1
|
Aldrich JC, Vanderlinden LA, Jacobsen TL, Wood C, Saba LM, Britt SG. Genome-Wide Association Study and transcriptome analysis reveals a complex gene network that regulates opsin gene expression and cell fate determination in Drosophila R7 photoreceptor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606616. [PMID: 39149333 PMCID: PMC11326169 DOI: 10.1101/2024.08.05.606616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background An animal's ability to discriminate between differing wavelengths of light (i.e., color vision) is mediated, in part, by a subset of photoreceptor cells that express opsins with distinct absorption spectra. In Drosophila R7 photoreceptors, expression of the rhodopsin molecules, Rh3 or Rh4, is determined by a stochastic process mediated by the transcription factor spineless. The goal of this study was to identify additional factors that regulate R7 cell fate and opsin choice using a Genome Wide Association Study (GWAS) paired with transcriptome analysis via RNA-Seq. Results We examined Rh3 and Rh4 expression in a subset of fully-sequenced inbred strains from the Drosophila Genetic Reference Panel and performed a GWAS to identify 42 naturally-occurring polymorphisms-in proximity to 28 candidate genes-that significantly influence R7 opsin expression. Network analysis revealed multiple potential interactions between the associated candidate genes, spineless and its partners. GWAS candidates were further validated in a secondary RNAi screen which identified 12 lines that significantly reduce the proportion of Rh3 expressing R7 photoreceptors. Finally, using RNA-Seq, we demonstrated that all but four of the GWAS candidates are expressed in the pupal retina at a critical developmental time point and that five are among the 917 differentially expressed genes in sevenless mutants, which lack R7 cells. Conclusions Collectively, these results suggest that the relatively simple, binary cell fate decision underlying R7 opsin expression is modulated by a larger, more complex network of regulatory factors. Of particular interest are a subset of candidate genes with previously characterized neuronal functions including neurogenesis, neurodegeneration, photoreceptor development, axon growth and guidance, synaptogenesis, and synaptic function.
Collapse
Affiliation(s)
- John C. Aldrich
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
- Department of Psychology, University of Texas at Austin, Austin, TX 78712
| | - Lauren A. Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas L. Jacobsen
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Steven G. Britt
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
2
|
Ordway AJ, Helt RN, Johnston RJ. Transcriptional priming and chromatin regulation during stochastic cell fate specification. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230046. [PMID: 38432315 PMCID: PMC10909510 DOI: 10.1098/rstb.2023.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
Stochastic cell fate specification, in which a cell chooses between two or more fates with a set probability, diversifies cell subtypes in development. Although this is a vital process across species, a common mechanism for these cell fate decisions remains elusive. This review examines two well-characterized stochastic cell fate decisions to identify commonalities between their developmental programmes. In the fly eye, two subtypes of R7 photoreceptors are specified by the stochastic ON/OFF expression of a transcription factor, spineless. In the mouse olfactory system, olfactory sensory neurons (OSNs) randomly select to express one copy of an olfactory receptor (OR) gene out of a pool of 2800 alleles. Despite the differences in these sensory systems, both stochastic fate choices rely on the dynamic interplay between transcriptional priming, chromatin regulation and terminal gene expression. The coupling of transcription and chromatin modifications primes gene loci in undifferentiated neurons, enabling later expression during terminal differentiation. Here, we compare these mechanisms, examine broader implications for gene regulation during development and posit key challenges moving forward. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Alison J. Ordway
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Rina N. Helt
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Robert J. Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Kitamata M, Otake Y, Kitagori H, Zhang X, Maki Y, Boku R, Takeuchi M, Nakagoshi H. Functional opsin patterning for Drosophila color vision is established through signaling pathways in adjacent object-detection neurons. Development 2024; 151:dev202388. [PMID: 38421315 PMCID: PMC10984275 DOI: 10.1242/dev.202388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Vision is mainly based on two different tasks, object detection and color discrimination, carried out by photoreceptor (PR) cells. The Drosophila compound eye consists of ∼800 ommatidia. Every ommatidium contains eight PR cells, six outer cells (R1-R6) and two inner cells (R7 and R8), by which object detection and color vision are achieved, respectively. Expression of opsin genes in R7 and R8 is highly coordinated through the instructive signal from R7 to R8, and two major ommatidial subtypes are distributed stochastically; pale type expresses Rh3/Rh5 and yellow type expresses Rh4/Rh6 in R7/R8. The homeodomain protein Defective proventriculus (Dve) is expressed in yellow-type R7 and in six outer PRs, and it is involved in Rh3 repression to specify the yellow-type R7. dve mutant eyes exhibited atypical coupling, Rh3/Rh6 and Rh4/Rh5, indicating that Dve activity is required for proper opsin coupling. Surprisingly, Dve activity in R1 is required for the instructive signal, whereas activity in R6 and R7 blocks the signal. Our results indicate that functional coupling of two different neurons is established through signaling pathways from adjacent neurons that are functionally different.
Collapse
Affiliation(s)
- Manabu Kitamata
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yoshiaki Otake
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hideaki Kitagori
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Xuanshuo Zhang
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yusuke Maki
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Rika Boku
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Masato Takeuchi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hideki Nakagoshi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Urban EA, Chernoff C, Layng KV, Han J, Anderson C, Konzman D, Johnston RJ. Activating and repressing gene expression between chromosomes during stochastic fate specification. Cell Rep 2023; 42:111910. [PMID: 36640351 PMCID: PMC9976292 DOI: 10.1016/j.celrep.2022.111910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
DNA elements act across long genomic distances to regulate gene expression. During transvection in Drosophila, DNA elements on one allele of a gene act between chromosomes to regulate expression of the other allele. Little is known about the biological roles and developmental regulation of transvection. Here, we study the stochastic expression of spineless (ss) in photoreceptors in the fly eye to understand transvection. We determine a biological role for transvection in regulating expression of naturally occurring ss alleles. We identify DNA elements required for activating and repressing transvection. Different enhancers participate in transvection at different times during development to promote gene expression and specify cell fates. Bringing a silencer element on a heterologous chromosome into proximity with the ss locus "reconstitutes" the gene, leading to repression. Our studies show that transvection regulates gene expression via distinct DNA elements at specific timepoints in development, with implications for genome organization and architecture.
