1
|
Ansari MM, Sahu SK, Singh TG, Singh SRJ, Kaur P. Evolving significance of kinase inhibitors in the management of Alzheimer's disease. Eur J Pharmacol 2024; 979:176816. [PMID: 39038637 DOI: 10.1016/j.ejphar.2024.176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease is a neurodegenerative problem with progressive loss of memory and other cognitive function disorders resulting in the imbalance of neurotransmitter activity and signaling progression, which poses the need of the potential therapeutic target to improve the intracellular signaling cascade brought by kinases. Protein kinase plays a significant and multifaceted role in the treatment of Alzheimer's disease, by targeting pathological mechanisms like tau hyperphosphorylation, neuroinflammation, amyloid-beta production and synaptic dysfunction. In this review, we thoroughly explore the essential protein kinases involved in Alzheimer's disease, detailing their physiological roles, regulatory impacts, and the newest inhibitors and compounds that are progressing into clinical trials. All the findings of studies exhibited the promising role of kinase inhibitors in the management of Alzheimer's disease. However, it still poses the need of addressing current challenges and opportunities involved with this disorder for the future perspective of kinase inhibitors in the management of Alzheimer's disease. Further study includes the development of biomarkers, combination therapy, and next-generation kinase inhibitors with increased potency and selectivity for its future prospects.
Collapse
Affiliation(s)
- Md Mustafiz Ansari
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | | | - Sovia R J Singh
- University Language Centre- Chitkara Business School, Chitkara University, Punjab, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
2
|
Xu H, Kang Y, Liang T, Lu S, Xia X, Lu Z, Hu L, Guo L, Zhang L, Huang J, Ye L, Jiang P, Liu Y, Xinyi L, Zhai J, Wang Z, Liu Y. SNP-based and haplotype-based genome-wide association on drug dependence in Han Chinese. BMC Genomics 2024; 25:255. [PMID: 38448893 PMCID: PMC10919046 DOI: 10.1186/s12864-024-10117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Drug addiction is a serious problem worldwide and is influenced by genetic factors. The present study aimed to investigate the association between genetics and drug addiction among Han Chinese. METHODS A total of 1000 Chinese users of illicit drugs and 9693 healthy controls were enrolled and underwent single nucleotide polymorphism (SNP)-based and haplotype-based association analyses via whole-genome genotyping. RESULTS Both single-SNP and haplotype tests revealed associations between illicit drug use and several immune-related genes in the major histocompatibility complex (MHC) region (SNP association: log10BF = 15.135, p = 1.054e-18; haplotype association: log10BF = 20.925, p = 2.065e-24). These genes may affect the risk of drug addiction via modulation of the neuroimmune system. The single-SNP test exclusively reported genome-wide significant associations between rs3782886 (SNP association: log10BF = 8.726, p = 4.842e-11) in BRAP and rs671 (SNP association: log10BF = 7.406, p = 9.333e-10) in ALDH2 and drug addiction. The haplotype test exclusively reported a genome-wide significant association (haplotype association: log10BF = 7.607, p = 3.342e-11) between a region with allelic heterogeneity on chromosome 22 and drug addiction, which may be involved in the pathway of vitamin B12 transport and metabolism, indicating a causal link between lower vitamin B12 levels and methamphetamine addiction. CONCLUSIONS These findings provide new insights into risk-modeling and the prevention and treatment of methamphetamine and heroin dependence, which may further contribute to potential novel therapeutic approaches.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100028, China
| | - Yulin Kang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Sifen Lu
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaolin Xia
- Office of Academic Affairs, The National Police University for Criminal Justice, Baoding, 071000, China
| | - Zuhong Lu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Lingming Hu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Li Guo
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China
| | - Lishu Zhang
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100028, China
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100028, China
| | - Lin Ye
- Cheung Hong School of Journalism and Communication, Shantou University, Shantou, 515060, China
| | - Peiye Jiang
- Office of International Cooperation and Exchanges, Nanjing University, Nanjing, 210023, China
| | - Yi Liu
- Jiangsu Taihu Institute of Addiction Rehabilitation, Suzhou, 215111, China
| | - Li Xinyi
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100028, China
| | - Jin Zhai
- Department of Social Work, Changzhou University, Changzhou, 213164, China
| | - Zi Wang
- School of Music, Nanjing Normal University, Nanjing, 210097, China
| | - Yangyang Liu
- Department of Psychology, Nanjing University, Nanjing, 210023, China.
- School of Education, Tianjin University, Tianjin, 200350, China.
| |
Collapse
|
3
|
Ko BS, Han MH, Kwon MJ, Cha DG, Ji Y, Park ES, Jeon MJ, Kim S, Lee K, Choi YH, Lee J, Torras-Llort M, Yoon KJ, Lee H, Kim JK, Lee SB. Baf-mediated transcriptional regulation of teashirt is essential for the development of neural progenitor cell lineages. Exp Mol Med 2024; 56:422-440. [PMID: 38374207 PMCID: PMC10907700 DOI: 10.1038/s12276-024-01169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/20/2023] [Accepted: 12/10/2023] [Indexed: 02/21/2024] Open
Abstract
Accumulating evidence hints heterochromatin anchoring to the inner nuclear membrane as an upstream regulatory process of gene expression. Given that the formation of neural progenitor cell lineages and the subsequent maintenance of postmitotic neuronal cell identity critically rely on transcriptional regulation, it seems possible that the development of neuronal cells is influenced by cell type-specific and/or context-dependent programmed regulation of heterochromatin anchoring. Here, we explored this possibility by genetically disrupting the evolutionarily conserved barrier-to-autointegration factor (Baf) in the Drosophila nervous system. Through single-cell RNA sequencing, we demonstrated that Baf knockdown induces prominent transcriptomic changes, particularly in type I neuroblasts. Among the differentially expressed genes, our genetic analyses identified teashirt (tsh), a transcription factor that interacts with beta-catenin, to be closely associated with Baf knockdown-induced phenotypes that were suppressed by the overexpression of tsh or beta-catenin. We also found that Baf and tsh colocalized in a region adjacent to heterochromatin in type I NBs. Notably, the subnuclear localization pattern remained unchanged when one of these two proteins was knocked down, indicating that both proteins contribute to the anchoring of heterochromatin to the inner nuclear membrane. Overall, this study reveals that the Baf-mediated transcriptional regulation of teashirt is a novel molecular mechanism that regulates the development of neural progenitor cell lineages.
