1
|
Pastor-Alonso O, Syeda Zahra A, Kaske B, García-Moreno F, Tetzlaff F, Bockelmann E, Grunwald V, Martín-Suárez S, Riecken K, Witte OW, Encinas JM, Urbach A. Generation of adult hippocampal neural stem cells occurs in the early postnatal dentate gyrus and depends on cyclin D2. EMBO J 2024; 43:317-338. [PMID: 38177500 PMCID: PMC10897295 DOI: 10.1038/s44318-023-00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
Lifelong hippocampal neurogenesis is maintained by a pool of multipotent adult neural stem cells (aNSCs) residing in the subgranular zone of the dentate gyrus (DG). The mechanisms guiding transition of NSCs from the developmental to the adult state remain unclear. We show here, by using nestin-based reporter mice deficient for cyclin D2, that the aNSC pool is established through cyclin D2-dependent proliferation during the first two weeks of life. The absence of cyclin D2 does not affect normal development of the dentate gyrus until birth but prevents postnatal formation of radial glia-like aNSCs. Furthermore, retroviral fate mapping reveals that aNSCs are born on-site from precursors located in the dentate gyrus shortly after birth. Taken together, our data identify the critical time window and the spatial location of the precursor divisions that generate the persistent population of aNSCs and demonstrate the central role of cyclin D2 in this process.
Collapse
Affiliation(s)
- Oier Pastor-Alonso
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Scientific Park, 48940, Leioa, Bizkaia, Spain
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Anum Syeda Zahra
- Department of Neurology, Jena University Hospital, 07747, Jena, Germany
| | - Bente Kaske
- Department of Neurology, Jena University Hospital, 07747, Jena, Germany
| | - Fernando García-Moreno
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Scientific Park, 48940, Leioa, Bizkaia, Spain
- IKERBASQUE, The Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbo, Bizkaia, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Scientific Park, 48940, Leioa, Bizkaia, Spain
| | - Felix Tetzlaff
- Department of Neurology, Jena University Hospital, 07747, Jena, Germany
| | - Enno Bockelmann
- Department of Neurology, Jena University Hospital, 07747, Jena, Germany
| | - Vanessa Grunwald
- Department of Neurology, Jena University Hospital, 07747, Jena, Germany
| | - Soraya Martín-Suárez
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Scientific Park, 48940, Leioa, Bizkaia, Spain
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Otto Wilhelm Witte
- Department of Neurology, Jena University Hospital, 07747, Jena, Germany
- Jena Centre for Healthy Aging, Jena University Hospital, 07747, Jena, Germany
| | - Juan Manuel Encinas
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Scientific Park, 48940, Leioa, Bizkaia, Spain.
- IKERBASQUE, The Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbo, Bizkaia, Spain.
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Scientific Park, 48940, Leioa, Bizkaia, Spain.
| | - Anja Urbach
- Department of Neurology, Jena University Hospital, 07747, Jena, Germany.
- Jena Centre for Healthy Aging, Jena University Hospital, 07747, Jena, Germany.
| |
Collapse
|
2
|
Mustafa N, Mitxelena J, Infante A, Zenarruzabeitia O, Eriz A, Iglesias-Ara A, Zubiaga AM. E2f2 Attenuates Apoptosis of Activated T Lymphocytes and Protects from Immune-Mediated Injury through Repression of Fas and FasL. Int J Mol Sci 2021; 23:ijms23010311. [PMID: 35008734 PMCID: PMC8745065 DOI: 10.3390/ijms23010311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/03/2022] Open
Abstract
Targeted disruption of E2f2 in mice causes T-cell hyperactivation and a disproportionate cell cycle entry upon stimulation. However, E2f2−/− mice do not develop a lymphoproliferative condition. We report that E2f2 plays a Fas-dependent anti-apoptotic function in vitro and in vivo. TCR-stimulated murine E2f2−/− T cells overexpress the proapoptotic genes Fas and FasL and exhibit enhanced apoptosis, which is prevented by treatment with neutralizing anti-FasL antibodies. p53 pathway is activated in TCR-stimulated E2f2−/− lymphocytes, but targeted disruption of p53 in E2f2−/− mice does not abrogate Fas/FasL expression or apoptosis, implying a p53-independent apoptotic mechanism. We show that E2f2 is recruited to Fas and FasL gene promoters to repress their expression. in vivo, E2f2−/− mice are prone to develop immune-mediated liver injury owing to an aberrant lymphoid Fas/FasL activation. Taken together, our results suggest that E2f2-dependent inhibition of Fas/FasL pathway may play a direct role in limiting the development of immune-mediated pathologies.
Collapse
Affiliation(s)
- Noor Mustafa
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (N.M.); (J.M.); (A.E.)
| | - Jone Mitxelena
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (N.M.); (J.M.); (A.E.)
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Ainhoa Eriz
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (N.M.); (J.M.); (A.E.)
| | - Ainhoa Iglesias-Ara
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (N.M.); (J.M.); (A.E.)