Collapse
Affiliation(s)
- Elizabeth A. Urban
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA,These authors contributed equally
| | - Chaim Chernoff
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA,Present address: Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA,These authors contributed equally
| | - Kayla Viets Layng
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Jeong Han
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Daniel Konzman
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Robert J. Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA,Lead contact,Correspondence:
| |
Collapse
|
5
|
McCulloch KJ, Macias-Muñoz A, Briscoe AD. Insect opsins and evo-devo: what have we learned in 25 years? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210288. [PMID: 36058243 PMCID: PMC9441233 DOI: 10.1098/rstb.2021.0288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/16/2022] [Indexed: 12/16/2022] Open
Abstract
The visual pigments known as opsins are the primary molecular basis for colour vision in animals. Insects are among the most diverse of animal groups and their visual systems reflect a variety of life histories. The study of insect opsins in the fruit fly Drosophila melanogaster has led to major advances in the fields of neuroscience, development and evolution. In the last 25 years, research in D. melanogaster has improved our understanding of opsin genotype-phenotype relationships while comparative work in other insects has expanded our understanding of the evolution of insect eyes via gene duplication, coexpression and homologue switching. Even so, until recently, technology and sampling have limited our understanding of the fundamental mechanisms that evolution uses to shape the diversity of insect eyes. With the advent of genome editing and in vitro expression assays, the study of insect opsins is poised to reveal new frontiers in evolutionary biology, visual neuroscience, and animal behaviour. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Kyle J. McCulloch
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Aide Macias-Muñoz
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Adriana D. Briscoe
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Voortman L, Anderson C, Urban E, Yuan L, Tran S, Neuhaus-Follini A, Derrick J, Gregor T, Johnston RJ. Temporally dynamic antagonism between transcription and chromatin compaction controls stochastic photoreceptor specification in flies. Dev Cell 2022; 57:1817-1832.e5. [PMID: 35835116 PMCID: PMC9378680 DOI: 10.1016/j.devcel.2022.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 01/12/2023]
Abstract
Stochastic mechanisms diversify cell fates during development. How cells randomly choose between two or more fates remains poorly understood. In the Drosophila eye, the random mosaic of two R7 photoreceptor subtypes is determined by expression of the transcription factor Spineless (Ss). We investigated how cis-regulatory elements and trans factors regulate nascent transcriptional activity and chromatin compaction at the ss gene locus during R7 development. The ss locus is in a compact state in undifferentiated cells. An early enhancer drives transcription in all R7 precursors, and the locus opens. In differentiating cells, transcription ceases and the ss locus stochastically remains open or compacts. In SsON R7s, ss is open and competent for activation by a late enhancer, whereas in SsOFF R7s, ss is compact, and repression prevents expression. Our results suggest that a temporally dynamic antagonism, in which transcription drives large-scale decompaction and then compaction represses transcription, controls stochastic fate specification.
Collapse
Affiliation(s)
- Lukas Voortman
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elizabeth Urban
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Luorongxin Yuan
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sang Tran
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Josh Derrick
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Thomas Gregor
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Joseph Henry Laboratories of Physics, the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Developmental and Stem Cell Biology, UMR3738, Institut Pasteur, 75015 Paris, France
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
7
|
Zibetti C. Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives. Cells 2022; 11:cells11050806. [PMID: 35269428 PMCID: PMC8908986 DOI: 10.3390/cells11050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal neurogenesis is driven by concerted actions of transcription factors, some of which are expressed in a continuum and across several cell subtypes throughout development. While seemingly redundant, many factors diversify their regulatory outcome on gene expression, by coordinating variations in chromatin landscapes to drive divergent retinal specification programs. Recent studies have furthered the understanding of the epigenetic contribution to the progression of age-related macular degeneration, a leading cause of blindness in the elderly. The knowledge of the epigenomic mechanisms that control the acquisition and stabilization of retinal cell fates and are evoked upon damage, holds the potential for the treatment of retinal degeneration. Herein, this review presents the state-of-the-art approaches to investigate the retinal epigenome during development, disease, and reprogramming. A pipeline is then reviewed to functionally interrogate the epigenetic and transcriptional networks underlying cell fate specification, relying on a truly unbiased screening of open chromatin states. The related work proposes an inferential model to identify gene regulatory networks, features the first footprinting analysis and the first tentative, systematic query of candidate pioneer factors in the retina ever conducted in any model organism, leading to the identification of previously uncharacterized master regulators of retinal cell identity, such as the nuclear factor I, NFI. This pipeline is virtually applicable to the study of genetic programs and candidate pioneer factors in any developmental context. Finally, challenges and limitations intrinsic to the current next-generation sequencing techniques are discussed, as well as recent advances in super-resolution imaging, enabling spatio-temporal resolution of the genome.
Collapse
Affiliation(s)
- Cristina Zibetti
- Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Building 36, 0455 Oslo, Norway
| |
Collapse
|
8
|
Datta RR, Rister J. The power of the (imperfect) palindrome: Sequence-specific roles of palindromic motifs in gene regulation. Bioessays 2022; 44:e2100191. [PMID: 35195290 PMCID: PMC8957550 DOI: 10.1002/bies.202100191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/22/2022]
Abstract
In human languages, a palindrome reads the same forward as backward (e.g., 'madam'). In regulatory DNA, a palindrome is an inverted sequence repeat that allows a transcription factor to bind as a homodimer or as a heterodimer with another type of transcription factor. Regulatory palindromes are typically imperfect, that is, the repeated sequences differ in at least one base pair, but the functional significance of this asymmetry remains poorly understood. Here, we review the use of imperfect palindromes in Drosophila photoreceptor differentiation and mammalian steroid receptor signaling. Moreover, we discuss mechanistic explanations for the predominance of imperfect palindromes over perfect palindromes in these two gene regulatory contexts. Lastly, we propose to elucidate whether specific imperfectly palindromic variants have specific regulatory functions in steroid receptor signaling and whether such variants can help predict transcriptional outcomes as well as the response of individual patients to drug treatments.
Collapse
Affiliation(s)
- Rhea R Datta
- Department of Biology, Hamilton College, Clinton, New York, USA
| | - Jens Rister
- Department of Biology, University of Massachusetts Boston, Integrated Sciences Complex, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Poupault C, Choi D, Lam-Kamath K, Dewett D, Razzaq A, Bunker J, Perry A, Cho I, Rister J. A combinatorial cis-regulatory logic restricts color-sensing Rhodopsins to specific photoreceptor subsets in Drosophila. PLoS Genet 2021; 17:e1009613. [PMID: 34161320 PMCID: PMC8259978 DOI: 10.1371/journal.pgen.1009613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/06/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022] Open
Abstract
Color vision in Drosophila melanogaster is based on the expression of five different color-sensing Rhodopsin proteins in distinct subtypes of photoreceptor neurons. Promoter regions of less than 300 base pairs are sufficient to reproduce the unique, photoreceptor subtype-specific rhodopsin expression patterns. The underlying cis-regulatory logic remains poorly understood, but it has been proposed that the rhodopsin promoters have a bipartite structure: the distal promoter region directs the highly restricted expression in a specific photoreceptor subtype, while the proximal core promoter region provides general activation in all photoreceptors. Here, we investigate whether the rhodopsin promoters exhibit a strict specialization of their distal (subtype specificity) and proximal (general activation) promoter regions, or if both promoter regions contribute to generating the photoreceptor subtype-specific expression pattern. To distinguish between these two models, we analyze the expression patterns of a set of hybrid promoters that combine the distal promoter region of one rhodopsin with the proximal core promoter region of another rhodopsin. We find that the function of the proximal core promoter regions extends beyond providing general activation: these regions play a previously underappreciated role in generating the non-overlapping expression patterns of the different rhodopsins. Therefore, cis-regulatory motifs in both the distal and the proximal core promoter regions recruit transcription factors that generate the unique rhodopsin patterns in a combinatorial manner. We compare this combinatorial regulatory logic to the regulatory logic of olfactory receptor genes and discuss potential implications for the evolution of rhodopsins. Each type of sensory receptor neuron in our body expresses a specific sensory receptor protein, which allows us to detect and discriminate a variety of environmental stimuli. The regulatory logic that controls this spatially precise and highly restricted expression of sensory receptor proteins remains poorly understood. As a model system, we study the mechanisms that control the expression of different color-sensing Rhodopsin proteins in distinct subtypes of Drosophila photoreceptors, which is the basis for color vision. Compact promoter regions of less than 300 base pairs are sufficient to reproduce the non-overlapping rhodopsin patterns. However, the regulatory logic that underlies the combination (sometimes called ‘grammar’) of the cis-regulatory motifs (sometimes called ‘vocabulary’) within the rhodopsin promoters remains poorly understood. Here, we find that specific combinations of cis-regulatory motifs in the distal and the proximal core promoter regions of each rhodopsin direct its unique expression pattern.