Collapse
Affiliation(s)
- Byung Su Ko
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Myeong Hoon Han
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Min Jee Kwon
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Dong Gon Cha
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Yuri Ji
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Eun Seo Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Min Jae Jeon
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kyeongho Lee
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, Republic of Korea
| | - Yoon Ha Choi
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jusung Lee
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | | | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyosang Lee
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, Republic of Korea
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Sung Bae Lee
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
4
|
Zhao Y, Tabet D, Rubio Contreras D, Lao L, Kousholt AN, Weile J, Melo H, Hoeg L, Feng S, Coté AG, Lin ZY, Setiaputra D, Jonkers J, Gingras AC, Gómez Herreros F, Roth FP, Durocher D. Genome-scale mapping of DNA damage suppressors through phenotypic CRISPR-Cas9 screens. Mol Cell 2023; 83:2792-2809.e9. [PMID: 37478847 PMCID: PMC10530064 DOI: 10.1016/j.molcel.2023.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
To maintain genome integrity, cells must accurately duplicate their genome and repair DNA lesions when they occur. To uncover genes that suppress DNA damage in human cells, we undertook flow-cytometry-based CRISPR-Cas9 screens that monitored DNA damage. We identified 160 genes whose mutation caused spontaneous DNA damage, a list enriched in essential genes, highlighting the importance of genomic integrity for cellular fitness. We also identified 227 genes whose mutation caused DNA damage in replication-perturbed cells. Among the genes characterized, we discovered that deoxyribose-phosphate aldolase DERA suppresses DNA damage caused by cytarabine (Ara-C) and that GNB1L, a gene implicated in 22q11.2 syndrome, promotes biogenesis of ATR and related phosphatidylinositol 3-kinase-related kinases (PIKKs). These results implicate defective PIKK biogenesis as a cause of some phenotypes associated with 22q11.2 syndrome. The phenotypic mapping of genes that suppress DNA damage therefore provides a rich resource to probe the cellular pathways that influence genome maintenance.
Collapse
Affiliation(s)
- Yichao Zhao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Daniel Tabet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | | - Linjiang Lao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Arne Nedergaard Kousholt
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Jochen Weile
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Donnelly Centre and Department of Computer Science, University of Toronto, 160 College Street, Toronto M5S 3E1, Canada
| | - Henrique Melo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Lisa Hoeg
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Sumin Feng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Atina G Coté
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | | - Frederick P Roth
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Donnelly Centre and Department of Computer Science, University of Toronto, 160 College Street, Toronto M5S 3E1, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
5
|
Xiao J, Zhou YN, Yang YL, He L, Wang KK, Chen M. Study on the pathogenesis of MiR-6324 regulating diarrheal irritable bowel syndrome and bioinformatics analysis. Front Pharmacol 2023; 14:1044330. [PMID: 36873998 PMCID: PMC9975503 DOI: 10.3389/fphar.2023.1044330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Objective: To investigate the pathogenesis of IBS-D by bioinformatics analysis of the differential microRNAs in rat colon tissue and to analyze and predict the function of their target genes. Methods: Twenty male Wistar rats of SPF class were randomly divided into two groups, the model group was manipulated using the colorectal dilatation method + chronic restraint stress method to establish the IBS-D model; while the blank group stroked the perineum at the same frequency. Screening of differential miRNAs after High-throughput sequencing of rat colon tissue. GO and KEGG analysis of target genes using the DAVID website, further mapping using RStudio software; the STRING database and the Cytoscape software were used to obtain the protein interaction network (PPI) of the target genes as well as the core genes. Finally, qPCR was used to detect the expression of target genes in the colon tissue of two groups of rats. Results: After the screening, miR-6324 was obtained as the key of this study. The GO analysis of target genes of miR-6324 is mainly involved in protein phosphorylation, positive regulation of cell proliferation, and intracellular signal transduction; it affects a variety of cellular components such as cytoplasm, nucleus, and organelles on the intracellular surface; it is also involved in molecular functions such as protein binding, ATP binding, and DNA binding. KEGG analysis showed that the intersecting target genes were mainly enriched in cancer pathways, proteoglycans in cancer, neurotrophic signaling pathway, etc. The protein-protein interaction network screened out the core genes mainly Ube2k, Rnf41, Cblb, Nek2, Nde1, Cep131, Tgfb2, Qsox1, and Tmsb4x. The qPCR results showed that the expression of miR-6324 decreased in the model group, but the decrease was not significant. Conclusion: miR-6324 may be involved in the pathogenesis of IBS-D as a potential biological target and provide further ideas for research on the pathogenesis of the disease or treatment options.