- Correspondence: (A.I.-A.); (A.M.Z.); Tel.: +34-94-601-5799 (A.I.-A.); +34-94-601-2603 (A.M.Z.); Fax: +34-94-601-3143 (A.M.Z.)
| | - Ana M. Zubiaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain; (N.M.); (J.M.); (A.E.)
- Correspondence: (A.I.-A.); (A.M.Z.); Tel.: +34-94-601-5799 (A.I.-A.); +34-94-601-2603 (A.M.Z.); Fax: +34-94-601-3143 (A.M.Z.)
| |
Collapse
|
3
|
Rapid initiation of cell cycle reentry processes protects neurons from amyloid-β toxicity. Proc Natl Acad Sci U S A 2021; 118:2011876118. [PMID: 33737393 DOI: 10.1073/pnas.2011876118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons are postmitotic cells. Reactivation of the cell cycle by neurons has been reported in Alzheimer's disease (AD) brains and models. This gave rise to the hypothesis that reentering the cell cycle renders neurons vulnerable and thus contributes to AD pathogenesis. Here, we use the fluorescent ubiquitination-based cell cycle indicator (FUCCI) technology to monitor the cell cycle in live neurons. We found transient, self-limited cell cycle reentry activity in naive neurons, suggesting that their postmitotic state is a dynamic process. Furthermore, we observed a diverse response to oligomeric amyloid-β (oAβ) challenge; neurons without cell cycle reentry activity would undergo cell death without activating the FUCCI reporter, while neurons undergoing cell cycle reentry activity at the time of the oAβ challenge could maintain and increase FUCCI reporter signal and evade cell death. Accordingly, we observed marked neuronal FUCCI positivity in the brains of human mutant Aβ precursor protein transgenic (APP23) mice together with increased neuronal expression of the endogenous cell cycle control protein geminin in the brains of 3-mo-old APP23 mice and human AD brains. Taken together, our data challenge the current view on cell cycle in neurons and AD, suggesting that pathways active during early cell cycle reentry in neurons protect from Aβ toxicity.
Collapse
|
4
|
Di Sante G, Pagé J, Jiao X, Nawab O, Cristofanilli M, Skordalakes E, Pestell RG. Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology. Expert Rev Anticancer Ther 2019; 19:569-587. [PMID: 31219365 PMCID: PMC6834352 DOI: 10.1080/14737140.2019.1615889] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Collaborative interactions between several diverse biological processes govern the onset and progression of breast cancer. These processes include alterations in cellular metabolism, anti-tumor immune responses, DNA damage repair, proliferation, anti-apoptotic signals, autophagy, epithelial-mesenchymal transition, components of the non-coding genome or onco-mIRs, cancer stem cells and cellular invasiveness. The last two decades have revealed that each of these processes are also directly regulated by a component of the cell cycle apparatus, cyclin D1. Area covered: The current review is provided to update recent developments in the clinical application of cyclin/CDK inhibitors to breast cancer with a focus on the anti-tumor immune response. Expert opinion: The cyclin D1 gene encodes the regulatory subunit of a proline-directed serine-threonine kinase that phosphorylates several substrates. CDKs possess phosphorylation site selectivity, with the phosphate-acceptor residue preceding a proline. Several important proteins are substrates including all three retinoblastoma proteins, NRF1, GCN5, and FOXM1. Over 280 cyclin D3/CDK6 substrates have b\een identified. Given the diversity of substrates for cyclin/CDKs, and the altered thresholds for substrate phosphorylation that occurs during the cell cycle, it is exciting that small molecular inhibitors targeting cyclin D/CDK activity have encouraging results in specific tumors.
