1
|
Quadri R, Rotondo G, Sertic S, Pozzi S, dell’Oca MC, Guerrini L, Muzi-Falconi M. A Haspin-ARHGAP11A axis regulates epithelial morphogenesis through Rho-ROCK dependent modulation of LIMK1-Cofilin. iScience 2023; 26:108011. [PMID: 37841592 PMCID: PMC10570125 DOI: 10.1016/j.isci.2023.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/20/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Throughout mitosis, a plethora of processes must be efficiently concerted to ensure cell proliferation and tissue functionality. The mitotic spindle does not only mediate chromosome segregation, but also defines the axis of cellular division, thus determining tissue morphology. Functional spindle orientation relies on precise actin dynamics, shaped in mitosis by the LIMK1-Cofilin axis. The kinase Haspin acts as a guardian of faithful chromosome segregation that ensures amphitelic chromosome attachment and prevents unscheduled cohesin cleavage. Here, we report an unprecedented role for Haspin in the determination of spindle orientation in mitosis. We show that, during mitosis, Haspin regulates Rho-ROCK activity through ARHGAP11A, a poorly characterized GAP, and that ROCK is in turn responsible for the mitotic activation of LIMK1 and stabilization of the actin cytoskeleton, thus supporting a functional spindle orientation. By exploiting 3D cell cultures, we show that this pathway is pivotal for the establishment of a morphologically functional tissue.
Collapse
Affiliation(s)
- Roberto Quadri
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Giuseppe Rotondo
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Sarah Sertic
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Sara Pozzi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | | | - Luisa Guerrini
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Marco Muzi-Falconi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
2
|
Cairo G, Greiwe C, Jung GI, Blengini C, Schindler K, Lacefield S. Distinct Aurora B pools at the inner centromere and kinetochore have different contributions to meiotic and mitotic chromosome segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.05.527197. [PMID: 36778459 PMCID: PMC9915740 DOI: 10.1101/2023.02.05.527197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proper chromosome segregation depends on establishment of bioriented kinetochore-microtubule attachments, which often requires multiple rounds of release and reattachment. Aurora B and C kinases phosphorylate kinetochore proteins to release tensionless attachments. Multiple pathways recruit Aurora B/C to the centromere and kinetochore. We studied how these pathways contribute to anaphase onset timing and correction of kinetochore-microtubule attachments in budding yeast meiosis and mitosis. We find that the pool localized by the Bub1/Bub3 pathway sets the normal duration of meiosis and mitosis, in differing ways. Our meiosis data suggests that disruption of this pathway leads to PP1 kinetochore localization, which dephosphorylates Cdc20 for premature anaphase onset. For error correction, the Bub1/Bub3 and COMA pathways are individually important in meiosis but compensatory in mitosis. Finally, we find that the haspin and Bub1/3 pathways function together to ensure error correction in mouse oogenesis. Our results suggest that each recruitment pathway localizes spatially distinct kinetochore-localized Aurora B/C pools that function differently between meiosis and mitosis.
Collapse
Affiliation(s)
- Gisela Cairo
- Indiana University, Department of Biology, Bloomington, IN USA
- Geisel School of Medicine at Dartmouth, Department of Biochemistry and Cell Biology, Hanover, NH USA
| | - Cora Greiwe
- Indiana University, Department of Biology, Bloomington, IN USA
| | - Gyu Ik Jung
- Rutgers University, Department of Genetics, Piscataway, NJ USA
| | | | - Karen Schindler
- Rutgers University, Department of Genetics, Piscataway, NJ USA
| | - Soni Lacefield
- Indiana University, Department of Biology, Bloomington, IN USA
- Geisel School of Medicine at Dartmouth, Department of Biochemistry and Cell Biology, Hanover, NH USA
| |
Collapse
|
3
|
Liu Y, Yang H, Fang Y, Xing Y, Pang X, Li Y, Zhang Y, Liu Y. Function and inhibition of Haspin kinase: targeting multiple cancer therapies by antimitosis. J Pharm Pharmacol 2022; 75:445-465. [PMID: 36334086 DOI: 10.1093/jpp/rgac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Objectives
Haploid germ cell-specific nuclear protein kinase (Haspin) is a serine/threonine kinase as an atypical kinase, which is structurally distinct from conventional protein kinases.
