460:55-69. [PMID: 30926261 DOI: 10.1016/j.ydbio.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
During vertebrate somitogenesis an inherent segmentation clock coordinates the spatiotemporal signaling to generate segmented structures that pattern the body axis. Using our experimental and quantitative approach, we study the cell movements and the genetic oscillations of her1 expression level at single-cell resolution simultaneously and scale up to the entire pre-somitic mesoderm (PSM) tissue. From the experimentally determined phases of PSM cellular oscillators, we deduced an in vivo frequency profile gradient along the anterior-posterior PSM axis and inferred precise mathematical relations between spatial cell-level period and tissue-level somitogenesis period. We also confirmed a gradient in the relative velocities of cellular oscillators along the axis. The phase order parameter within an ensemble of oscillators revealed the degree of synchronization in the tailbud and the posterior PSM being only partial, whereas synchronization can be almost complete in the presumptive somite region but with temporal oscillations. Collectively, the degree of synchronization itself, possibly regulated by cell movement and the synchronized temporal phase of the transiently expressed clock protein Her1, can be an additional control mechanism for making precise somite boundaries.
Collapse
Affiliation(s)
- Rajasekaran Bhavna
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany; Tata Institute of Fundamental Research, 400005, Mumbai, India.
| |
Collapse
|
45
|
Naoki H, Matsui T. Somite boundary determination in normal and clock-less vertebrate embryos. Dev Growth Differ 2020; 62:177-187. [PMID: 32108939 DOI: 10.1111/dgd.12655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022]
Abstract
Vertebrate segments called somites are generated by periodic segmentation of the presomitic mesoderm (PSM). In the most accepted theoretical model for somite segmentation, the clock and wavefront (CW) model, a clock that ticks to determine particular timings and a wavefront that moves posteriorly are presented in the PSM, and somite positions are determined when the clock meets the posteriorly moving wavefront somewhere in the PSM. Over the last two decades, it has been revealed that the molecular mechanism of the clock and wavefront in vertebrates is based on clock genes including Hes family transcription factors and Notch effectors that oscillate within the PSM to determine particular timings and fibroblast growth factor (FGF) gradients, acting as the posteriorly moving wavefront to determine the position of somite segmentation. A clock-less condition in the CW model was predicted to form no somites; however, irregularly sized somites were still formed in mice and zebrafish, suggesting that this was one of the limitations of the CW model. Recently, we performed interdisciplinary research of experimental and theoretical biological studies and revealed the mechanisms of somite boundary determination in normal and clock-less conditions by characterization of the FGF/extracellular signal-regulated kinase (ERK) activity dynamics. Since features of the molecular clock have already been described in-depth in several reviews, we summarized recent findings regarding the role of FGF/ERK signaling in somite boundary formation and described our current understanding of how FGF/ERK signaling contributes to somitogenesis in normal and clock-less conditions in this review.
Collapse
Affiliation(s)
- Honda Naoki
- Laboratory of Theoretical Biology, Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
| | - Takaaki Matsui
- Gene Regulation Research, Division of Biological Science, Nara Institute of Science and Technology, Takayama, Nara, Japan
| |
Collapse
|
46
|
Diaz-Cuadros M, Wagner DE, Budjan C, Hubaud A, Tarazona OA, Donelly S, Michaut A, Al Tanoury Z, Yoshioka-Kobayashi K, Niino Y, Kageyama R, Miyawaki A, Touboul J, Pourquié O. In vitro characterization of the human segmentation clock. Nature 2020; 580:113-118. [PMID: 31915384 PMCID: PMC7336868 DOI: 10.1038/s41586-019-1885-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/05/2019] [Indexed: 12/03/2022]
Abstract
The segmental organization of the vertebral column is established early in embryogenesis when pairs of somites are rhythmically produced by the presomitic mesoderm (PSM). The tempo of somite formation is controlled by a molecular oscillator known as the segmentation clock1,2. While this oscillator has been well-characterized in model organisms1,2, whether a similar oscillator exists in humans remains unknown. Genetic analysis of patients with severe spine segmentation defects have implicated several human orthologs of cyclic genes associated with the mouse segmentation clock, suggesting that this oscillator might be conserved in humans3. Here we show that in vitro-derived human as well as mouse PSM cells4 recapitulate oscillations of the segmentation clock. Human PSM cells oscillate twice slower than mouse cells (5-hours vs. 2.5 hours), but are similarly regulated by FGF, Wnt, Notch and YAP5. Single cell RNA-sequencing reveals that mouse and human PSM cells in vitro follow a similar developmental trajectory to mouse PSM in vivo. Furthermore, we demonstrate that FGF signaling controls the phase and period of oscillations, expanding the role of this pathway beyond its classical interpretation in “Clock and Wavefront” models. Overall, our work identifying the human segmentation clock represents an important breakthrough for human developmental biology.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel E Wagner
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Christoph Budjan
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexis Hubaud
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Oscar A Tarazona
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sophia Donelly
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Arthur Michaut
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziad Al Tanoury
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Yusuke Niino
- Laboratory for Cell Function and Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Jonathan Touboul
- Department of Mathematics, Brandeis University, Waltham, MA, USA.,Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