Collapse
Affiliation(s)
- Jin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan-ni Zhou
- Sichuan Hospital of Integrative Medicine TCM, Chengdu, Sichuan, China
| | - Yan-lin Yang
- Zigong Fifth People’s Hospital, Zigong, Sichuan, China
| | - Li He
- Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ke-kai Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Min Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Guo Y, Chomiak A, Hong Y, Lowe CC, Kopsidas CA, Chan WC, Andrade J, Pan H, Zhou X, Monuki ES, Feng Y. Histone H2A ubiquitination resulting from Brap loss of function connects multiple aging hallmarks and accelerates neurodegeneration. iScience 2022; 25:104519. [PMID: 35754718 PMCID: PMC9213774 DOI: 10.1016/j.isci.2022.104519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/06/2022] [Accepted: 05/29/2022] [Indexed: 01/10/2023] Open
Abstract
Aging is an intricate process characterized by multiple hallmarks including stem cell exhaustion, genome instability, epigenome alteration, impaired proteostasis, and cellular senescence. Whereas each of these traits is detrimental at the cellular level, it remains unclear how they are interconnected to cause systemic organ deterioration. Here we show that abrogating Brap, a BRCA1-associated protein essential for neurogenesis, results in persistent DNA double-strand breaks and elevation of histone H2A mono- and poly-ubiquitination (H2Aub). These defects extend to cellular senescence and proteasome-mediated histone H2A proteolysis with alterations in cells' proteomic and epigenetic states. Brap deletion in the mouse brain causes neuroinflammation, impaired proteostasis, accelerated neurodegeneration, and substantially shortened the lifespan. We further show the elevation of H2Aub also occurs in human brain tissues with Alzheimer's disease. These data together suggest that chromatin aberrations mediated by H2Aub may act as a nexus of multiple aging hallmarks and promote tissue-wide degeneration.
Collapse
Affiliation(s)
- Yan Guo
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Alison.A. Chomiak
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Ye Hong
- University of Turku, Turku 20500, Finland
| | - Clara C. Lowe
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Caroline A. Kopsidas
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Wen-Ching Chan
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Hongna Pan
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Edwin S. Monuki
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Yuanyi Feng
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
7
|
Chomiak AA, Guo Y, Kopsidas CA, McDaniel DP, Lowe CC, Pan H, Zhou X, Zhou Q, Doughty ML, Feng Y. Nde1 is required for heterochromatin compaction and stability in neocortical neurons. iScience 2022; 25:104354. [PMID: 35601919 PMCID: PMC9121328 DOI: 10.1016/j.isci.2022.104354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
The NDE1 gene encodes a scaffold protein essential for brain development. Although biallelic NDE1 loss of function (LOF) causes microcephaly with profound mental retardation, NDE1 missense mutations and copy number variations are associated with multiple neuropsychiatric disorders. However, the etiology of the diverse phenotypes resulting from NDE1 aberrations remains elusive. Here we demonstrate Nde1 controls neurogenesis through facilitating H4K20 trimethylation-mediated heterochromatin compaction. This mechanism patterns diverse chromatin landscapes and stabilizes constitutive heterochromatin of neocortical neurons. We demonstrate that NDE1 can undergo dynamic liquid-liquid phase separation, partitioning to the nucleus and interacting with pericentromeric and centromeric satellite repeats. Nde1 LOF results in nuclear architecture aberrations and DNA double-strand breaks, as well as instability and derepression of pericentromeric satellite repeats in neocortical neurons. These findings uncover a pivotal role of NDE1/Nde1 in establishing and protecting neuronal heterochromatin. They suggest that heterochromatin instability predisposes a wide range of brain dysfunction.
Collapse
Affiliation(s)
- Alison A. Chomiak
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Yan Guo
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Caroline A. Kopsidas
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Dennis P. McDaniel
- Biomedical Instrumentation Center, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Clara C. Lowe
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Hongna Pan
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Qiong Zhou
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Martin L. Doughty
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Yuanyi Feng
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
8
|
Priest C, Nagari RT, Bideyan L, Lee SD, Nguyen A, Xiao X, Tontonoz P. Brap regulates liver morphology and hepatocyte turnover via modulation of the Hippo pathway. Proc Natl Acad Sci U S A 2022; 119:e2201859119. [PMID: 35476518 PMCID: PMC9171358 DOI: 10.1073/pnas.2201859119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022] Open
Abstract
Regulation of hepatocyte proliferation and liver morphology is of critical importance to tissue and whole-body homeostasis. However, the molecular mechanisms that underlie this complex process are incompletely understood. Here, we describe a role for the ubiquitin ligase BRCA1-associated protein (BRAP) in regulation of hepatocyte morphology and turnover via regulation of MST2, a protein kinase in the Hippo pathway. The Hippo pathway has been implicated in the control of liver morphology, inflammation, and fibrosis. We demonstrate here that liver-specific ablation of Brap in mice results in gross and cellular morphological alterations of the liver. Brap-deficient livers exhibit increased hepatocyte proliferation, cell death, and inflammation. We show that loss of BRAP protein alters Hippo pathway signaling, causing a reduction in phosphorylation of YAP and increased expression of YAP target genes, including those regulating cell growth and interactions with the extracellular environment. Finally, increased Hippo signaling in Brap knockout mice alters the pattern of liver lipid accumulation in dietary models of obesity. These studies identify a role for BRAP as a modulator of the hepatic Hippo pathway with relevance to human liver disease.