Key findings
Functionally, Haspin is involved in important cell cycle progression, particularly in critical mitosis regulating centromeric sister chromatid cohesion during prophase and prometaphase, and subsequently ensuring proper chromosome alignment during metaphase and the normal chromosome segregation during anaphase. However, increasing evidence has demonstrated that Haspin is significantly upregulated in a variety of cancer cells in addition to normal proliferating somatic cells. Its knockdown or small molecule inhibition could prevent cancer cell growth and induce apoptosis by disrupting the regular mitotic progression. Given the specificity of its expressed tissues or cells and the uniqueness of its current known substrate, Haspin can be a promising target against cancer. Consequently, selective synthetic and natural inhibitors of Haspin have been widely developed to determine their inhibitory power for various cancer cells in vivo and in vitro.
Summary
Here our perspective includes a comprehensive review of the roles and structure of Haspin, its relatively potent and selective inhibitors and Haspin’s preliminary studies in a variety of cancers.
Collapse
Affiliation(s)
- Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yongsheng Fang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yantao Xing
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Xinxin Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yuanyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
4
|
Roles and regulation of Haspin kinase and its impact on carcinogenesis. Cell Signal 2022; 93:110303. [DOI: 10.1016/j.cellsig.2022.110303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/15/2023]
|
5
|
Wang P, Hua X, Sun Y, Li H, Bryner YH, Hsung RP, Dai J. Loss of haspin suppresses cancer cell proliferation by interfering with cell cycle progression at multiple stages. FASEB J 2021; 35:e21923. [PMID: 34551143 DOI: 10.1096/fj.202100099r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 01/15/2023]
Abstract
Our recent studies have shown that haspin, a protein kinase imperative for mitosis, is engaged in the interphase progression of HeLa and U2OS cancer cells. In this investigation, we employed the Fucci reporter system and time-lapse imaging to examine the impact of haspin gene silencing on cell cycle progressions at a single-cell level. We found that the loss of haspin induced multiple cell cycle defects. Specifically, the S/G2 duration was greatly prolonged by haspin gene depletion or inhibition in synchronous HeLa cells. Haspin gene depletion in asynchronous HeLa and U2OS cells led to a similarly protracted S/G2 phase, followed by mitotic cell death or postmitotic G1 arrest. In addition, haspin deficiency resulted in robust induction of the p21CIP1/WAF1 checkpoint protein, a target of the p53 activation. Also, co-depleting haspin with either p21 or p53 could rescue U2OS cells from postmitotic G1 arrest and partially restore their proliferation. These results substantiate the haspin's capacity to regulate interphase and mitotic progression, offering a broader antiproliferative potential of haspin loss in cancer cells.
Collapse
Affiliation(s)
- Peiling Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China.,Division of Pharmaceutical Sciences, School of Pharmacy, The University of Wisconsin, Madison, Wisconsin, USA
| | - Xiangmei Hua
- Division of Pharmaceutical Sciences, School of Pharmacy, The University of Wisconsin, Madison, Wisconsin, USA
| | - Yang Sun
- Division of Pharmaceutical Sciences, School of Pharmacy, The University of Wisconsin, Madison, Wisconsin, USA
| | - Hongyu Li
- Division of Pharmaceutical Sciences, School of Pharmacy, The University of Wisconsin, Madison, Wisconsin, USA
| | - Yuge Han Bryner
- Division of Pharmaceutical Sciences, School of Pharmacy, The University of Wisconsin, Madison, Wisconsin, USA
| | - Richard P Hsung
- Division of Pharmaceutical Sciences, School of Pharmacy, The University of Wisconsin, Madison, Wisconsin, USA
| | - Jun Dai
- Division of Pharmaceutical Sciences, School of Pharmacy, The University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Wang Q, Zhang Q, Leung ELH, Chen Y, Yao X. Exploring the thermodynamic, kinetic and inhibitory mechanisms of 5-iTU targeting mitotic kinase haspin by integrated molecular dynamics. Phys Chem Chem Phys 2021; 23:18404-18413. [PMID: 34612381 DOI: 10.1039/d1cp02783b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
As a human mitotic kinase, haspin is considered as a promising target for various diseases including cancers. However, no inhibitors targeting haspin have entered clinical trials presently. 5-iTU (5-iodotubercidin) is a useful and classical chemical probe for the investigation of haspin activity, but its inhibitory mechanism remains unclear. In this study, integrated molecular dynamics (MD) of conventional MD, extended adaptive biasing force (eABF), random acceleration MD and well-tempered metadynamics were applied to investigate the thermodynamic and kinetic features of 5-iTU and three derivatives targeting haspin. To emphasize the importance of gatekeeper Phe605, two haspin mutants (F605Y and F605T) were also built. The results showed that the binding affinity of 5-iTU and haspin was highest in all wild type (WT) systems, relying on the strong halogen aromatic π interaction between 5-iTU and gatekeeper Phe605. Gatekeeper mutations, because of damage to this interaction, led to the rearrangement of water distributions at the binding site and the decrease of 5-iTU residence times. Additionally, compared with the smaller 5-fTU, 5-iTU dissociated from WT haspin with more difficulty through distinct unbinding pathways. These findings will provide crucial guidance for the design and development of novel haspin inhibitors and the rational modification of existing inhibitors.