47
|
Coupling delay controls synchronized oscillation in the segmentation clock. Nature 2020; 580:119-123. [PMID: 31915376 DOI: 10.1038/s41586-019-1882-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/05/2019] [Indexed: 11/08/2022]
Abstract
Individual cellular activities fluctuate but are constantly coordinated at the population level via cell-cell coupling. A notable example is the somite segmentation clock, in which the expression of clock genes (such as Hes7) oscillates in synchrony between the cells that comprise the presomitic mesoderm (PSM)1,2. This synchronization depends on the Notch signalling pathway; inhibiting this pathway desynchronizes oscillations, leading to somite fusion3-7. However, how Notch signalling regulates the synchronicity of HES7 oscillations is unknown. Here we establish a live-imaging system using a new fluorescent reporter (Achilles), which we fuse with HES7 to monitor synchronous oscillations in HES7 expression in the mouse PSM at a single-cell resolution. Wild-type cells can rapidly correct for phase fluctuations in HES7 oscillations, whereas the absence of the Notch modulator gene lunatic fringe (Lfng) leads to a loss of synchrony between PSM cells. Furthermore, HES7 oscillations are severely dampened in individual cells of Lfng-null PSM. However, when Lfng-null PSM cells were completely dissociated, the amplitude and periodicity of HES7 oscillations were almost normal, which suggests that LFNG is involved mostly in cell-cell coupling. Mixed cultures of control and Lfng-null PSM cells, and an optogenetic Notch signalling reporter assay, revealed that LFNG delays the signal-sending process of intercellular Notch signalling transmission. These results-together with mathematical modelling-raised the possibility that Lfng-null PSM cells shorten the coupling delay, thereby approaching a condition known as the oscillation or amplitude death of coupled oscillators8. Indeed, a small compound that lengthens the coupling delay partially rescues the amplitude and synchrony of HES7 oscillations in Lfng-null PSM cells. Our study reveals a delay control mechanism of the oscillatory networks involved in somite segmentation, and indicates that intercellular coupling with the correct delay is essential for synchronized oscillation.
Collapse
|
48
|
Boareto M. Patterning via local cell-cell interactions in developing systems. Dev Biol 2019; 460:77-85. [PMID: 31866513 DOI: 10.1016/j.ydbio.2019.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 01/26/2023]
Abstract
Spatial patterning during embryonic development emerges from the differentiation of progenitor cells that share the same genetic program. One of the main challenges in systems biology is to understand the relationship between gene network and patterning, especially how the cells communicate to coordinate their differentiation. This review aims to describe the principles of pattern formation from local cell-cell interactions mediated by the Notch signalling pathway. Notch mediates signalling via direct cell-cell contact and regulates cell fate decisions in many tissues during embryonic development. Here, I will describe the patterning mechanisms via different Notch ligands and the critical role of Notch oscillations during the segmentation of the vertebrate body, brain development, and blood vessel formation.
Collapse
Affiliation(s)
- Marcelo Boareto
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
49
|
Noise in the Vertebrate Segmentation Clock Is Boosted by Time Delays but Tamed by Notch Signaling. Cell Rep 2019; 23:2175-2185.e4. [PMID: 29768214 PMCID: PMC5989725 DOI: 10.1016/j.celrep.2018.04.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/05/2018] [Accepted: 04/16/2018] [Indexed: 02/04/2023] Open
Abstract
Taming cell-to-cell variability in gene expression is critical for precise pattern formation during embryonic development. To investigate the source and buffering mechanism of expression variability, we studied a biological clock, the vertebrate segmentation clock, controlling the precise spatiotemporal patterning of the vertebral column. By counting single transcripts of segmentation clock genes in zebrafish, we show that clock genes have low RNA amplitudes and expression variability is primarily driven by gene extrinsic sources, which is suppressed by Notch signaling. We further show that expression noise surprisingly increases from the posterior progenitor zone to the anterior segmentation and differentiation zone. Our computational model reproduces the spatial noise profile by incorporating spatially increasing time delays in gene expression. Our results, suggesting that expression variability is controlled by the balance of time delays and cell signaling in a vertebrate tissue, will shed light on the accuracy of natural clocks in multi-cellular systems and inspire engineering of robust synthetic oscillators.
Collapse
|
50
|
Baron JW, Galla T. Intrinsic noise, Delta-Notch signalling and delayed reactions promote sustained, coherent, synchronized oscillations in the presomitic mesoderm. J R Soc Interface 2019; 16:20190436. [PMID: 31771454 DOI: 10.1098/rsif.2019.0436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Using a stochastic individual-based modelling approach, we examine the role that Delta-Notch signalling plays in the regulation of a robust and reliable somite segmentation clock. We find that not only can Delta-Notch signalling synchronize noisy cycles of gene expression in adjacent cells in the presomitic mesoderm (as is known), but it can also amplify and increase the coherence of these cycles. We examine some of the shortcomings of deterministic approaches to modelling these cycles and demonstrate how intrinsic noise can play an active role in promoting sustained oscillations, giving rise to noise-induced quasi-cycles. Finally, we explore how translational/transcriptional delays can result in the cycles in neighbouring cells oscillating in anti-phase and we study how this effect relates to the propagation of noise-induced stochastic waves.
Collapse
Affiliation(s)
- Joseph W Baron
- Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Tobias Galla
- Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK.,IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| |
Collapse
|