Collapse
Affiliation(s)
- Clara Poupault
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Diane Choi
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Khanh Lam-Kamath
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Deepshe Dewett
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Ansa Razzaq
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Joseph Bunker
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Alexis Perry
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Irene Cho
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Jens Rister
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Miller AC, Urban EA, Lyons EL, Herman TG, Johnston RJ. Interdependent regulation of stereotyped and stochastic photoreceptor fates in the fly eye. Dev Biol 2020; 471:89-96. [PMID: 33333066 PMCID: PMC7856283 DOI: 10.1016/j.ydbio.2020.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Diversification of neuronal subtypes often requires stochastic gene regulatory mechanisms. How stochastically expressed transcription factors interact with other regulators in gene networks to specify cell fates is poorly understood. The random mosaic of color-detecting R7 photoreceptor subtypes in Drosophila is controlled by the stochastic on/off expression of the transcription factor Spineless (Ss). In SsON R7s, Ss induces expression of Rhodopsin 4 (Rh4), whereas in SsOFF R7s, the absence of Ss allows expression of Rhodopsin 3 (Rh3). Here, we find that the transcription factor Runt, which is initially expressed in all R7s, is sufficient to promote stochastic Ss expression. Later, as R7s develop, Ss negatively feeds back onto Runt to prevent repression of Rh4 and ensure proper fate specification. Together, stereotyped and stochastic regulatory inputs are integrated into feedforward and feedback mechanisms to control cell fate.
Collapse
Affiliation(s)
- Adam C Miller
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Elizabeth A Urban
- Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218-2685, USA
| | - Eric L Lyons
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Tory G Herman
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA.
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218-2685, USA.
| |
Collapse
|
11
|
Identification of Genes Involved in the Differentiation of R7y and R7p Photoreceptor Cells in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:3949-3958. [PMID: 32972998 PMCID: PMC7642934 DOI: 10.1534/g3.120.401370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The R7 and R8 photoreceptor cells of the Drosophila compound eye mediate color vision. Throughout the majority of the eye, these cells occur in two principal types of ommatidia. Approximately 35% of ommatidia are of the pale type and express Rh3 in R7 cells and Rh5 in R8 cells. The remaining 65% are of the yellow type and express Rh4 in R7 cells and Rh6 in R8 cells. The specification of an R8 cell in a pale or yellow ommatidium depends on the fate of the adjacent R7 cell. However, pale and yellow R7 cells are specified by a stochastic process that requires the genes spineless, tango and klumpfuss. To identify additional genes involved in this process we performed genetic screens using a collection of 480 P{EP} transposon insertion strains. We identified genes in gain of function and loss of function screens that significantly altered the percentage of Rh3 expressing R7 cells (Rh3%) from wild-type. 36 strains resulted in altered Rh3% in the gain of function screen where the P{EP} insertion strains were crossed to a sevEP-GAL4 driver line. 53 strains resulted in altered Rh3% in the heterozygous loss of function screen. 4 strains showed effects that differed between the two screens, suggesting that the effect found in the gain of function screen was either larger than, or potentially masked by, the P{EP} insertion alone. Analyses of homozygotes validated many of the candidates identified. These results suggest that R7 cell fate specification is sensitive to perturbations in mRNA transcription, splicing and localization, growth inhibition, post-translational protein modification, cleavage and secretion, hedgehog signaling, ubiquitin protease activity, GTPase activation, actin and cytoskeletal regulation, and Ser/Thr kinase activity, among other diverse signaling and cell biological processes.
Collapse
|
12
|
Tan H, Fulton RE, Chou WH, Birkholz DA, Mannino MP, Yamaguchi DM, Aldrich JC, Jacobsen TL, Britt SG. Drosophila R8 photoreceptor cell subtype specification requires hibris. PLoS One 2020; 15:e0240451. [PMID: 33052948 PMCID: PMC7556441 DOI: 10.1371/journal.pone.0240451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/25/2020] [Indexed: 11/18/2022] Open
Abstract
Cell differentiation and cell fate determination in sensory systems are essential for stimulus discrimination and coding of environmental stimuli. Color vision is based on the differential color sensitivity of retinal photoreceptors, however the developmental programs that control photoreceptor cell differentiation and specify color sensitivity are poorly understood. In Drosophila melanogaster, there is evidence that the color sensitivity of different photoreceptors in the compound eye is regulated by inductive signals between cells, but the exact nature of these signals and how they are propagated remains unknown. We conducted a genetic screen to identify additional regulators of this process and identified a novel mutation in the hibris gene, which encodes an irre cell recognition module protein (IRM). These immunoglobulin super family cell adhesion molecules include human KIRREL and nephrin (NPHS1). hibris is expressed dynamically in the developing Drosophila melanogaster eye and loss-of-function mutations give rise to a diverse range of mutant phenotypes including disruption of the specification of R8 photoreceptor cell diversity. We demonstrate that hibris is required within the retina, and that hibris over-expression is sufficient to disrupt normal photoreceptor cell patterning. These findings suggest an additional layer of complexity in the signaling process that produces paired expression of opsin genes in adjacent R7 and R8 photoreceptor cells.
Collapse
Affiliation(s)
- Hong Tan
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ruth E. Fulton
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Wen-Hai Chou
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Denise A. Birkholz
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Meridee P. Mannino
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - David M. Yamaguchi
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - John C. Aldrich
- Department of Neurology, Department of Ophthalmology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
| | - Thomas L. Jacobsen
- Department of Neurology, Department of Ophthalmology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
| | - Steven G. Britt
- Department of Neurology, Department of Ophthalmology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
13
|
Zechner C, Nerli E, Norden C. Stochasticity and determinism in cell fate decisions. Development 2020; 147:147/14/dev181495. [PMID: 32669276 DOI: 10.1242/dev.181495] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During development, cells need to make decisions about their fate in order to ensure that the correct numbers and types of cells are established at the correct time and place in the embryo. Such cell fate decisions are often classified as deterministic or stochastic. However, although these terms are clearly defined in a mathematical sense, they are sometimes used ambiguously in biological contexts. Here, we provide some suggestions on how to clarify the definitions and usage of the terms stochastic and deterministic in biological experiments. We discuss the frameworks within which such clear definitions make sense and highlight when certain ambiguity prevails. As an example, we examine how these terms are used in studies of neuronal cell fate decisions and point out areas in which definitions and interpretations have changed and matured over time. We hope that this Review will provide some clarification and inspire discussion on the use of terminology in relation to fate decisions.