Collapse
Affiliation(s)
- Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China.
| | | | | | | | | |
Collapse
|
7
|
Phosphorylation of H3-Thr3 by Haspin Is Required for Primary Cilia Regulation. Int J Mol Sci 2021; 22:ijms22147753. [PMID: 34299370 PMCID: PMC8307231 DOI: 10.3390/ijms22147753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/19/2023] Open
Abstract
Primary cilia are commonly found on most quiescent, terminally differentiated cells and play a major role in the regulation of the cell cycle, cell motility, sensing, and cell–cell communication. Alterations in ciliogenesis and cilia maintenance are causative of several human diseases, collectively known as ciliopathies. A key determinant of primary cilia is the histone deacetylase HDAC6, which regulates their length and resorption and whose distribution is regulated by the death inducer-obliterator 3 (Dido3). Here, we report that the atypical protein kinase Haspin is a key regulator of cilia dynamics. Cells defective in Haspin activity exhibit longer primary cilia and a strong delay in cilia resorption upon cell cycle reentry. We show that Haspin is active in quiescent cells, where it phosphorylates threonine 3 of histone H3, a known mitotic Haspin substrate. Forcing Dido3 detachment from the chromatin prevents Haspin inhibition from impacting cilia dynamics, suggesting that Haspin activity is required for the relocalization of Dido3–HDAC6 to the basal body. Exploiting the zebrafish model, we confirmed the physiological relevance of this mechanism. Our observations shed light on a novel player, Haspin, in the mechanisms that govern the determination of cilia length and the homeostasis of mature cilia.
Collapse
|
8
|
Galli M, Diani L, Quadri R, Nespoli A, Galati E, Panigada D, Plevani P, Muzi-Falconi M. Haspin Modulates the G2/M Transition Delay in Response to Polarization Failures in Budding Yeast. Front Cell Dev Biol 2021; 8:625717. [PMID: 33585466 PMCID: PMC7876276 DOI: 10.3389/fcell.2020.625717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 01/25/2023] Open
Abstract
Symmetry breaking by cellular polarization is an exquisite requirement for the cell-cycle of Saccharomyces cerevisiae cells, as it allows bud emergence and growth. This process is based on the formation of polarity clusters at the incipient bud site, first, and the bud tip later in the cell-cycle, that overall promote bud emission and growth. Given the extreme relevance of this process, a surveillance mechanism, known as the morphogenesis checkpoint, has evolved to coordinate the formation of the bud and cell cycle progression, delaying mitosis in the presence of morphogenetic problems. The atypical protein kinase haspin is responsible for histone H3-T3 phosphorylation and, in yeast, for resolution of polarity clusters in mitosis. Here, we report a novel role for haspin in the regulation of the morphogenesis checkpoint in response to polarity insults. Particularly, we show that cells lacking the haspin ortholog Alk1 fail to achieve sustained checkpoint activation and enter mitosis even in the absence of a bud. In alk1Δ cells, we report a reduced phosphorylation of Cdc28-Y19, which stems from a premature activation of the Mih1 phosphatase. Overall, the data presented in this work define yeast haspin as a novel regulator of the morphogenesis checkpoint in Saccharomyces cerevisiae, where it monitors polarity establishment and it couples bud emergence to the G2/M cell cycle transition.