Collapse
Affiliation(s)
- Christina Priest
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Rohith T. Nagari
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Lara Bideyan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Stephen D. Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Alexander Nguyen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
9
|
Deficiency of nde1 in zebrafish induces brain inflammatory responses and autism-like behavior. iScience 2022; 25:103876. [PMID: 35243238 PMCID: PMC8861649 DOI: 10.1016/j.isci.2022.103876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/10/2022] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
The cytoskeletal protein NDE1 plays an important role in chromosome segregation, neural precursor differentiation, and neuronal migration. Clinical studies have shown that NDE1 deficiency is associated with several neuropsychiatric disorders including autism. Here, we generated nde1 homologous deficiency zebrafish (nde1−/−) to elucidate the cellular molecular mechanisms behind it. nde1−/− exhibit increased neurological apoptotic responses at early infancy, enlarged ventricles, and shrank valvula cerebelli in adult brain tissue. Behavioral analysis revealed that nde1−/− displayed autism-like behavior traits such as increased locomotor activity and repetitive stereotype behaviors and impaired social and kin recognition behaviors. Furthermore, nde1 mRNA injection rescued apoptosis in early development, and minocycline treatment rescued impaired social behavior and overactive motor activity by inhibiting inflammatory cytokines. In this study, we revealed that nde1 homozygous deletion leads to abnormal neurological development with autism-related behavioral phenotypes and that inflammatory responses in the brain are an important molecular basis behind it. nde1−/− zebrafish display autism-like behavior features nde1 deficiency results in immune responses in the brain Minocycline treatment inhibits immune responses in the adult nde1−/− brain Minocycline rescued the impaired social behavior and locomotor activity
Collapse
|
10
|
CUX2, BRAP and ALDH2 are associated with metabolic traits in people with excessive alcohol consumption. Sci Rep 2020; 10:18118. [PMID: 33093602 PMCID: PMC7583246 DOI: 10.1038/s41598-020-75199-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Molecular mechanisms that prompt or mitigate excessive alcohol consumption could be partly explained by metabolic shifts. This genome-wide association study aims to identify the susceptibility gene loci for excessive alcohol consumption by jointly measuring weekly alcohol consumption and γ-GT levels. We analysed the Taiwan Biobank data of 18,363 Taiwanese people, including 1945 with excessive alcohol use. We found that one or two copies of the G allele in rs671 (ALDH2) increased the risk of excessive alcohol consumption, while one or two copies of the C allele in rs3782886 (BRAP) reduced the risk of excessive alcohol consumption. To minimize the influence of extensive regional linkage disequilibrium, we used the ridge regression. The ridge coefficients of rs7398833, rs671 and rs3782886 were unchanged across different values of the shrinkage parameter. The three variants corresponded to posttranscriptional activity, including cut-like homeobox 2 (a protein coded by CUX2), Glu504Lys of acetaldehyde dehydrogenase 2 (a protein encoded by ALDH2) and Glu4Gly of BRCA1-associated protein (a protein encoded by BRAP). We found that Glu504Lys of ALDH2 and Glu4Gly of BRAP are involved in the negative regulation of excessive alcohol consumption. The mechanism underlying the γ-GT-catalytic metabolic reaction in excessive alcohol consumption is associated with ALDH2, BRAP and CUX2. Further study is needed to clarify the roles of ALDH2, BRAP and CUX2 in the liver–brain endocrine axis connecting metabolic shifts with excessive alcohol consumption.
Collapse
|
11
|
Wei X, Liu X, Liu H, He X, Zhuang H, Tang Y, Wang B. BRCA1-associated protein induced proliferation and migration of gastric cancer cells through MAPK pathway. Surg Oncol 2020; 35:191-199. [PMID: 32890957 DOI: 10.1016/j.suronc.2020.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 07/22/2020] [Accepted: 08/02/2020] [Indexed: 11/29/2022]
Abstract
BRCA1-associated protein (BRAP) was first found to bind to the nuclear localization signal motifs of BRCA1. In this study, we investigated the role of BRAP in gastric cancer. The cancer genome atlas(TCGA) data were obtained from UALCAN. We downregulated and upregulated the level of BRAP in gastric cancer cells by transfection with shRNAs and plasmids. Then, we evaluated the expression of BRAP by qRT-PCR and investigated the expression of important proteins by Western blot analysis. We conducted a microarray analysis to identify the function of BRAP in gastric cancer cells. Then, we investigated the effect of BRAP on proliferation and migration by CCK-8 assays, colony formation assays, wound healing assays and an extreme limiting dilution analysis. The analysis of TCGA data showed that BRAP was significantly overexpressed in gastric cancer tissues compared to that in normal gastric mucosal tissues (P < 0.001). A hybridization-based microarray assay was used to analyze MGC-803 cells and BRAP-downregulated MGC-803 cells. We found 22,199 protein-coding RNAs that were differentially expressed. The genes in the two groups were analyzed with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and both the focal adhesion and MAPK pathways were significantly enriched. The results of Cell Counting Kit-8(CCK-8) assays, colony formation assays, wound healing assays and the extreme limiting dilution analysis showed that the knockdown of BRAP reduced gastric cancer cell proliferation and migration and inhibited the process of epithelial-mesenehymal transition (EMT). The overexpression of BRAP induced gastric cancer cell proliferation, migration and the process of EMT. To verify the function of the mitogen-activated protein kinase (MAPK) signaling pathway, we performed a Western blot analysis. The results showed that the downregulation of BRAP decreased the levels of p-ERK and p-Raf1, thereby decreasing the activity of the MAPK signaling pathway. The use of Honokiol increased the levels of p-ERK and p-Raf1, rescuing the function of BRAP downregulation in the MAPK pathway. Xenograft tumor transplantation experiments in nude mice further confirmed the role of BRAP in gastric cancer progression and metastasis.