Collapse
Affiliation(s)
- Christoph Zechner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany .,Max Planck Center for Systems Biology, Pfotenhauerstraße 108, 01307 Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Elisa Nerli
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany .,Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
14
|
Casares F, McGregor AP. The evolution and development of eye size in flies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e380. [PMID: 32400100 DOI: 10.1002/wdev.380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 01/19/2023]
Abstract
The compound eyes of flies exhibit striking variation in size, which has contributed to the adaptation of these animals to different habitats and their evolution of specialist behaviors. These differences in size are caused by differences in the number and/or size of ommatidia, which are specified during the development of the retinal field in the eye imaginal disc. While the genes and developmental mechanisms that regulate the formation of compound eyes are understood in great detail in the fruit fly Drosophila melanogaster, we know very little about the genetic changes and mechanistic alterations that lead to natural variation in ommatidia number and/or size, and thus overall eye size, within and between fly species. Understanding the genetic and developmental bases for this natural variation in eye size not only has great potential to help us understand adaptations in fly vision but also determine how eye size and organ size more generally are regulated. Here we explore the genetic and developmental mechanisms that could underlie natural differences in compound eye size within and among fly species based on our knowledge of eye development in D. melanogaster and the few cases where the causative genes and mechanisms have already been identified. We suggest that the fly eye provides an evolutionary and developmental framework to better understand the regulation and diversification of this crucial sensory organ globally at a systems level as well as the gene regulatory networks and mechanisms acting at the tissue, cellular and molecular levels. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Invertebrate Organogenesis > Flies Comparative Development and Evolution > Regulation of Organ Diversity.
Collapse
Affiliation(s)
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
15
|
Chen YC, Desplan C. Gene regulatory networks during the development of the Drosophila visual system. Curr Top Dev Biol 2020; 139:89-125. [PMID: 32450970 DOI: 10.1016/bs.ctdb.2020.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Drosophila visual system integrates input from 800 ommatidia and extracts different features in stereotypically connected optic ganglia. The development of the Drosophila visual system is controlled by gene regulatory networks that control the number of precursor cells, generate neuronal diversity by integrating spatial and temporal information, coordinate the timing of retinal and optic lobe cell differentiation, and determine distinct synaptic targets of each cell type. In this chapter, we describe the known gene regulatory networks involved in the development of the different parts of the visual system and explore general components in these gene networks. Finally, we discuss the advantages of the fly visual system as a model for gene regulatory network discovery in the era of single-cell transcriptomics.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Biology, New York University, New York, NY, United States
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, United States.
| |
Collapse
|
16
|
Viets K, Sauria MEG, Chernoff C, Rodriguez Viales R, Echterling M, Anderson C, Tran S, Dove A, Goyal R, Voortman L, Gordus A, Furlong EEM, Taylor J, Johnston RJ. Characterization of Button Loci that Promote Homologous Chromosome Pairing and Cell-Type-Specific Interchromosomal Gene Regulation. Dev Cell 2019; 51:341-356.e7. [PMID: 31607649 DOI: 10.1016/j.devcel.2019.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/07/2019] [Accepted: 09/09/2019] [Indexed: 01/05/2023]
Abstract
Homologous chromosomes colocalize to regulate gene expression in processes including genomic imprinting, X-inactivation, and transvection. In Drosophila, homologous chromosomes pair throughout development, promoting transvection. The "button" model of pairing proposes that specific regions along chromosomes pair with high affinity. Here, we identify buttons interspersed across the fly genome that pair with their homologous sequences, even when relocated to multiple positions in the genome. A majority of transgenes that span a full topologically associating domain (TAD) function as buttons, but not all buttons contain TADs. Additionally, buttons are enriched for insulator protein clusters. Fragments of buttons do not pair, suggesting that combinations of elements within a button are required for pairing. Pairing is necessary but not sufficient for transvection. Additionally, pairing and transvection are stronger in some cell types than in others, suggesting that pairing strength regulates transvection efficiency between cell types. Thus, buttons pair homologous chromosomes to facilitate cell-type-specific interchromosomal gene regulation.
Collapse
Affiliation(s)
- Kayla Viets
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael E G Sauria
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chaim Chernoff
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Max Echterling
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sang Tran
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Abigail Dove
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Raghav Goyal
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lukas Voortman
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eileen E M Furlong
- European Molecular Biology Laboratory, Department of Genome Biology, Heidelberg 69117, Germany
| | - James Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
17
|
Abstract
The Hippo signalling pathway and its transcriptional co-activator targets Yorkie/YAP/TAZ first came to attention because of their role in tissue growth control. Over the past 15 years, it has become clear that, like other developmental pathways (e.g. the Wnt, Hedgehog and TGFβ pathways), Hippo signalling is a 'jack of all trades' that is reiteratively used to mediate a range of cellular decision-making processes from proliferation, death and morphogenesis to cell fate determination. Here, and in the accompanying poster, we briefly outline the core pathway and its regulation, and describe the breadth of its roles in animal development.
Collapse
Affiliation(s)
- John Robert Davis
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
18
|
Attner MA, Keil W, Benavidez JM, Greenwald I. HLH-2/E2A Expression Links Stochastic and Deterministic Elements of a Cell Fate Decision during C. elegans Gonadogenesis. Curr Biol 2019; 29:3094-3100.e4. [PMID: 31402303 DOI: 10.1016/j.cub.2019.07.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/08/2019] [Accepted: 07/19/2019] [Indexed: 11/20/2022]
Abstract
Stochastic mechanisms diversify cell fate in organisms ranging from bacteria to humans [1-4]. In the anchor cell/ventral uterine precursor cell (AC/VU) fate decision during C. elegans gonadogenesis, two "α cells," each with equal potential to be an AC or a VU, interact via LIN-12/Notch and its ligand LAG-2/DSL [5, 6]. This LIN-12/Notch-mediated interaction engages feedback mechanisms that amplify a stochastic initial difference between the two α cells, ensuring that the cell with higher lin-12 activity becomes the VU while the other becomes the AC [7-9]. The initial difference between the α cells was originally envisaged as a random imbalance from "noise" in lin-12 expression/activity [6]. However, subsequent evidence that the relative birth order of the α cells biases their fates suggested other factors may be operating [7]. Here, we investigate the nature of the initial difference using high-throughput lineage analysis [10]; GFP-tagged endogenous LIN-12, LAG-2, and HLH-2, a conserved transcription factor that orchestrates AC/VU development [7, 11]; and tissue-specific hlh-2 null alleles. We identify two stochastic elements: relative birth order, which largely originates at the beginning of the somatic gonad lineage three generations earlier, and onset of HLH-2 expression, such that the α cell whose parent expressed HLH-2 first is biased toward the VU fate. We find that these elements are interrelated, because initiation of HLH-2 expression is linked to the birth of the parent cell. Finally, we provide a potential deterministic mechanism for the HLH-2 expression bias by showing that hlh-2 is required for LIN-12 expression in the α cells.