Collapse
Affiliation(s)
- Martina Galli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Laura Diani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Nespoli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Elena Galati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Davide Panigada
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Paolo Plevani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
9
|
Quadri R, Sertic S, Muzi-Falconi M. gRASping Depolarization: Contribution of RAS GTPases to Mitotic Polarity Clusters Resolution. Front Cell Dev Biol 2020; 8:589993. [PMID: 33178703 PMCID: PMC7593642 DOI: 10.3389/fcell.2020.589993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Quadri R, Galli M, Galati E, Rotondo G, Gallo GR, Panigada D, Plevani P, Muzi-Falconi M. Haspin regulates Ras localization to promote Cdc24-driven mitotic depolarization. Cell Discov 2020; 6:42. [PMID: 32595981 PMCID: PMC7308332 DOI: 10.1038/s41421-020-0170-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/10/2020] [Indexed: 11/08/2022] Open
Abstract
Cell polarization is of paramount importance for proliferation, differentiation, development, and it is altered during carcinogenesis. Polarization is a reversible process controlled by positive and negative feedback loops. How polarized factors are redistributed is not fully understood and is the focus of this work. In Saccharomyces cerevisiae, mutants defective in haspin kinase exhibit stably polarized landmarks and are sensitive to mitotic delays. Here, we report a new critical role for haspin in polarisome dispersion; failure to redistribute polarity factors, in turn, leads to nuclear segregation defects and cell lethality. We identified a mitotic role for GTP-Ras in regulating the local activation of the Cdc42 GTPase, resulting in its dispersal from the bud tip to a homogeneous distribution over the plasma membrane. GTP-Ras2 physically interacts with Cdc24 regulateing its mitotic distribution. Haspin is shown to promote a mitotic shift from a bud tip-favored to a homogenous PM fusion of Ras-containing vesicles. In absence of haspin, active Ras is not redistributed from the bud tip; Cdc24 remains hyperpolarized promoting the activity of Cdc42 at the bud tip, and the polarisome fails to disperse leading to erroneously positioned mitotic spindle, defective nuclear segregation, and cell death after mitotic delays. These findings describe new functions for key factors that modulate cell polarization and mitotic events, critical processes involved in development and tumorigenesis.
Collapse
Affiliation(s)
- Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Martina Galli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Present Address: IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Elena Galati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Giuseppe Rotondo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Guido Roberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Davide Panigada
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Paolo Plevani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
11
|
Feizbakhsh O, Pontheaux F, Glippa V, Morales J, Ruchaud S, Cormier P, Roch F. A Peak of H3T3 Phosphorylation Occurs in Synchrony with Mitosis in Sea Urchin Early Embryos. Cells 2020; 9:cells9040898. [PMID: 32272587 PMCID: PMC7226724 DOI: 10.3390/cells9040898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
The sea urchin embryo provides a valuable system to analyse the molecular mechanisms orchestrating cell cycle progression and mitosis in a developmental context. However, although it is known that the regulation of histone activity by post-translational modification plays an important role during cell division, the dynamics and the impact of these modifications have not been characterised in detail in a developing embryo. Using different immuno-detection techniques, we show that the levels of Histone 3 phosphorylation at Threonine 3 oscillate in synchrony with mitosis in Sphaerechinus granularis early embryos. We present, in addition, the results of a pharmacological study aimed at analysing the role of this key histone post-translational modification during sea urchin early development.
Collapse
|
12
|
Wang P, Hua X, Bryner YH, Liu S, Gitter CB, Dai J. Haspin inhibition delays cell cycle progression through interphase in cancer cells. J Cell Physiol 2019; 235:4508-4519. [PMID: 31625162 DOI: 10.1002/jcp.29328] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/30/2019] [Indexed: 01/11/2023]
Abstract
Haspin (Haploid Germ Cell-Specific Nuclear Protein Kinase) is a serine/threonine kinase pertinent to normal mitosis progression and mitotic phosphorylation of histone H3 at threonine 3 in mammalian cells. Different classes of small molecule inhibitors of haspin have been developed and utilized to investigate its mitotic functions. We report herein that applying haspin inhibitor CHR-6494 or 5-ITu at the G1/S boundary could delay mitotic entry in synchronized HeLa and U2OS cells, respectively, following an extended G2 or the S phase. Moreover, late application of haspin inhibitors at S/G2 boundary is sufficient to delay mitotic onset in both cell lines, thereby, indicating a direct effect of haspin on G2/M transition. A prolonged interphase duration is also observed with knockdown of haspin expression in synchronized and asynchronous cells. These results suggest that haspin can regulate cell cycle progression at multiple stages at both interphase and mitosis.