Collapse
Affiliation(s)
- Xiaodong Wei
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin, 300100, PR China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, 300100, PR China
| | - Xi Liu
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin, 300100, PR China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, 300100, PR China
| | - Huimin Liu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Xin He
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450008, PR China.
| | - Yanping Tang
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin, 300100, PR China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, 300100, PR China.
| | - Bo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, 300050, China.
| |
Collapse
|
12
|
Harkins D, Cooper HM, Piper M. The role of lipids in ependymal development and the modulation of adult neural stem cell function during aging and disease. Semin Cell Dev Biol 2020; 112:61-68. [PMID: 32771376 DOI: 10.1016/j.semcdb.2020.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 07/29/2020] [Indexed: 01/10/2023]
Abstract
Within the adult mammalian central nervous system, the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles houses neural stem cells (NSCs) that continue to produce neurons throughout life. Developmentally, the V-SVZ neurogenic niche arises during corticogenesis following the terminal differentiation of telencephalic radial glial cells (RGCs) into either adult neural stem cells (aNSCs) or ependymal cells. In mice, these two cellular populations form rosettes during the late embryonic and early postnatal period, with ependymal cells surrounding aNSCs. These aNSCs and ependymal cells serve a number of key purposes, including the generation of neurons throughout life (aNSCs), and acting as a barrier between the CSF and the parenchyma and promoting CSF bulk flow (ependymal cells). Interestingly, the development of this neurogenic niche, as well as its ongoing function, has been shown to be reliant on different aspects of lipid biology. In this review we discuss the developmental origins of the rodent V-SVZ neurogenic niche, and highlight research which has implicated a role for lipids in the physiology of this part of the brain. We also discuss the role of lipids in the maintenance of the V-SVZ niche, and discuss new research which has suggested that alterations to lipid biology could contribute to ependymal cell dysfunction in aging and disease.
Collapse
Affiliation(s)
- Danyon Harkins
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
13
|
Derks W, Bergmann O. BRAP: a novel regulator of the cardiomyocyte cell cycle controlling both proliferation and survival? Cardiovasc Res 2020; 116:467-469. [PMID: 31584619 PMCID: PMC7031701 DOI: 10.1093/cvr/cvz246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Wouter Derks
- Center for Regenerative Therapies Dresden, TU-Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Olaf Bergmann
- Center for Regenerative Therapies Dresden, TU-Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
- Karolinska Institutet, Biomedicum, Cell and Molecular Biology, SE-17177 Stockholm, Sweden
- Corresponding author. Tel: +4935145882354; fax: +4935145882119, E-mail:
| |
Collapse
|
14
|
Liu L, Lu J, Li X, Wu A, Wu Q, Zhao M, Tang N, Song H. The LIS1/NDE1 Complex Is Essential for FGF Signaling by Regulating FGF Receptor Intracellular Trafficking. Cell Rep 2019; 22:3277-3291. [PMID: 29562183 DOI: 10.1016/j.celrep.2018.02.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/23/2018] [Accepted: 02/21/2018] [Indexed: 11/27/2022] Open
Abstract
Intracellular transport of membranous organelles and protein complexes to various destinations is fundamental to signaling transduction and cellular function. The cytoplasmic dynein motor and its regulatory proteins LIS1 and NDE1 are required for transporting a variety of cellular cargos along the microtubule network. In this study, we show that deletion of Lis1 in developing lung endoderm and limb mesenchymal cells causes agenesis of the lungs and limbs. In both mutants, there is increased cell death and decreased fibroblast growth factor (FGF) signaling activity. Mechanistically, LIS1 and its interacting protein NDE1/NDEL1 are associated with FGF receptor-containing vesicles and regulate FGF receptor intracellular trafficking and degradation. Notably, FGF signaling promotes NDE1 tyrosine phosphorylation, which leads to dissociation of LIS1/NDE1 complex. Thus, our studies identify the LIS1/NDE1 complex as an important FGF signaling regulator and provide insights into the bidirectional regulation of cell signaling and transport machinery for endocytosis.
Collapse
Affiliation(s)
- Liansheng Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Jinqiu Lu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xiaoling Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Ailing Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qingzhe Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Mujun Zhao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hai Song
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Kim JW, Choe YM, Shin JG, Park BL, Shin HD, Choi IG, Lee BC. Associations of BRAP polymorphisms with the risk of alcohol dependence and scores on the Alcohol Use Disorders Identification Test. Neuropsychiatr Dis Treat 2019; 15:83-94. [PMID: 30636874 PMCID: PMC6309135 DOI: 10.2147/ndt.s184067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Alcohol dependence (AD) is a common disorder that is influenced by genetic as well as environmental factors. A previous genome-wide association study (GWAS) of the Korean population performed by our research group identified a number of genes, including BRCA1-associated protein (BRAP) and protein arginine methyltransferase 8 (PRMT8), as novel genetic markers of AD. METHODS The present investigation was a fine-mapping follow-up study of 459 AD and 455 non-AD subjects of Korean descent to determine the associations between BRAP and PRMT8 polymorphisms and AD. The Alcohol Use Disorders Identification Test (AUDIT) was administered to screen for the degree of AD risk in the subjects and 58 genetic variants, 5 for BRAP and 53 for PRMT8, were genotyped for subsequent association analyses. RESULTS In the present case-control analysis, BRAP rs3782886 showed the most significant association signal with a risk of AD (P=1.29×10-16, Pcorr =7.74×10-16, OR =0.19). There were also significant differences in the overall and subcategory scores for the BRAP genetic variants, including rs3782886 (P=9.94×10-31, Pcorr =5.96×10-30 at rs3782886 for the overall AUDIT score). However, the genetic effects of PRMT8 polymorphisms observed in our previous GWAS were not replicated in the present study (minimum P=0.0005, Pcorr >0.05, OR =0.30 at rs4766139 in the recessive model). Furthermore, the single-nucleotide polymorphisms of PRMT8 were not associated with the overall and subcategory AUDIT scores. CONCLUSION The present findings suggest that the genetic variants of BRAP may contribute to a predisposition for an alcohol use disorder.