Collapse
Affiliation(s)
- Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Jessica Pagé
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Omar Nawab
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
5
|
Takata M, Pachera E, Frank-Bertoncelj M, Kozlova A, Jüngel A, Whitfield ML, Assassi S, Calcagni M, de Vries-Bouwstra J, Huizinga TW, Kurreeman F, Kania G, Distler O. OTUD6B-AS1 Might Be a Novel Regulator of Apoptosis in Systemic Sclerosis. Front Immunol 2019; 10:1100. [PMID: 31156645 PMCID: PMC6533854 DOI: 10.3389/fimmu.2019.01100] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
Antisense long non-coding RNAs (AS lncRNAs) have increasingly been recognized as important regulators of gene expression and they have been found to play key roles in several diseases. However, very little is known about the role of AS lncRNAs in fibrotic diseases such as systemic sclerosis (SSc). Our recent screening experiments by RNA sequencing showed that ovarian tumor domain containing 6B antisense RNA1 (OTUD6B-AS1) and its sense gene OTUD6B were significantly downregulated in SSc skin biopsies. Therefore, we aimed to identify key regulators of OTUD6B-AS1 and to analyze the functional relevance of OTUD6B-AS1 in SSc. OTUD6B-AS1 and OTUD6B expression in SSc and healthy control (HC) dermal fibroblasts (Fb) after stimulation with transforming growth factor-β (TGFβ), Interleukin (IL)-4, IL-13, and platelet-derived growth factor (PDGF) was analyzed by qPCR. To identify the functional role of OTUD6B-AS1, dermal Fb or human pulmonary artery smooth muscle cells (HPASMC) were transfected with a locked nucleic acid antisense oligonucleotide (ASO) targeting OTUD6B-AS1. Proliferation was measured by BrdU and real-time proliferation assay. Apoptosis was measured by Caspase 3/7 assay and Western blot for cleaved caspase 3. While no difference was recorded at the basal level between HC and SSc dermal Fb, the expression of OTUD6B-AS1 and OTUD6B was significantly downregulated in both SSc and HC dermal Fb after PDGF stimulation in a time-dependent manner. Only mild and inconsistent effects were observed with TGFβ, IL-4, and IL-13. OTUD6B-AS1 knockdown in Fb and HPASMC did not affect extracellular matrix or pro-fibrotic/proinflammatory cytokine production. However, OTUD6B-AS1 knockdown significantly increased Cyclin D1 expression at the mRNA and protein level. Moreover, silencing of OTUD6B-AS1 significantly reduced proliferation and suppressed apoptosis in both dermal Fb and HPASMC. OTUD6B-AS1 knockdown did not affect OTUD6B expression at the mRNA level and protein level. Our data suggest that OTUD6B-AS1 regulates proliferation and apoptosis via cyclin D1 expression in a sense gene independent manner. This is the first report investigating the function of OTUD6B-AS1. Our data shed light on a novel apoptosis resistance mechanism in Fb and vascular smooth muscle cells that might be relevant for pathogenesis of SSc.
Collapse
Affiliation(s)
- Miki Takata
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zürich, Zurich, Switzerland
| | - Elena Pachera
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zürich, Zurich, Switzerland
| | - Mojca Frank-Bertoncelj
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zürich, Zurich, Switzerland
| | - Anastasiia Kozlova
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zürich, Zurich, Switzerland
| | - Astrid Jüngel
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zürich, Zurich, Switzerland
| | - Michael L Whitfield
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Shervin Assassi
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zürich, Zurich, Switzerland
| | | | - Tom W Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Fina Kurreeman
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Gabriela Kania
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zürich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zürich, Zurich, Switzerland
| |
Collapse
|
6
|
Swarnalatha Y, Vidhya VG, Murugan A. Isochamanetin is a Selective Inhibitor for CyclinD1 in SKOV3 Cell Lines. Nutr Cancer 2019; 71:657-667. [PMID: 30663403 DOI: 10.1080/01635581.2018.1559933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cyclinD1 is an emerging potent therapeutic drug target in the treatment of ovarian cancer. CyclinD1, Cdks phosphorylation regulates cell cycle and controls transcription. For this reason, CyclinD1 have been subject to extensive cell cycle- related research, and consequently various therapeutic inhibitor drugs have been developed to these protein targets. In the present study we identified that the expression levels of Bcl-2, Bax, caspase 8, 9 and cyclinD1 using Q-PCR method in SKOV3 cell lines treated with Isochamanetin. The viability and migratory inhibition ability also studied to know the mode of cell death. Further the expression levels of Bcl-2, caspase8,9, Cytochrome C and CyclinD1 were significantly down regulated in SKOV3 cancer cells treated with isochamanetin, a specific binding molecule to CyclinD1. The therapeutic molecules found by a high through put insilicoscreen of this pocket exhibit cytostatic nature and reduce protein levels of cell cycle. The novel structural site on CyclinD1, which is well conserved and inhibits the SKOV3 cells from G0-G1 to S phase cell cycle progression. The current result suggests that isochamanetin serves as potent binding agent to the cyclinD1.
Collapse
Affiliation(s)
- Y Swarnalatha
- a Department of Biotechnology , Sathyabama Institute of Science and Technology , Chennai , India
| | - V G Vidhya
- a Department of Biotechnology , Sathyabama Institute of Science and Technology , Chennai , India
| | - Annapoorni Murugan
- a Department of Biotechnology , Sathyabama Institute of Science and Technology , Chennai , India
| |
Collapse
|
7
|
Liu D, You P, Luo Y, Yang M, Liu Y. Galangin Induces Apoptosis in MCF-7 Human Breast Cancer Cells Through Mitochondrial Pathway and Phosphatidylinositol 3-Kinase/Akt Inhibition. Pharmacology 2018; 102:58-66. [PMID: 29879712 DOI: 10.1159/000489564] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
AIMS The study aimed to investigate the molecular mechanism of inhibition of proliferation and apoptosis induction by galangin against MCF-7 human breast cancer cells. METHODS Cell Counting Kit-8 assay was used to assess cell viability and flow cytometry was used to detect cell apoptosis. The expression level of apoptosis-related proteins (cleaved-caspase-9, cleaved-caspase-8, cleaved-caspase-3, Bad, cleaved-Bid, Bcl-2, Bax, p-phosphatidylinositol 3-kinase [PI3K], and p-Akt) and cell cycle-related proteins (cyclin D3, cyclin B1, cyclin-dependent kinases CDK1, CDK2, CDK4, p21, p27, p53) were evaluated by Western blotting. RESULTS Galangin increased the expression of Bax and decreased the expression of Bcl-2 in a concentration-dependent manner, inhibited cell viability, and induced apoptosis. Meanwhile, the expression of cleavage of caspase-9, caspase-8, caspase-3, Bid, and Bad increased significantly while the expression of p-PI3K and p-Akt proteins decreased. In addition, the protein levels of cyclin D3, cyclin B1, CDK1, CDK2, and CDK4 were downregulated while the expression levels of p21, p27, and p53 were upregulated significantly. CONCLUSION Galangin could suppress the viability of MCF-7 cells and induce cell apoptosis via the mitochondrial pathway and PI3K/Akt inhibition as well as cell cycle arrest.