Collapse
Affiliation(s)
- Peiling Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| | - Xiangmei Hua
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| | - Yuge Han Bryner
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| | - Sijing Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Christopher B Gitter
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| | - Jun Dai
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
13
|
Edgerton H, Johansson M, Keifenheim D, Mukherjee S, Chacón JM, Bachant J, Gardner MK, Clarke DJ. A noncatalytic function of the topoisomerase II CTD in Aurora B recruitment to inner centromeres during mitosis. J Cell Biol 2017; 213:651-64. [PMID: 27325791 PMCID: PMC4915189 DOI: 10.1083/jcb.201511080] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/25/2016] [Indexed: 11/22/2022] Open
Abstract
The C-terminal domain (CTD) of Topo II is dispensable for its catalytic activity yet essential for Topo II function in chromosome segregation during mitosis. Here, Edgerton et al. resolve the role of the Topo II CTD during mitosis in yeast, showing that it functions noncatalytically via the Haspin-H3 T3-Phos pathway to recruit Ipl1/Aurora B to mitotic inner centromeres. Faithful chromosome segregation depends on the precise timing of chromatid separation, which is enforced by checkpoint signals generated at kinetochores. Here, we provide evidence that the C-terminal domain (CTD) of DNA topoisomerase IIα (Topo II) provides a novel function at inner centromeres of kinetochores in mitosis. We find that the yeast CTD is required for recruitment of the tension checkpoint kinase Ipl1/Aurora B to inner centromeres in metaphase but is not required in interphase. Conserved CTD SUMOylation sites are required for Ipl1 recruitment. This inner-centromere CTD function is distinct from the catalytic activity of Topo II. Genetic and biochemical evidence suggests that Topo II recruits Ipl1 via the Haspin–histone H3 threonine 3 phosphorylation pathway. Finally, Topo II and Sgo1 are equally important for Ipl1 recruitment to inner centromeres. This indicates H3 T3-Phos/H2A T120-Phos is a universal epigenetic signature that defines the eukaryotic inner centromere and provides the binding site for Ipl1/Aurora B.
Collapse
Affiliation(s)
- Heather Edgerton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Marnie Johansson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Daniel Keifenheim
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Soumya Mukherjee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Jeremy M Chacón
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Jeff Bachant
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Duncan J Clarke
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
14
|
Xie J, Wooten M, Tran V, Chen X. Breaking Symmetry - Asymmetric Histone Inheritance in Stem Cells. Trends Cell Biol 2017; 27:527-540. [PMID: 28268050 DOI: 10.1016/j.tcb.2017.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 01/17/2023]
Abstract
Asymmetric cell division (ACD) gives rise to two daughter cells with distinct fates. ACD is widely used during development and by many types of adult stem cells during tissue homeostasis and regeneration. ACD can be regulated by extrinsic cues, such as signaling molecules, as well as by intrinsic factors, such as organelles and cortex proteins. The recent discovery of asymmetric histone inheritance during stem cell ACD has revealed another intrinsic mechanism by which ACD produces two distinct daughters. In this review we discuss these findings in the context of cell-cycle regulation, as well as other studies of ACD, to begin understanding the underlying mechanisms and biological relevance of this phenomenon.
Collapse
Affiliation(s)
- Jing Xie
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vuong Tran
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Current address: Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North Seattle, Seattle, WA 98109, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
15
|
Regulation of Stem Cells in Their Niche. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Kozgunova E, Suzuki T, Ito M, Higashiyama T, Kurihara D. Haspin has Multiple Functions in the Plant Cell Division Regulatory Network. PLANT & CELL PHYSIOLOGY 2016; 57:848-61. [PMID: 26872832 DOI: 10.1093/pcp/pcw030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/03/2016] [Indexed: 05/22/2023]
Abstract
Progression of cell division is controlled by various mitotic kinases. In animal cells, phosphorylation of histone H3 at Thr3 by the kinase Haspin (haploid germ cell-specific nuclear protein kinase) promotes centromeric Aurora B localization to regulate chromosome segregation. However, less is known about the function of Haspin in regulatory networks in plant cells. Here, we show that inhibition of Haspin with 5-iodotubercidin (5-ITu) in Bright Yellow-2 (BY-2) cells delayed chromosome alignment. Haspin inhibition also prevented the centromeric localization of Aurora3 kinase (AUR3) and disrupted its function. This suggested that Haspin plays a role in the specific positioning of AUR3 on chromosomes in plant cells, a function conserved in animals. The results also indicated that Haspin and AUR3 are involved in the same pathway, which regulates chromosome alignment during prometaphase/metaphase. Remarkably, Haspin inhibition by 5-ITu also led to a severe cytokinesis defect, resulting in binuclear cells with a partially formed cell plate. The 5-ITu treatment did not affect microtubules, AUR1/2 or the NACK-PQR pathway; however, it did alter the distribution of actin filaments on the cell plate. Together, these results suggested that Haspin has several functions in regulating cell division in plant cells: in the localization of AUR3 on centromeres and in regulating late cell plate expansion during cytokinesis.