Collapse
Affiliation(s)
- Jee Wook Kim
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi Province, Republic of Korea.,Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Republic of Korea,
| | - Young Min Choe
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi Province, Republic of Korea.,Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Republic of Korea,
| | - Joong-Gon Shin
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Byung Lae Park
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, Republic of Korea
| | - Hyung-Doo Shin
- Department of Life Science, Sogang University, Seoul, Republic of Korea.,Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, Republic of Korea
| | - Ihn-Geun Choi
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Republic of Korea, .,Department of Neuropsychiatry, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Boung Chul Lee
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Republic of Korea, .,Department of Neuropsychiatry, Hallym University Hangang Sacred Heart Hospital, Seoul, Republic of Korea,
| |
Collapse
|
16
|
Gilbert J, Man HY. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity. Front Cell Neurosci 2017; 11:359. [PMID: 29209173 PMCID: PMC5701944 DOI: 10.3389/fncel.2017.00359] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. HighlightsAutism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States. ASDs are highly heterogeneous in their genetic basis. ASDs share common features at the cellular and molecular levels in the brain. Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function.
Collapse
Affiliation(s)
- James Gilbert
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
17
|
[Effect of corticosterone on lissencephaly 1 expression in developing cerebral cortical neurons of fetal rats cultured in vitro]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19. [PMID: 28899473 PMCID: PMC7403054 DOI: 10.7499/j.issn.1008-8830.2017.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To investigate the effect of corticosterone on the expression of the neuronal migration protein lissencephaly 1 (LIS1) in developing cerebral cortical neurons of fetal rats. METHODS The primary cultured cerebral cortical neurons of fetal Wistar rats were divided into control group, low-dose group, and high-dose group. The neurons were exposed to the medium containing different concentrations of corticosterone (0 μmol/L for the control group, 0.1 μmol/L for the low-dose group, and 1.0 μmol/L for the high-dose group). The neurons were collected at 1, 4, and 7 days after intervention. Western blot and immunocytochemical staining were used to observe the change in LIS1 expression in neurons. RESULTS Western blot showed that at 7 days after intervention, the low- and high-dose groups had significantly higher expression of LIS1 in the cytoplasm and nucleus of cerebral cortical neurons than the control group (P<0.05), and the high-dose group had significantly lower expression of LIS1 in the cytoplasm of cerebral cortical neurons than the low-dose group (P<0.05). Immunocytochemical staining showed that at 1, 4, and 7 days after corticosterone intervention, the high-dose group had a significantly lower mean optical density of LIS1 than the control group and the low-dose group (P<0.05). At 7 days after intervention, the low-dose group had a significantly lower mean optical density of LIS1 than the control group (P<0.05). CONCLUSIONS Corticosterone downregulates the expression of the neuronal migration protein LIS1 in developing cerebral cortical neurons of fetal rats cultured in vitro, and such effect depends on the concentration of corticosterone and duration of corticosterone intervention.
Collapse
|
18
|
Loss of Brap Results in Premature G1/S Phase Transition and Impeded Neural Progenitor Differentiation. Cell Rep 2017; 20:1148-1160. [DOI: 10.1016/j.celrep.2017.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 12/14/2016] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
|
19
|
Ye S, Fujiwara T, Zhou J, Varughese KI, Zhao H. LIS1 Regulates Osteoclastogenesis through Modulation of M-SCF and RANKL Signaling Pathways and CDC42. Int J Biol Sci 2016; 12:1488-1499. [PMID: 27994513 PMCID: PMC5166490 DOI: 10.7150/ijbs.15583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/11/2016] [Indexed: 01/28/2023] Open
Abstract
We have previously reported that depletion of LIS1, a key regulator of microtubules and cytoplasmic dynein motor complex, in osteoclast precursor cells by shRNAs attenuates osteoclastogenesis in vitro. However, the underlying mechanisms remain unclear. In this study, we show that conditional deletion of LIS1 in osteoclast progenitors in mice led to increased bone mass and decreased osteoclast number on trabecular bone. In vitro mechanistic studies revealed that loss of LIS1 had little effects on cell cycle progression but accelerated apoptosis of osteoclast precursor cells. Furthermore, deletion of LIS1 prevented prolonged activation of ERK by M-CSF and aberrantly enhanced prolonged JNK activation stimulated by RANKL. Finally, lack of LIS1 abrogated M-CSF and RANKL induced CDC42 activation and retroviral transduction of a constitutively active form of CDC42 partially rescued osteoclastogenesis in LIS1-deficient macrophages. Therefore, these data identify a key role of LIS1 in regulation of cell survival of osteoclast progenitors by modulating M-CSF and RANKL induced signaling pathways and CDC42 activation.