Collapse
Affiliation(s)
- Dan Liu
- School of Pharmacy, Hubei Key Laboratory of Resource Science and Chemistry in Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Pengtao You
- School of Pharmacy, Hubei Key Laboratory of Resource Science and Chemistry in Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Luo
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Min Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yanwen Liu
- School of Pharmacy, Hubei Key Laboratory of Resource Science and Chemistry in Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
8
|
Mo Q, Hu L, Weng J, Zhang Y, Zhou Y, Xu R, Zuo Z, Deng J, Ren Z, Zhong Z, Peng G, Nong X, Wei Y, Hu Y. Euptox A Induces G1 Arrest and Autophagy via p38 MAPK- and PI3K/Akt/mTOR-Mediated Pathways in Mouse Splenocytes. J Histochem Cytochem 2017; 65:543-558. [PMID: 28745544 DOI: 10.1369/0022155417722118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Euptox A (9-oxo-10, 11-dehydroageraphorone), the main toxin isolated from Eupatorium adenophorum, is known to induce immunotoxicity in animals. However, the precise mechanism underlying the effects of Euptox A on splenocytes is unclear. Here, we aimed to investigate the molecular mechanisms underlying the effect of Euptox A in mouse spleens after its intragastric administration and found that Euptox A exhibits proautophagic effects in splenocytes. Euptox A markedly arrested the splenocytes in the G0/G1 phase, which was accompanied by inhibition of the expression of the positive regulators CDK4, CDK2, cyclin D1, PCNA, and E2F1, and promotion of the expression of the negative regulators p53, p21 Waf1/Cip1, p27 Kip1, and Chk1. We also found that Euptox A did not markedly induce splenocyte apoptosis, but induced autophagy while increasing the subcellular localization of punctate LC3, ratio of LC3-II/LC3-I, and Beclin 1 levels, and decreasing p62 levels. Euptox A also significantly inhibited p-PI3K, p-p38 MAPK, p-Akt, and p-mTOR expression, but increased PTEN and p-AMPK expression. These results indicated that Euptox A induced splenocyte autophagy by inhibiting the PI3K/Akt/mTOR pathway, suppressing p38 MAPK expression, and activating AMPK. These findings provide new insights into the mechanisms involved in spleen toxicity caused by Euptox A in mice.
Collapse
Affiliation(s)
- Quan Mo
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Liwen Hu
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Jiahua Weng
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Yong Zhang
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Yancheng Zhou
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Ruiguang Xu
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Zhicai Zuo
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Junliang Deng
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Zhihua Ren
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Zhijun Zhong
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Guangneng Peng
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Xiang Nong
- College of Life Science, Leshan Normal University, Leshan, China (XN)
| | - Yahui Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Science, Northwest University, Xi'an, China (YW)
| | - Yanchun Hu
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| |
Collapse
|
9
|
Shi Z, Zhou H, Lu L, Li X, Fu Z, Liu J, Kang Y, Wei Z, Pan B, Liu L, Kong X, Feng S. The roles of microRNAs in spinal cord injury. Int J Neurosci 2017; 127:1104-1115. [PMID: 28436759 DOI: 10.1080/00207454.2017.1323208] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, P. R. China
| | - Zheng Fu
- Department of Immunology, Tianjin Medical University, Tianjin, P. R. China
| | - Jun Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Zhijian Wei
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Bin Pan
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Lu Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Xiaohong Kong
- 221 Laboratory, School of Medicine, Nankai University, Tianjin, P. R. China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| |
Collapse
|
10
|
Mondal S, Hazra I, Datta A, Sk Md OF, Moitra S, Tripathi SK, Chaudhuri S. T11TS repress gliomagenic apoptosis of bone marrow hematopoietic stem cells. J Cell Physiol 2017; 233:269-290. [PMID: 28233371 DOI: 10.1002/jcp.25874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/22/2017] [Indexed: 12/24/2022]
Abstract
Combating gliomagenic global immunosuppression is one of the emerging key for improving prognosis in malignant glioma. Apoptosis plays a pivotal role within the adult hematopoietic system particularly in regulating the cells of immune system. Gliomagenic regulation of apoptotic mediators within bone marrow milieu has not been elucidated. We previously demonstrated that administration of membrane glycopeptides T11 target structure (T11TS) not only rejuvenate bone marrow hematopoietic stem cells (BMHSCs) from glioma mediated hibernation by inhibiting gliomagenic overexpression of Ang-1/Tie-2 but also stimulate glioma mediated diminution of expression CD34, c-kit, and Sca-1 markers. In the present study, we investigated the impact of glioma on apoptotic signaling cascades of BMHSCs and consequences following T11TS therapy. Bone marrow smear and Annexin V staining confirm gliomagenic acceleration of apoptotic fate of BMHSCs whereas T11TS treatment in glioma-bearing rats disrupted apoptosis of BMHSCs. Flowcytometry, immunoblotting, and immunofluorescence imagining results revealed multi potent T11TS not only significantly downregulates gliomagenic overexpression of Fas, Fas L, Bid, and caspase-8, the pro-apoptotic extrinsic mediators but also strongly inhibits cytosolic release of cytochrome-c, Apf-1, and Bax to deactivate gliomagenic caspase-9, 3 the key intrinsic apoptotic mediators followed by up modulation of anti-apoptotic Bcl-2 in glioma associated HSCs. T11TS is also able to diminish the perforin-granzyme B mediated apoptotic verdict of BMHSCs during gliomagenesis. The anti-apoptotic action of T11TS on glioma associated BMHSCs provide a crucial insight into how T11TS exerts its immunomodulatory action against glioma mediated immune devastation.