Collapse
Affiliation(s)
- Elena Kozgunova
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Matsumoto-cho, Kasugai, Aichi, 478-8501 Japan Higashiyama Live-Holonics Project, ERATO, JST, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Masaki Ito
- Division of Biological Science, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan JST, CREST, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan Higashiyama Live-Holonics Project, ERATO, JST, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Daisuke Kurihara
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan Higashiyama Live-Holonics Project, ERATO, JST, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| |
Collapse
|
17
|
Xie J, Wooten M, Tran V, Chen BC, Pozmanter C, Simbolon C, Betzig E, Chen X. Histone H3 Threonine Phosphorylation Regulates Asymmetric Histone Inheritance in the Drosophila Male Germline. Cell 2015; 163:920-33. [PMID: 26522592 DOI: 10.1016/j.cell.2015.10.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/08/2015] [Accepted: 09/22/2015] [Indexed: 12/11/2022]
Abstract
A long-standing question concerns how stem cells maintain their identity through multiple divisions. Previously, we reported that pre-existing and newly synthesized histone H3 are asymmetrically distributed during Drosophila male germline stem cell (GSC) asymmetric division. Here, we show that phosphorylation at threonine 3 of H3 (H3T3P) distinguishes pre-existing versus newly synthesized H3. Converting T3 to the unphosphorylatable residue alanine (H3T3A) or to the phosphomimetic aspartate (H3T3D) disrupts asymmetric H3 inheritance. Expression of H3T3A or H3T3D specifically in early-stage germline also leads to cellular defects, including GSC loss and germline tumors. Finally, compromising the activity of the H3T3 kinase Haspin enhances the H3T3A but suppresses the H3T3D phenotypes. These studies demonstrate that H3T3P distinguishes sister chromatids enriched with distinct pools of H3 in order to coordinate asymmetric segregation of "old" H3 into GSCs and that tight regulation of H3T3 phosphorylation is required for male germline activity.
Collapse
Affiliation(s)
- Jing Xie
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vuong Tran
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bi-Chang Chen
- HHMI, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Caitlin Pozmanter
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christine Simbolon
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eric Betzig
- HHMI, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Xin Chen
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
18
|
Li Z, Hao Y, Wang L, Xiang H, Zhou Z. Genome-wide identification and comprehensive analyses of the kinomes in four pathogenic microsporidia species. PLoS One 2014; 9:e115890. [PMID: 25549259 PMCID: PMC4280135 DOI: 10.1371/journal.pone.0115890] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
Microsporidia have attracted considerable attention because they infect a wide range of hosts, from invertebrates to vertebrates, and cause serious human diseases and major economic losses in the livestock industry. There are no prospective drugs to counteract this pathogen. Eukaryotic protein kinases (ePKs) play a central role in regulating many essential cellular processes and are therefore potential drug targets. In this study, a comprehensive summary and comparative analysis of the protein kinases in four microsporidia–Enterocytozoon bieneusi, Encephalitozoon cuniculi, Nosema bombycis and Nosema ceranae–was performed. The results show that there are 34 ePKs and 4 atypical protein kinases (aPKs) in E. bieneusi, 29 ePKs and 6 aPKs in E. cuniculi, 41 ePKs and 5 aPKs in N. bombycis, and 27 ePKs and 4 aPKs in N. ceranae. These data support the previous conclusion that the microsporidian kinome is the smallest eukaryotic kinome. Microsporidian kinomes contain only serine-threonine kinases and do not contain receptor-like and tyrosine kinases. Many of the kinases related to nutrient and energy signaling and the stress response have been lost in microsporidian kinomes. However, cell cycle-, development- and growth-related kinases, which are important to parasites, are well conserved. This reduction of the microsporidian kinome is in good agreement with genome compaction, but kinome density is negatively correlated with proteome size. Furthermore, the protein kinases in each microsporidian genome are under strong purifying selection pressure. No remarkable differences in kinase family classification, domain features, gain and/or loss, and selective pressure were observed in these four species. Although microsporidia adapt to different host types, the coevolution of microsporidia and their hosts was not clearly reflected in the protein kinases. Overall, this study enriches and updates the microsporidian protein kinase database and may provide valuable information and candidate targets for the design of treatments for pathogenic diseases.