Collapse
Affiliation(s)
- Shiqiao Ye
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Toshifumi Fujiwara
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jian Zhou
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA;; Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Kottayil I Varughese
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Haibo Zhao
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA;; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
20
|
Asada M, Mizutani S, Takagi M, Suzuki H. Antipsychotics promote neural differentiation of human iPS cell-derived neural stem cells. Biochem Biophys Res Commun 2016; 480:615-621. [DOI: 10.1016/j.bbrc.2016.10.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
|
21
|
Ernst C. Proliferation and Differentiation Deficits are a Major Convergence Point for Neurodevelopmental Disorders. Trends Neurosci 2016; 39:290-299. [DOI: 10.1016/j.tins.2016.03.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
|
22
|
Reiner O, Karzbrun E, Kshirsagar A, Kaibuchi K. Regulation of neuronal migration, an emerging topic in autism spectrum disorders. J Neurochem 2015; 136:440-56. [PMID: 26485324 DOI: 10.1111/jnc.13403] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/04/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorders (ASD) encompass a group of neurodevelopmental diseases that demonstrate strong heritability, however, the inheritance is not simple and many genes have been associated with these disorders. ASD is regarded as a neurodevelopmental disorder, and abnormalities at different developmental stages are part of the disease etiology. This review provides a general background on neuronal migration during brain development and discusses recent advancements in the field connecting ASD and aberrant neuronal migration. We propose that neuronal migration impairment may be an important common pathophysiology in autism spectrum disorders (ASD). This review provides a general background on neuronal migration during brain development and discusses recent advancements in the field connecting ASD and aberrant neuronal migration.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Karzbrun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Japan
| |
Collapse
|
23
|
Averbukh I, Ben-Zvi D, Mishra S, Barkai N. Scaling morphogen gradients during tissue growth by a cell division rule. Development 2014; 141:2150-6. [PMID: 24803660 DOI: 10.1242/dev.107011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Morphogen gradients guide the patterning of tissues and organs during the development of multicellular organisms. In many cases, morphogen signaling is also required for tissue growth. The consequences of this interplay between growth and patterning are not well understood. In the Drosophila wing imaginal disc, the morphogen Dpp guides patterning and is also required for tissue growth. In particular, it was recently reported that cell division in the disc correlates with the temporal increase in Dpp signaling. Here we mathematically model morphogen gradient formation in a growing tissue, accounting also for morphogen advection and dilution. Our analysis defines a new scaling mechanism, which we term the morphogen-dependent division rule (MDDR): when cell division depends on the temporal increase in morphogen signaling, the morphogen gradient scales with the growing tissue size, tissue growth becomes spatially uniform and the tissue naturally attains a finite size. This model is consistent with many properties of the wing disc. However, we find that the MDDR is not consistent with the phenotype of scaling-defective mutants, supporting the view that temporal increase in Dpp signaling is not the driver of cell division during late phases of disc development. More generally, our results show that local coupling of cell division with morphogen signaling can lead to gradient scaling and uniform growth even in the absence of global feedbacks. The MDDR scaling mechanism might be particularly beneficial during rapid proliferation, when global feedbacks are hard to implement.
Collapse
Affiliation(s)
- Inna Averbukh
- Department of Molecular genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
24
|
Zhang F, Liu C, Xu Y, Qi G, Yuan G, Cheng Z, Wang J, Wang G, Wang Z, Zhu W, Zhou Z, Zhao X, Tian L, Jin C, Yuan J, Zhang G, Chen Y, Wang L, Lu T, Yan H, Ruan Y, Yue W, Zhang D. A two-stage association study suggests BRAP as a susceptibility gene for schizophrenia. PLoS One 2014; 9:e86037. [PMID: 24454952 PMCID: PMC3893271 DOI: 10.1371/journal.pone.0086037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/04/2013] [Indexed: 01/05/2023] Open
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder in which altered immune function typically plays an important role in mediating the effect of environmental insults and regulation of inflammation. The breast cancer suppressor protein associated protein (BRAP) is suggested to exert vital effects in neurodevelopment by modulating the mitogen-activated protein kinase cascade and inflammation signaling. To explore the possible role of BRAP in SZ, we conducted a two-stage study to examine the association of BRAP polymorphisms with SZ in the Han Chinese population. In stage one, we screened SNPs in BRAP from our GWAS data, which detected three associated SNPs, with rs3782886 being the most significant one (P = 2.31E-6, OR = 0.67). In stage two, we validated these three SNPs in an independently collected population including 1957 patients and 1509 controls, supporting the association of rs3782886 with SZ (P = 1.43E-6, OR = 0.73). Furthermore, cis-eQTL analysis indicates that rs3782886 genotypes are associated with mRNA levels of aldehyde dehydrogenase 2 family (ALDH2) (P = 0.0039) and myosin regulatory light chain 2 (MYL2) (P < 1.0E-4). Our data suggest that the BRAP gene may confer vulnerability for SZ in Han Chinese population, adding further evidence for the involvement of developmental and/or neuroinflammatory cascades in the illness.
Collapse
Affiliation(s)
- Fuquan Zhang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Chenxing Liu
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Guoyang Qi
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Guozhen Yuan
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Zaohuo Cheng
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Jidong Wang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Guoqiang Wang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Zhiqiang Wang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Wei Zhu
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Zhenhe Zhou
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Xingfu Zhao
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Lin Tian
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Chunhui Jin
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Janmin Yuan
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Guofu Zhang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Yaguang Chen
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Lifang Wang
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Tianlan Lu
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Hao Yan
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Yanyan Ruan
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Weihua Yue
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- * E-mail: (DZ); (WY)
| | - Dai Zhang
- Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- * E-mail: (DZ); (WY)
| |
Collapse
|
25
|
Li N, Li Y. Ubiquitin-mediated control of seed size in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:332. [PMID: 25071811 PMCID: PMC4093792 DOI: 10.3389/fpls.2014.00332] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/24/2014] [Indexed: 05/18/2023]
Abstract
Seed size in higher plants is an important agronomic trait, and is also crucial for evolutionary fitness. In flowering plants, the seed comprises three major anatomical components, the embryo, the endosperm and the seed coat, each with different genetic compositions. Therefore, seed size is coordinately determined by the growth of the embryo, endosperm and maternal tissue. Recent studies have revealed multiple pathways that influence seed size in plants. Several factors involved in ubiquitin-related activities have been recently known to determine seed size in Arabidopsis and rice. In this review, we summarize current knowledge of ubiquitin-mediated control of seed size and discuss the role of the ubiquitin pathway in seed size control.