Collapse
Affiliation(s)
- Somnath Mondal
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India.,Department of Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata, West Bengal, India
| | - Iman Hazra
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Ankur Datta
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India.,Department of Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata, West Bengal, India
| | - Omar Faruk Sk Md
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Saibal Moitra
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Santanu Kumar Tripathi
- Department of Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata, West Bengal, India
| | - Swapna Chaudhuri
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Li C, Hu J, Li W, Song G, Shen J. Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment. Biomater Sci 2017; 5:77-88. [DOI: 10.1039/c6bm00449k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hollow mesoporous silica nanospheres (HMSN)-based co-delivery of bortezomib (BTZ) and the tumor suppressor gene p53 was developed for p53 signal impaired NSCLC therapy.
Collapse
Affiliation(s)
- Chun Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Junqing Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Wenyao Li
- School of Material Engineering
- Research & Development Center for Key Technologies of Intelligent Ultra-Intense Laser Processing Equipments
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Guosheng Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Jia Shen
- State Key Laboratory of Molecular Biology; Institute of Biochemistry and Cell Biology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
- Shanghai 200031
- China
| |
Collapse
|
12
|
Karim S, Al-Maghrabi JA, Farsi HMA, Al-Sayyad AJ, Schulten HJ, Buhmeida A, Mirza Z, Al-Boogmi AA, Ashgan FT, Shabaad MM, NourEldin HF, Al-Ghamdi KBM, Abuzenadah A, Chaudhary AGA, Al-Qahtani MH. Cyclin D1 as a therapeutic target of renal cell carcinoma- a combined transcriptomics, tissue microarray and molecular docking study from the Kingdom of Saudi Arabia. BMC Cancer 2016; 16:741. [PMID: 27766950 PMCID: PMC5073805 DOI: 10.1186/s12885-016-2775-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a seventh ranked malignancy with poor prognosis. RCC is lethal at metastatic stage as it does not respond to conventional systemic treatments, and there is an urgent need to find out promising novel biomarkers for effective treatment. The goal of this study was to evaluate the biomarkers that can be potential therapeutic target and predict effective inhibitors to treat the metastatic stage of RCC. METHODS We conducted transcriptomic profiling to identify differentially expressed genes associated with RCC. Molecular pathway analysis was done to identify the canonical pathways and their role in RCC. Tissue microarrays (TMA) based immunohistochemical stains were used to validate the protein expression of cyclinD1 (CCND1) and were scored semi-quantitatively from 0 to 3+ on the basis of absence or presence of staining intensity in the tumor cell. Statistical analysis determined the association of CCND1 expression with RCC. Molecular docking analyses were performed to check the potential of two natural inhibitors, rutin and curcumin to bind CCND1. RESULTS We detected 1490 significantly expressed genes (1034, upregulated and 456, downregulated) in RCC using cutoff fold change 2 and p value < 0.05. Hes-related family bHLH transcription factor with YRPW motif 1 (HEY1), neuropilin 2 (NRP2), lymphoid enhancer-binding factor 1 (LEF1), and histone cluster 1 H3h (HIST1H3H) were most upregulated while aldolase B, fructose-bisphosphate (ALDOB), solute carrier family 12 (SLC12A1), calbindin 1 (CALB1) were the most down regulated genes in our dataset. Functional analysis revealed Wnt/β-catenin signaling as the significantly activated canonical pathway (z score = 2.53) involving cyclin D1 (CCND1). CCND1 was overexpressed in transcriptomic studies (FC = 2.26, p value = 0.0047) and TMA results also showed the positive expression of CCND1 in 53 % (73/139) of RCC cases. The ligands - rutin and curcumin bounded with CCND1 with good affinity. CONCLUSION CCND1 was one of the important upregulated gene identified in microarray and validated by TMA. Docking study showed that CCND1 may act as a potential therapeutic target and its inhibition could focus on the migratory, invasive, and metastatic potential of RCC. Further in vivo and in vitro molecular studies are needed to investigate the therapeutic target potential of CCND1 for RCC treatment.