Collapse
Affiliation(s)
- Michelle A Attner
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - Wolfgang Keil
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Justin M Benavidez
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA.
| |
Collapse
|
19
|
Urban EA, Johnston RJ. Buffering and Amplifying Transcriptional Noise During Cell Fate Specification. Front Genet 2018; 9:591. [PMID: 30555516 PMCID: PMC6282114 DOI: 10.3389/fgene.2018.00591] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/15/2018] [Indexed: 11/29/2022] Open
Abstract
The molecular processes that drive gene transcription are inherently noisy. This noise often manifests in the form of transcriptional bursts, producing fluctuations in gene activity over time. During cell fate specification, this noise is often buffered to ensure reproducible developmental outcomes. However, sometimes noise is utilized as a “bet-hedging” mechanism to diversify functional roles across a population of cells. Studies of bacteria, yeast, and cultured cells have provided insights into the nature and roles of noise in transcription, yet we are only beginning to understand the mechanisms by which noise influences the development of multicellular organisms. Here we discuss the sources of transcriptional noise and the mechanisms that either buffer noise to drive reproducible fate choices or amplify noise to randomly specify fates.
Collapse
Affiliation(s)
- Elizabeth A Urban
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
20
|
Anderson C, Reiss I, Zhou C, Cho A, Siddiqi H, Mormann B, Avelis CM, Deford P, Bergland A, Roberts E, Taylor J, Vasiliauskas D, Johnston RJ. Natural variation in stochastic photoreceptor specification and color preference in Drosophila. eLife 2017; 6:29593. [PMID: 29251595 PMCID: PMC5745083 DOI: 10.7554/elife.29593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/15/2017] [Indexed: 11/25/2022] Open
Abstract
Each individual perceives the world in a unique way, but little is known about the genetic basis of variation in sensory perception. In the fly eye, the random mosaic of color-detecting R7 photoreceptor subtypes is determined by stochastic on/off expression of the transcription factor Spineless (Ss). In a genome-wide association study, we identified a naturally occurring insertion in a regulatory DNA element in ss that lowers the ratio of SsON to SsOFF cells. This change in photoreceptor fates shifts the innate color preference of flies from green to blue. The genetic variant increases the binding affinity for Klumpfuss (Klu), a zinc finger transcriptional repressor that regulates ss expression. Klu is expressed at intermediate levels to determine the normal ratio of SsON to SsOFF cells. Thus, binding site affinity and transcription factor levels are finely tuned to regulate stochastic expression, setting the ratio of alternative fates and ultimately determining color preference.
Collapse
Affiliation(s)
- Caitlin Anderson
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - India Reiss
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Cyrus Zhou
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Annie Cho
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Haziq Siddiqi
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Benjamin Mormann
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Cameron M Avelis
- Department of Biophysics, Johns Hopkins University, Baltimore, United States
| | - Peter Deford
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Alan Bergland
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Elijah Roberts
- Department of Biophysics, Johns Hopkins University, Baltimore, United States
| | - James Taylor
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Daniel Vasiliauskas
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
21
|
Mechanisms of Photoreceptor Patterning in Vertebrates and Invertebrates. Trends Genet 2017; 32:638-659. [PMID: 27615122 DOI: 10.1016/j.tig.2016.07.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 11/22/2022]
Abstract
Across the animal kingdom, visual systems have evolved to be uniquely suited to the environments and behavioral patterns of different species. Visual acuity and color perception depend on the distribution of photoreceptor (PR) subtypes within the retina. Retinal mosaics can be organized into three broad categories: stochastic/regionalized, regionalized, and ordered. We describe here the retinal mosaics of flies, zebrafish, chickens, mice, and humans, and the gene regulatory networks controlling proper PR specification in each. By drawing parallels in eye development between these divergent species, we identify a set of conserved organizing principles and transcriptional networks that govern PR subtype differentiation.
Collapse
|
22
|
Hahn ME, Karchner SI, Merson RR. Diversity as Opportunity: Insights from 600 Million Years of AHR Evolution. CURRENT OPINION IN TOXICOLOGY 2017; 2:58-71. [PMID: 28286876 DOI: 10.1016/j.cotox.2017.02.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The aryl hydrocarbon receptor (AHR) was for many years of interest only to pharmacologists and toxicologists. However, this protein has fundamental roles in biology that are being revealed through studies in diverse animal species. The AHR is an ancient protein. AHR homologs exist in most major groups of modern bilaterian animals, including deuterostomes (chordates, hemichordates, echinoderms) and the two major clades of protostome invertebrates [ecdysozoans (e.g. arthropods and nematodes) and lophotrochozoans (e.g. molluscs and annelids)]. AHR homologs also have been identified in cnidarians such as the sea anemone Nematostella and in the genome of Trichoplax, a placozoan. Bilaterians, cnidarians, and placozoans form the clade Eumetazoa, whose last common ancestor lived approximately 600 million years ago (MYA). The presence of AHR homologs in modern representatives of all these groups indicates that the original eumetazoan animal possessed an AHR homolog. Studies in invertebrates and vertebrates reveal parallel functions of AHR in the development and function of sensory neural systems, suggesting that these may be ancestral roles. Vertebrate animals are characterized by the expansion and diversification of AHRs, via gene and genome duplications, from the ancestral protoAHR into at least five classes of AHR-like proteins: AHR, AHR1, AHR2, AHR3, and AHRR. The evolution of multiple AHRs in vertebrates coincided with the acquisition of high-affinity binding of halogenated and polynuclear aromatic hydrocarbons and the emergence of adaptive functions involving regulation of xenobiotic-metabolizing enzymes and roles in adaptive immunity. The existence of multiple AHRs may have facilitated subfunction partitioning and specialization of specific AHR types in some taxa. Additional research in diverse model and non-model species will continue to enrich our understanding of AHR and its pleiotropic roles in biology and toxicology.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, MS-32, Woods Hole, MA 02543, USA
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, MS-32, Woods Hole, MA 02543, USA
| | - Rebeka R Merson
- Biology Department, Rhode Island College, 600 Mt. Pleasant Avenue, 251 Fogarty Life Sciences, Providence, RI 02908
| |
Collapse
|
23
|
Yan J, Anderson C, Viets K, Tran S, Goldberg G, Small S, Johnston RJ. Regulatory logic driving stable levels of defective proventriculus expression during terminal photoreceptor specification in flies. Development 2017; 144:844-855. [PMID: 28126841 DOI: 10.1242/dev.144030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/02/2017] [Indexed: 12/13/2022]
Abstract
How differential levels of gene expression are controlled in post-mitotic neurons is poorly understood. In the Drosophila retina, expression of the transcription factor Defective Proventriculus (Dve) at distinct cell type-specific levels is required for terminal differentiation of color- and motion-detecting photoreceptors. Here, we find that the activities of two cis-regulatory enhancers are coordinated to drive dve expression in the fly eye. Three transcription factors act on these enhancers to determine cell-type specificity. Negative autoregulation by Dve maintains expression from each enhancer at distinct homeostatic levels. One enhancer acts as an inducible backup ('dark' shadow enhancer) that is normally repressed but becomes active in the absence of the other enhancer. Thus, two enhancers integrate combinatorial transcription factor input, feedback and redundancy to generate cell type-specific levels of dve expression and stable photoreceptor fate. This regulatory logic may represent a general paradigm for how precise levels of gene expression are established and maintained in post-mitotic neurons.