Collapse
Affiliation(s)
| | - Yunhai Li
- *Correspondence: Yunhai Li, Institute of Genetics and Developmental Biology, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China e-mail:
| |
Collapse
|
26
|
Pearce L, Atanassova N, Banton M, Bottomley B, van der Klaauw A, Revelli JP, Hendricks A, Keogh J, Henning E, Doree D, Jeter-Jones S, Garg S, Bochukova E, Bounds R, Ashford S, Gayton E, Hindmarsh P, Shield J, Crowne E, Barford D, Wareham N, UK10K consortium, O’Rahilly S, Murphy M, Powell D, Barroso I, Farooqi I. KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation. Cell 2013; 155:765-77. [PMID: 24209692 PMCID: PMC3898740 DOI: 10.1016/j.cell.2013.09.058] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 07/31/2013] [Accepted: 09/20/2013] [Indexed: 02/02/2023]
Abstract
Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEKERK pathway and impair cellular fatty acid oxidation and glucose oxidation in transfected cells; effects that can be ameliorated by the commonly prescribed antidiabetic drug, metformin. Mutation carriers exhibit hyperphagia in childhood, low heart rate, reduced basal metabolic rate and severe insulin resistance. These data establish KSR2 as an important regulator of energy intake, energy expenditure, and substrate utilization in humans. Modulation of KSR2-mediated effects may represent a novel therapeutic strategy for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Laura R. Pearce
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Neli Atanassova
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Matthew C. Banton
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Bill Bottomley
- Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Agatha A. van der Klaauw
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | | | | | - Julia M. Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Deon Doree
- Lexicon Pharmaceuticals, The Woodlands, TX 77381, USA
| | | | - Sumedha Garg
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Elena G. Bochukova
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Rebecca Bounds
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Sofie Ashford
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Emma Gayton
- Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Peter C. Hindmarsh
- Institute of Child Health, University College London, London WC1E 6BT, UK
| | - Julian P.H. Shield
- University of Bristol and Bristol Royal Hospital for Children, Bristol BS2 8BJ, UK
| | - Elizabeth Crowne
- University of Bristol and Bristol Royal Hospital for Children, Bristol BS2 8BJ, UK
| | - David Barford
- Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, UK
| | - Nick J. Wareham
- MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | | | - Stephen O’Rahilly
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | - Ines Barroso
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - I. Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
27
|
Bradshaw NJ, Hennah W, Soares DC. NDE1 and NDEL1: twin neurodevelopmental proteins with similar 'nature' but different 'nurture'. Biomol Concepts 2013; 4:447-64. [PMID: 24093049 PMCID: PMC3787581 DOI: 10.1515/bmc-2013-0023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nuclear distribution element 1 (NDE1, also known as NudE) and NDE-like 1 (NDEL1, also known as Nudel) are paralogous proteins essential for mitosis and neurodevelopment that have been implicated in psychiatric and neurodevelopmental disorders. The two proteins possess high sequence similarity and have been shown to physically interact with one another. Numerous lines of experimental evidence in vivo and in cell culture have demonstrated that these proteins share common functions, although instances of differing functions between the two have recently emerged. We review the key aspects of NDE1 and NDEL1 in terms of recent advances in structure elucidation and cellular function, with an emphasis on their differing mechanisms of post-translational modification. Based on a review of the literature and bioinformatics assessment, we advance the concept that the twin proteins NDE1 and NDEL1, while sharing a similar 'nature' in terms of their structure and basic functions, appear to be different in their 'nurture', the manner in which they are regulated both in terms of expression and of post-translational modification within the cell. These differences are likely to be of significant importance in understanding the specific roles of NDE1 and NDEL1 in neurodevelopment and disease.
Collapse
Affiliation(s)
- Nicholas J. Bradshaw
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, University Medical School, Moorenstrasse 5, D-40225, Düsseldorf, Germany
| | - William Hennah
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland; and National Institute for, Health and Welfare, Department of Mental Health and Substance, Abuse Services, Helsinki, Finland
| | - Dinesh C. Soares
- MRC Institute of Genetics and Molecular Medicine (MRC IGMM), University of Edinburgh, Western General, Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| |
Collapse
|
28
|
Xia T, Li N, Dumenil J, Li J, Kamenski A, Bevan MW, Gao F, Li Y. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. THE PLANT CELL 2013; 25:3347-59. [PMID: 24045020 PMCID: PMC3809536 DOI: 10.1105/tpc.113.115063] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/09/2013] [Accepted: 08/27/2013] [Indexed: 05/18/2023]
Abstract
Seed size in higher plants is determined by the coordinated growth of the embryo, endosperm, and maternal tissue. Several factors that act maternally to regulate seed size have been identified, such as auxin response factor2, apetala2, KLUH, and DA1, but the genetic and molecular mechanisms of these factors in seed size control are almost totally unknown. We previously demonstrated that the ubiquitin receptor DA1 acts synergistically with the E3 ubiquitin ligase enhancer1 OF DA1 (EOD1)/big brother to regulate the final size of seeds in Arabidopsis thaliana. Here, we describe another RING-type protein with E3 ubiquitin ligase activity, encoded by DA2, which regulates seed size by restricting cell proliferation in the maternal integuments of developing seeds. The da2-1 mutant forms large seeds, while overexpression of DA2 decreases seed size of wild-type plants. Overexpression of rice (Oryza sativa) grain width and weight2, a homolog of DA2, restricts seed growth in Arabidopsis. Genetic analyses show that DA2 functions synergistically with DA1 to regulate seed size, but does so independently of EOD1. Further results reveal that DA2 interacts physically with DA1 in vitro and in vivo. Therefore, our findings define the genetic and molecular mechanisms of three ubiquitin-related proteins DA1, DA2, and EOD1 in seed size control and indicate that they are promising targets for crop improvement.
Collapse
Affiliation(s)
- Tian Xia
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jack Dumenil
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Jie Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Andrei Kamenski
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Michael W. Bevan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Fan Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
29
|
Abstract
Morphogenic gradients originating from signaling centers along the CNS developmental axes contribute to CNS patterning. Reporting in this issue of Developmental Cell, Lanctot et al. (2013) show that the Nde1-Lis1 complex interacts with Brap, a mitogen-activated protein kinase pathway negative regulator, to facilitate position-dependent modulation of neural progenitor fate and CNS patterning.
Collapse
Affiliation(s)
- Charlotte Plestant
- Neuroscience Center and the Department of Cell Biology and Physiology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|