Collapse
Affiliation(s)
- Sajjad Karim
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Jaudah A Al-Maghrabi
- Department of Pathology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pathology, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Hasan M A Farsi
- Department of Urology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad J Al-Sayyad
- Department of Urology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdelbaset Buhmeida
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zeenat Mirza
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa A Al-Boogmi
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fai T Ashgan
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal M Shabaad
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hend F NourEldin
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid B M Al-Ghamdi
- Department of Otorhinolaryngology and Head and Neck Surgery, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel Abuzenadah
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,KACST Innovation Center for Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adeel G A Chaudhary
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H Al-Qahtani
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
13
|
Zewdu R, Risolino M, Barbulescu A, Ramalingam P, Butler JM, Selleri L. Spleen hypoplasia leads to abnormal stress hematopoiesis in mice with loss of Pbx homeoproteins in splenic mesenchyme. J Anat 2016; 229:153-69. [PMID: 27075259 PMCID: PMC5341595 DOI: 10.1111/joa.12479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 01/01/2023] Open
Abstract
The spleen plays critical roles in immunity and also provides a permissive microenvironment for hematopoiesis. Previous studies have reported that the TALE-class homeodomain transcription factor Pbx1 is essential in hematopoietic stem and progenitor cells (HSPCs) for stem cell maintenance and progenitor expansion. However, the role of Pbx1 in the hematopoietic niche has not been investigated. Here we explored the effects that genetic perturbation of the splenic mesenchymal niche has on hematopoiesis upon loss of members of the Pbx family of homeoproteins. Splenic mesenchyme-specific inactivation of Pbx1 (SKO) on a Pbx2- or Pbx3-deficient genetic background (DKO) resulted in abnormal development of the spleen, which is dysmorphic and severely hypoplastic. This phenotype, in turn, affected the number of HSPCs in the fetal and adult spleen at steady state, as well as markedly impairing the kinetics of hematopoietic regeneration in adult mice after sub-lethal and lethal myelosuppressive irradiation. Spleens of mice with compound Pyx deficiency 8 days following sublethal irradiation displayed significant downregulation of multiple cytokine-encoding genes, including KitL/SCF, Cxcl12/SDF-1, IL-3, IL-4, GM-CSF/Csf2 IL-10, and Igf-1, compared with controls. KitL/SCF and Cxcl12/SDF-1 were recently shown to play key roles in the splenic niche in response to various haematopoietic stresses such as myeloablation, blood loss, or pregnancy. Our results demonstrate that, in addition to their intrinsic roles in HSPCs, non-cell autonomous functions of Pbx factors within the splenic niche contribute to the regulation of hematopoiesis, at least in part via the control of KitL/SCF and Cxcl12/SDF-1. Furthermore, our study establishes that abnormal spleen development and hypoplasia have deleterious effects on the efficiency of hematopoietic recovery after bone marrow injury.
Collapse
Affiliation(s)
- Rediet Zewdu
- Department of Cell and Developmental BiologyWeill Cornell MedicineNew YorkNYUSA
- Present address: Huntsman Cancer Institute University of UtahSalt Lake CityUTUSA
| | - Maurizio Risolino
- Department of Cell and Developmental BiologyWeill Cornell MedicineNew YorkNYUSA
- Program in Craniofacial BiologyDepartment of Orofacial Sciences & Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| | | | | | - Jason M. Butler
- Department of Genetic MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Licia Selleri
- Department of Cell and Developmental BiologyWeill Cornell MedicineNew YorkNYUSA
- Program in Craniofacial BiologyDepartment of Orofacial Sciences & Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
14
|
Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat Rev Mol Cell Biol 2016; 17:280-92. [PMID: 27033256 DOI: 10.1038/nrm.2016.27] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The roles of cyclins and their catalytic partners, the cyclin-dependent kinases (CDKs), as core components of the machinery that drives cell cycle progression are well established. Increasing evidence indicates that mammalian cyclins and CDKs also carry out important functions in other cellular processes, such as transcription, DNA damage repair, control of cell death, differentiation, the immune response and metabolism. Some of these non-canonical functions are performed by cyclins or CDKs, independently of their respective cell cycle partners, suggesting that there was a substantial divergence in the functions of these proteins during evolution.