Collapse
Affiliation(s)
- Zhi Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Linling Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Heng Xiang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zeyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
19
|
Nguyen AL, Gentilello AS, Balboula AZ, Shrivastava V, Ohring J, Schindler K. Phosphorylation of threonine 3 on histone H3 by haspin kinase is required for meiosis I in mouse oocytes. J Cell Sci 2014; 127:5066-78. [PMID: 25315835 DOI: 10.1242/jcs.158840] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Meiosis I (MI), the division that generates haploids, is prone to errors that lead to aneuploidy in females. Haspin is a kinase that phosphorylates histone H3 on threonine 3, thereby recruiting Aurora kinase B (AURKB) and the chromosomal passenger complex (CPC) to kinetochores to regulate mitosis. Haspin and AURKC, an AURKB homolog, are enriched in germ cells, yet their significance in regulating MI is not fully understood. Using inhibitors and overexpression approaches, we show a role for haspin during MI in mouse oocytes. Haspin-perturbed oocytes display abnormalities in chromosome morphology and alignment, improper kinetochore-microtubule attachments at metaphase I and aneuploidy at metaphase II. Unlike in mitosis, kinetochore localization remained intact, whereas the distribution of the CPC along chromosomes was absent. The meiotic defects following haspin inhibition were similar to those observed in oocytes where AURKC was inhibited, suggesting that the correction of microtubule attachments during MI requires AURKC along chromosome arms rather than at kinetochores. Our data implicate haspin as a regulator of the CPC and chromosome segregation during MI, while highlighting important differences in how chromosome segregation is regulated between MI and mitosis.
Collapse
Affiliation(s)
- Alexandra L Nguyen
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Amanda S Gentilello
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ahmed Z Balboula
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Vibha Shrivastava
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jacob Ohring
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
20
|
Phosphorylation of Sli15 by Ipl1 is important for proper CPC localization and chromosome stability in Saccharomyces cerevisiae. PLoS One 2014; 9:e89399. [PMID: 24558497 PMCID: PMC3928436 DOI: 10.1371/journal.pone.0089399] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/19/2014] [Indexed: 12/29/2022] Open
Abstract
The chromosomal passenger complex (CPC) is a key regulator of eukaryotic cell division, consisting of the protein kinase Aurora B/Ipl1 in association with its activator (INCENP/Sli15) and two additional proteins (Survivin/Bir1 and Borealin/Nbl1). Here we have identified multiple sites of CPC autophosphorylation on yeast Sli15 that are located within its central microtubule-binding domain and examined the functional significance of their phosphorylation by Ipl1 through mutation of these sites, either to non-phosphorylatable alanine (sli15-20A) or to acidic residues to mimic constitutive phosphorylation (sli15-20D). Both mutant sli15 alleles confer chromosome instability, but this is mediated neither by changes in the capacity of Sli15 to activate Ipl1 kinase nor by decreased efficiency of chromosome biorientation, a key process in cell division that requires CPC function. Instead, we find that mimicking constitutive phosphorylation of Sli15 on the Ipl1 phosphorylation sites causes delocalization of the CPC in metaphase, whereas blocking phosphorylation of Sli15 on the Ipl1 sites drives excessive localization of Sli15 to the mitotic spindle in pre-anaphase cells. Consistent with these results, direct interaction of Sli15 with microtubules in vitro is greatly reduced either following phosphorylation by Ipl1 or when constitutive phosphorylation at the Ipl1-dependent phosphorylation sites is mimicked by aspartate or glutamate substitutions. Furthermore, we find that mimicking Ipl1 phosphorylation of Sli15 interferes with the ‘tension checkpoint’ – the CPC-dependent mechanism through which cells activate the spindle assembly checkpoint to delay anaphase in the absence of tension on kinetochore-microtubule attachments. Ipl1-dependent phosphorylation of Sli15 therefore inhibits its association with microtubules both in vivo and in vitro and may negatively regulate the tension checkpoint mechanism.
Collapse
|