Collapse
Affiliation(s)
- Jenny Yan
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA
| | - Kayla Viets
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA
| | - Sang Tran
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA
| | - Gregory Goldberg
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Stephen Small
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA
| |
Collapse
|
24
|
Perry M, Kinoshita M, Saldi G, Huo L, Arikawa K, Desplan C. Molecular logic behind the three-way stochastic choices that expand butterfly colour vision. Nature 2016; 535:280-4. [PMID: 27383790 PMCID: PMC4988338 DOI: 10.1038/nature18616] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/31/2016] [Indexed: 01/08/2023]
Abstract
Butterflies rely extensively on colour vision to adapt to the natural world. Most species express a broad range of colour-sensitive Rhodopsin proteins in three types of ommatidia (unit eyes), which are distributed stochastically across the retina. The retinas of Drosophila melanogaster use just two main types, in which fate is controlled by the binary stochastic decision to express the transcription factor Spineless in R7 photoreceptors. We investigated how butterflies instead generate three stochastically distributed ommatidial types, resulting in a more diverse retinal mosaic that provides the basis for additional colour comparisons and an expanded range of colour vision. We show that the Japanese yellow swallowtail (Papilio xuthus, Papilionidae) and the painted lady (Vanessa cardui, Nymphalidae) butterflies have a second R7-like photoreceptor in each ommatidium. Independent stochastic expression of Spineless in each R7-like cell results in expression of a blue-sensitive (Spineless(ON)) or an ultraviolet (UV)-sensitive (Spineless(OFF)) Rhodopsin. In P. xuthus these choices of blue/blue, blue/UV or UV/UV sensitivity in the two R7 cells are coordinated with expression of additional Rhodopsin proteins in the remaining photoreceptors, and together define the three types of ommatidia. Knocking out spineless using CRISPR/Cas9 (refs 5, 6) leads to the loss of the blue-sensitive fate in R7-like cells and transforms retinas into homogeneous fields of UV/UV-type ommatidia, with corresponding changes in other coordinated features of ommatidial type. Hence, the three possible outcomes of Spineless expression define the three ommatidial types in butterflies. This developmental strategy allowed the deployment of an additional red-sensitive Rhodopsin in P. xuthus, allowing for the evolution of expanded colour vision with a greater variety of receptors. This surprisingly simple mechanism that makes use of two binary stochastic decisions coupled with local coordination may prove to be a general means of generating an increased diversity of developmental outcomes.
Collapse
Affiliation(s)
- Michael Perry
- Department of Biology, New York University, New York, New York 10003, USA
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0115, Japan
| | - Giuseppe Saldi
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Lucy Huo
- Department of Biology, New York University, New York, New York 10003, USA
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0115, Japan
| | - Claude Desplan
- Department of Biology, New York University, New York, New York 10003, USA.,New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
25
|
Jukam D, Viets K, Anderson C, Zhou C, DeFord P, Yan J, Cao J, Johnston RJ. The insulator protein BEAF-32 is required for Hippo pathway activity in the terminal differentiation of neuronal subtypes. Development 2016; 143:2389-97. [PMID: 27226322 DOI: 10.1242/dev.134700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/11/2016] [Indexed: 01/07/2023]
Abstract
The Hippo pathway is crucial for not only normal growth and apoptosis but also cell fate specification during development. What controls Hippo pathway activity during cell fate specification is incompletely understood. In this article, we identify the insulator protein BEAF-32 as a regulator of Hippo pathway activity in Drosophila photoreceptor differentiation. Though morphologically uniform, the fly eye is composed of two subtypes of R8 photoreceptor neurons defined by expression of light-detecting Rhodopsin proteins. In one R8 subtype, active Hippo signaling induces Rhodopsin 6 (Rh6) and represses Rhodopsin 5 (Rh5), whereas in the other subtype, inactive Hippo signaling induces Rh5 and represses Rh6. The activity state of the Hippo pathway in R8 cells is determined by the expression of warts, a core pathway kinase, which interacts with the growth regulator melted in a double-negative feedback loop. We show that BEAF-32 is required for expression of warts and repression of melted Furthermore, BEAF-32 plays a second role downstream of Warts to induce Rh6 and prevent Rh5 fate. BEAF-32 is dispensable for Warts feedback, indicating that BEAF-32 differentially regulates warts and Rhodopsins. Loss of BEAF-32 does not noticeably impair the functions of the Hippo pathway in eye growth regulation. Our study identifies a context-specific regulator of Hippo pathway activity in post-mitotic neuronal fate, and reveals a developmentally specific role for a broadly expressed insulator protein.
Collapse
Affiliation(s)
- David Jukam
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Kayla Viets
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | - Cyrus Zhou
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | - Peter DeFord
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | - Jenny Yan
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | - Jinshuai Cao
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| |
Collapse
|
26
|
Rister J, Razzaq A, Boodram P, Desai N, Tsanis C, Chen H, Jukam D, Desplan C. Single-base pair differences in a shared motif determine differential Rhodopsin expression. Science 2016; 350:1258-61. [PMID: 26785491 DOI: 10.1126/science.aab3417] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The final identity and functional properties of a neuron are specified by terminal differentiation genes, which are controlled by specific motifs in compact regulatory regions. To determine how these sequences integrate inputs from transcription factors that specify cell types, we compared the regulatory mechanism of Drosophila Rhodopsin genes that are expressed in subsets of photoreceptors to that of phototransduction genes that are expressed broadly, in all photoreceptors. Both sets of genes share an 11-base pair (bp) activator motif. Broadly expressed genes contain a palindromic version that mediates expression in all photoreceptors. In contrast, each Rhodopsin exhibits characteristic single-bp substitutions that break the symmetry of the palindrome and generate activator or repressor motifs critical for restricting expression to photoreceptor subsets. Sensory neuron subtypes can therefore evolve through single-bp changes in short regulatory motifs, allowing the discrimination of a wide spectrum of stimuli.
Collapse
Affiliation(s)
- Jens Rister
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Ansa Razzaq
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Pamela Boodram
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Nisha Desai
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Cleopatra Tsanis
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Hongtao Chen
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - David Jukam
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Claude Desplan
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA.
| |
Collapse
|
27
|
Wernet MF, Perry MW, Desplan C. The evolutionary diversity of insect retinal mosaics: common design principles and emerging molecular logic. Trends Genet 2015; 31:316-28. [PMID: 26025917 PMCID: PMC4458154 DOI: 10.1016/j.tig.2015.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 12/21/2022]
Abstract
Independent evolution has resulted in a vast diversity of eyes. Despite the lack of a common Bauplan or ancestral structure, similar developmental strategies are used. For instance, different classes of photoreceptor cells (PRs) are distributed stochastically and/or localized in different regions of the retina. Here, we focus on recent progress made towards understanding the molecular principles behind patterning retinal mosaics of insects, one of the most diverse groups of animals adapted to life on land, in the air, under water, or on the water surface. Morphological, physiological, and behavioral studies from many species provide detailed descriptions of the vast variation in retinal design and function. By integrating this knowledge with recent progress in the characterization of insect Rhodopsins as well as insight from the model organism Drosophila melanogaster, we seek to identify the molecular logic behind the adaptation of retinal mosaics to the habitat and way of life of an animal.