Collapse
|
15
|
Poché RA, Zhang M, Rueda EM, Tong X, McElwee ML, Wong L, Hsu CW, Dejosez M, Burns AR, Fox DA, Martin JF, Zwaka TP, Dickinson ME. RONIN Is an Essential Transcriptional Regulator of Genes Required for Mitochondrial Function in the Developing Retina. Cell Rep 2016; 14:1684-1697. [PMID: 26876175 DOI: 10.1016/j.celrep.2016.01.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/14/2015] [Accepted: 01/10/2016] [Indexed: 11/28/2022] Open
Abstract
A fundamental principle governing organ size and function is the fine balance between cell proliferation and cell differentiation. Here, we identify RONIN (THAP11) as a key transcriptional regulator of retinal progenitor cell (RPC) proliferation. RPC-specific loss of Ronin results in a phenotype strikingly similar to that resulting from the G1- to S-phase arrest and photoreceptor degeneration observed in the Cyclin D1 null mutants. However, we determined that, rather than regulating canonical cell-cycle genes, RONIN regulates a cohort of mitochondrial genes including components of the electron transport chain (ETC), which have been recently implicated as direct regulators of the cell cycle. Coincidentally, with premature cell-cycle exit, Ronin mutants exhibited deficient ETC activity, reduced ATP levels, and increased oxidative stress that we ascribe to specific loss of subunits within complexes I, III, and IV. These data implicate RONIN as a positive regulator of mitochondrial gene expression that coordinates mitochondrial activity and cell-cycle progression.
Collapse
Affiliation(s)
- Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Min Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elda M Rueda
- College of Optometry, University of Houston, Houston, TX 77004, USA
| | - Xuefei Tong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melissa L McElwee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leeyean Wong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marion Dejosez
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX 77004, USA
| | - Donald A Fox
- College of Optometry, University of Houston, Houston, TX 77004, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA; Department of Pharmacology, University of Houston, Houston, TX 77004, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Texas Heart Institute, Houston, TX 77030, USA
| | - Thomas P Zwaka
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
16
|
Wu G, Wu N, Li T, Lu W, Yu G. Total glucosides of peony ameliorates Sjögren's syndrome by affecting Th1/Th2 cytokine balance. Exp Ther Med 2016; 11:1135-1141. [PMID: 26998049 DOI: 10.3892/etm.2016.3016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/25/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the molecular mechanisms underlying the effects of total glucosides of peony (TGP) in the treatment of Sjögren's syndrome (SS). A total of 40 mice with SS were evenly assigned into four groups, including: Control group; TGP group, receiving 1 mg TGP daily; hydroxychloroquine (HCQ) group, receiving 0.25 mg HCQ daily; and a combined group, receiving 1 mg TGP and 0.25 mg HCQ daily. After 8 weeks, quantitative polymerase chain reaction and an enzyme-linked immunosorbent assay were used to detect the levels of interferon-γ (IFN-γ), interleukin-4 (IL-4), Fas and FasL in each group of mice. In addition, immunohistochemical analysis was used to determine the expression levels of IFN-γ and IL-4. IFN-γ, IL-4, Fas and FasL levels were significantly increased in the control group compared with the other three groups (P<0.05). Furthermore, the expression levels of these factors were reduced in the combined group in comparison with the HCQ group (P<0.05). The ratios of IFN-γ to IL-4 were decreased in the TGP and combined groups compared with the control group (P<0.05). The present results indicate that TGP ameliorates SS by affecting the Th1/Th2 cytokine balance and decreasing the expression levels of IFN-γ, IL-4, Fas and FasL. Therefore, TGP may represent a potential novel therapeutic agent for the treatment of SS.
Collapse
Affiliation(s)
- Guolin Wu
- Department of Chinese Traditional Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Nayuan Wu
- Department of Chinese Traditional Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Tianyi Li
- Function Institute of Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Wenwen Lu
- Department of Chinese Traditional Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Guoyou Yu
- Department of Chinese Traditional Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
17
|
Nie C, Zhou J, Qin X, Shi X, Zeng Q, Liu J, Yan S, Zhang L. Reduction of apoptosis by proanthocyanidin-induced autophagy in the human gastric cancer cell line MGC-803. Oncol Rep 2015; 35:649-58. [PMID: 26572257 PMCID: PMC4689485 DOI: 10.3892/or.2015.4419] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Proanthocyanidins are flavonoids that are widely present in the skin and seeds of various plants, with the highest content in grape seeds. Many experiments have shown that proanthocyanidins have antitumor activity both in vivo and in vitro. Autophagy and apoptosis of tumor cells induced by drugs are two of the major causes of tumor cell death. However, reports on the effect of autophagy induced by drugs in tumor cells are not consistent and suggest that autophagy can have synergistic or antagonistic effects with apoptosis. This research was aimed at investigating whether proanthocyanidins induced autophagy and apoptosis in human gastric cancer cell line MGC-803 cells and to identify the mechanism of proanthocyanidins action to further determine the effect of proanthocyanidins-induced autophagy on apoptosis. MTT assay was used to examine the proanthocyanidin cytotoxicity against human gastric cancer cell line MGC-803. Transmission electron microscopy and monodansylcadaverine (MDC) staining were used to detect autophagy. Annexin V APC/7-AAD double staining and Hoechst 33342/propidium iodide (PI) double staining were used to explore apoptosis. Western blotting was used to determine expression of proteins related to autophagy and apoptosis. Real-time quantitative PCR technology was used to determine the mRNA level of Beclin1 and BCL-2. The results showed that proanthocyanidins exhibit a significant inhibitory effect on the human gastric cancer cell line MGC-803 proliferation in vitro and simultaneously activate autophagy and apoptosis to promote cell death. Furthermore, when proanthocyanidin-induced autophagy is inhibited, apoptosis increases significantly, proanthocyanidins can be used together with autophagy inhibitors to enhance cytotoxicity.