Collapse
Affiliation(s)
- Mathias F Wernet
- New York University Abu Dhabi, Abu Dhabi, 129188 Saadiyat Island, United Arab Emirates
| | - Michael W Perry
- Department of Biology, New York University, New York, NY 10003, USA
| | - Claude Desplan
- New York University Abu Dhabi, Abu Dhabi, 129188 Saadiyat Island, United Arab Emirates; Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
28
|
Wernet MF, Huberman AD, Desplan C. So many pieces, one puzzle: cell type specification and visual circuitry in flies and mice. Genes Dev 2014; 28:2565-84. [PMID: 25452270 PMCID: PMC4248288 DOI: 10.1101/gad.248245.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The visual system is a powerful model for probing the development, connectivity, and function of neural circuits. Two genetically tractable species, mice and flies, are together providing a great deal of understanding of these processes. Current efforts focus on integrating knowledge gained from three cross-fostering fields of research: (1) understanding how the fates of different cell types are specified during development, (2) revealing the synaptic connections between identified cell types ("connectomics") by high-resolution three-dimensional circuit anatomy, and (3) causal testing of how identified circuit elements contribute to visual perception and behavior. Here we discuss representative examples from fly and mouse models to illustrate the ongoing success of this tripartite strategy, focusing on the ways it is enhancing our understanding of visual processing and other sensory systems.
Collapse
Affiliation(s)
- Mathias F Wernet
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA; New York University Abu Dhabi, Saadiyat Island, Abu Dhabi 129188, United Arab Emirates; Department of Biology, New York University, New York, New York 10003, USA
| | - Andrew D Huberman
- Department of Neurosciences, Neurobiology Section, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | - Claude Desplan
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi 129188, United Arab Emirates; Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
29
|
Hilbrant M, Almudi I, Leite DJ, Kuncheria L, Posnien N, Nunes MDS, McGregor AP. Sexual dimorphism and natural variation within and among species in the Drosophila retinal mosaic. BMC Evol Biol 2014; 14:240. [PMID: 25424626 PMCID: PMC4268811 DOI: 10.1186/s12862-014-0240-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/10/2014] [Indexed: 01/18/2023] Open
Abstract
Background Insect compound eyes are composed of ommatidia, which contain photoreceptor cells that are sensitive to different wavelengths of light defined by the specific rhodopsin proteins that they express. The fruit fly Drosophila melanogaster has several different ommatidium types that can be localised to specific retinal regions, such as the dorsal rim area (DRA), or distributed stochastically in a mosaic across the retina, like the ‘pale’ and ‘yellow’ types. Variation in these ommatidia patterns very likely has important implications for the vision of insects and could underlie behavioural and environmental adaptations. However, despite the detailed understanding of ommatidia specification in D. melanogaster, the extent to which the frequency and distribution of the different ommatidium types vary between sexes, strains and species of Drosophila is not known. Results We investigated the frequency and distribution of ommatidium types based on rhodopsin protein expression, and the expression levels of rhodopsin transcripts in the eyes of both sexes of different strains of D. melanogaster, D. simulans and D. mauritiana. We found that while the number of DRA ommatidia was invariant, Rh3 expressing ommatidia were more frequent in the larger eyes of females compared to the males of all species analysed. The frequency and distribution of ommatidium types also differed between strains and species. The D. simulans strain ZOM4 has the highest frequency of Rh3 expressing ommatidia, which is associated with a non-stochastic patch of pale and odd-coupled ommatidia in the dorsal-posterior of their eyes. Conclusions Our results show that there is striking variation in the frequency and distribution of ommatidium types between sexes, strains and species of Drosophila. This suggests that evolutionary changes in the underlying regulatory mechanisms can alter the distribution of ommatidium types to promote or restrict their expression in specific regions of the eye within and between species, and that this could cause differences in vision among these flies. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0240-x) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Wernet MF, Desplan C. Homothorax and Extradenticle alter the transcription factor network in Drosophila ommatidia at the dorsal rim of the retina. Development 2014; 141:918-28. [PMID: 24496628 DOI: 10.1242/dev.103127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A narrow band of ommatidia in the dorsal periphery of the Drosophila retina called the dorsal rim area (DRA) act as detectors for polarized light. The transcription factor Homothorax (Hth) is expressed in DRA inner photoreceptors R7 and R8 and is both necessary and sufficient to induce the DRA fate, including specialized morphology and unique Rhodopsin expression. Hth expression is the result of Wingless (Wg) pathway activity at the eye margins and restriction to the dorsal eye by the selector genes of the Iroquois complex (Iro-C). However, how the DRA is limited to exactly one or two ommatidial rows is not known. Although several factors regulating the Drosophila retinal mosaic are expressed in DRA ommatidia, the role of Hth in this transcriptional network is uncharacterized. Here we show that Hth functions together with its co-factor Extradenticle (Exd) to repress the R8-specific factor Senseless (Sens) in DRA R8 cells, allowing expression of an ultraviolet-sensitive R7 Rhodopsin (Rh3). Furthermore, Hth/Exd act in concert with the transcriptional activators Orthodenticle (Otd) and Spalt (Sal), to activate expression of Rh3 in the DRA. The resulting monochromatic coupling of Rh3 between R7 and R8 in DRA ommatidia is important for comparing celestial e-vector orientation rather than wavelengths. Finally, we show that Hth expression expands to many ommatidial rows in regulatory mutants of optomotorblind (omb), a transcription factor transducing Wg signaling at the dorsal and ventral eye poles. Therefore, locally restricted recruitment of the DRA-specific factor Hth alters the transcriptional network that regulates Rhodopsin expression across ommatidia.
Collapse
Affiliation(s)
- Mathias F Wernet
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Place, New York, NY 10003, USA
| | | |
Collapse
|
31
|
Genetic dissection of photoreceptor subtype specification by the Drosophila melanogaster zinc finger proteins elbow and no ocelli. PLoS Genet 2014; 10:e1004210. [PMID: 24625735 PMCID: PMC3953069 DOI: 10.1371/journal.pgen.1004210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/15/2014] [Indexed: 12/28/2022] Open
Abstract
The elbow/no ocelli (elb/noc) complex of Drosophila melanogaster encodes two paralogs of the evolutionarily conserved NET family of zinc finger proteins. These transcriptional repressors share a conserved domain structure, including a single atypical C2H2 zinc finger. In flies, Elb and Noc are important for the development of legs, eyes and tracheae. Vertebrate NET proteins play an important role in the developing nervous system, and mutations in the homolog ZNF703 human promote luminal breast cancer. However, their interaction with transcriptional regulators is incompletely understood. Here we show that loss of both Elb and Noc causes mis-specification of polarization-sensitive photoreceptors in the 'dorsal rim area' (DRA) of the fly retina. This phenotype is identical to the loss of the homeodomain transcription factor Homothorax (Hth)/dMeis. Development of DRA ommatidia and expression of Hth are induced by the Wingless/Wnt pathway. Our data suggest that Elb/Noc genetically interact with Hth, and we identify two conserved domains crucial for this function. Furthermore, we show that Elb/Noc specifically interact with the transcription factor Orthodenticle (Otd)/Otx, a crucial regulator of rhodopsin gene transcription. Interestingly, different Elb/Noc domains are required to antagonize Otd functions in transcriptional activation, versus transcriptional repression. We propose that similar interactions between vertebrate NET proteins and Meis and Otx factors might play a role in development and disease.
Collapse
|
32
|
Johnston RJ, Desplan C. Interchromosomal communication coordinates intrinsically stochastic expression between alleles. Science 2014; 343:661-5. [PMID: 24503853 DOI: 10.1126/science.1243039] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sensory systems use stochastic mechanisms to diversify neuronal subtypes. In the Drosophila eye, stochastic expression of the PAS-bHLH transcription factor Spineless (Ss) determines a random binary subtype choice in R7 photoreceptors. Here, we show that a stochastic, cell-autonomous decision to express ss is made intrinsically by each ss locus. Stochastic on or off expression of each ss allele is determined by combinatorial inputs from one enhancer and two silencers acting at long range. However, the two ss alleles also average their frequency of expression through up-regulatory and down-regulatory interallelic cross-talk. This inter- or intrachromosomal long-range regulation does not require endogenous ss chromosomal positioning or pairing. Therefore, although individual ss alleles make independent stochastic choices, interchromosomal communication coordinates expression state between alleles, ensuring that they are both expressed in the same random subset of R7s.
Collapse
Affiliation(s)
- Robert J Johnston
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | |
Collapse
|
33
|
Mishra AK, Tsachaki M, Rister J, Ng J, Celik A, Sprecher SG. Binary cell fate decisions and fate transformation in the Drosophila larval eye. PLoS Genet 2013; 9:e1004027. [PMID: 24385925 PMCID: PMC3873242 DOI: 10.1371/journal.pgen.1004027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022] Open
Abstract
The functionality of sensory neurons is defined by the expression of specific sensory receptor genes. During the development of the Drosophila larval eye, photoreceptor neurons (PRs) make a binary choice to express either the blue-sensitive Rhodopsin 5 (Rh5) or the green-sensitive Rhodopsin 6 (Rh6). Later during metamorphosis, ecdysone signaling induces a cell fate and sensory receptor switch: Rh5-PRs are re-programmed to express Rh6 and become the eyelet, a small group of extraretinal PRs involved in circadian entrainment. However, the genetic and molecular mechanisms of how the binary cell fate decisions are made and switched remain poorly understood. We show that interplay of two transcription factors Senseless (Sens) and Hazy control cell fate decisions, terminal differentiation of the larval eye and its transformation into eyelet. During initial differentiation, a pulse of Sens expression in primary precursors regulates their differentiation into Rh5-PRs and repression of an alternative Rh6-cell fate. Later, during the transformation of the larval eye into the adult eyelet, Sens serves as an anti-apoptotic factor in Rh5-PRs, which helps in promoting survival of Rh5-PRs during metamorphosis and is subsequently required for Rh6 expression. Comparably, during PR differentiation Hazy functions in initiation and maintenance of rhodopsin expression. Hazy represses Sens specifically in the Rh6-PRs, allowing them to die during metamorphosis. Our findings show that the same transcription factors regulate diverse aspects of larval and adult PR development at different stages and in a context-dependent manner.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Maria Tsachaki
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jens Rister
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York, United States of America
| | - June Ng
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York, United States of America
| | - Arzu Celik
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, Turkey
| | - Simon G. Sprecher
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
34
|
Wernet MF, Desplan C. Sensory cell fates: four defaults for the price of one. Curr Biol 2013; 23:R1089-91. [PMID: 24355782 DOI: 10.1016/j.cub.2013.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The specification of different subtypes of olfactory sensilla, which harbor the olfactory receptor neurons (ORNs) in the Drosophila antennae, is poorly understood. Loss of the transcription factor Rotund (Rn) leads to a simultaneous mis-specification of several ORN classes, transforming them into different 'default' cell fates.
Collapse
Affiliation(s)
- Mathias F Wernet
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Claude Desplan
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA.
| |
Collapse
|
35
|
The neuronal transcription factor erect wing regulates specification and maintenance of Drosophila R8 photoreceptor subtypes. Dev Biol 2013; 381:482-90. [PMID: 23850772 DOI: 10.1016/j.ydbio.2013.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/15/2013] [Accepted: 07/03/2013] [Indexed: 01/27/2023]
Abstract
Signaling pathways are often re-used during development in surprisingly different ways. The Hippo tumor suppressor pathway is best understood for its role in the control of growth. The pathway is also used in a very different context, in the Drosophila eye for the robust specification of R8 photoreceptor neuron subtypes, which complete their terminal differentiation by expressing light-sensing Rhodopsin (Rh) proteins. A double negative feedback loop between the Warts kinase of the Hippo pathway and the PH-domain growth regulator Melted regulates the choice between 'pale' R8 (pR8) fate defined by Rh5 expression and 'yellow' R8 (yR8) fate characterized by Rh6 expression. Here, we show that the gene encoding the homolog of human Nuclear respiratory factor 1, erect wing (ewg), is autonomously required to inhibit warts expression and to promote melted expression to specify pR8 subtype fate and induce Rh5. ewg mutants express Rh6 in most R8s due to ectopic warts expression. Further, ewg is continuously required to maintain repression of Rh6 in pR8s in aging flies. Our work shows that Ewg is a critical factor for the stable down-regulation of Hippo pathway activity to determine neuronal subtype fates. Neural-enriched factors, such as Ewg, may generally contribute to the contextual re-use of signaling pathways in post-mitotic neurons.
Collapse
|
36
|
Johnston RJ. Lessons about terminal differentiation from the specification of color-detecting photoreceptors in the Drosophila retina. Ann N Y Acad Sci 2013; 1293:33-44. [PMID: 23782311 DOI: 10.1111/nyas.12178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metazoans require highly diverse collections of cell types to sense, interpret, and react to the environment. Developmental programs incorporate deterministic and stochastic strategies in different contexts or different combinations to establish this multitude of cell fates. Precise genetic dissection of the processes controlling terminal photoreceptor differentiation in the Drosophila retina has revealed complex regulatory mechanisms required to generate differences in gene expression and cell fate. In this review, I discuss how a gene regulatory network interprets stochastic and regional inputs to determine the specification of color-detecting photoreceptor subtypes in the Drosophila retina. These combinatorial gene regulatory mechanisms will likely be broadly applicable to nervous system development and cell fate specification in general.
Collapse
Affiliation(s)
- Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA.
| |
Collapse
|