Collapse
Affiliation(s)
- Chao Nie
- Jiangsu Jiankang Vocational College, Qinhuai, Nanjing, Jiangsu 210029, P.R. China
| | - Jie Zhou
- Jiangsu Jiankang Vocational College, Qinhuai, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaokang Qin
- Nanjing KeyGEN Biotech Co., Ltd., Qinhuai, Nanjing, Jiangsu 210029, P.R. China
| | - Xianming Shi
- Jiangsu Jiankang Vocational College, Qinhuai, Nanjing, Jiangsu 210029, P.R. China
| | - Qingqi Zeng
- Jiangsu Jiankang Vocational College, Qinhuai, Nanjing, Jiangsu 210029, P.R. China
| | - Jia Liu
- Jiangsu Jiankang Vocational College, Qinhuai, Nanjing, Jiangsu 210029, P.R. China
| | - Shihai Yan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Qinhuai, Nanjing, Jiangsu 210029, P.R. China
| | - Lei Zhang
- Jiangsu Jiankang Vocational College, Qinhuai, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
18
|
Yu WN, Nogueira V, Sobhakumari A, Patra KC, Bhaskar PT, Hay N. Systemic Akt1 Deletion after Tumor Onset in p53(-/-) Mice Increases Lifespan and Regresses Thymic Lymphoma Emulating p53 Restoration. Cell Rep 2015; 12:610-21. [PMID: 26190111 DOI: 10.1016/j.celrep.2015.06.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/18/2015] [Accepted: 06/17/2015] [Indexed: 01/14/2023] Open
Abstract
Akt is frequently activated in human cancers. However, it is unknown whether systemic inhibition of a single Akt isoform could regress cancer progression in cancers that are not driven by Akt activation. We systemically deleted Akt1 after tumor onset in p53(-/-) mice, which develop tumors independently of Akt activation. Systemic Akt1 deletion regresses thymic lymphoma in p53(-/-) mice emulating p53 restoration. Furthermore, pharmacological inhibition of Akt selectively kills thymic lymphoma cells and not primary thymocytes. Mechanistically, Akt1 inhibition in p53(-/-) thymic lymphoma inhibits Skp2 expression and induces FasL, which is the primary cause of cell death. Skp2 exerts resistance to cell death by antagonizing the induction of FasL and reducing FAS expression, which is linked to cyclin D1 expression. The results established a paradigm whereby systemic Akt1 inhibition is sufficient to regress tumors that are not driven by Akt activation and a mechanism of cell survival by Skp2.
Collapse
Affiliation(s)
- Wan-Ni Yu
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Veronique Nogueira
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Arya Sobhakumari
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Krushna C Patra
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Prashanth T Bhaskar
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; Research & Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
19
|
Zhang Y, Zhou ZW, Jin H, Hu C, He ZX, Yu ZL, Ko KM, Yang T, Zhang X, Pan SY, Zhou SF. Schisandrin B inhibits cell growth and induces cellular apoptosis and autophagy in mouse hepatocytes and macrophages: implications for its hepatotoxicity. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2001-27. [PMID: 25926716 PMCID: PMC4403607 DOI: 10.2147/dddt.s77071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A number of drugs and herbal compounds have been documented to cause hepatoxicity. Schisandrin B (Sch B) is an active dibenzocyclooctadiene isolated from Schisandrae fructus, with a wide array of pharmacological activities. However, the potential hepatotoxicity of Sch B is a major safety concern, and the underlying mechanism for Sch B-induced liver toxic effects is not fully elucidated. In the present study, we aimed to investigate the liver toxic effects and the molecular mechanisms of Sch B in mouse liver and macrophage cells. The results have shown that Sch B exhibits potent grow inhibitory, proapoptotic, and proautophagic effects in AML-12 and RAW 264.7 cells. Sch B markedly arrested cells in G1 phase in both cell lines, accompanied by the down-regulation of cyclin dependent kinase 2 (CDK2) and cyclin D1 and up-regulation of p27 Kip1 and checkpoint kinase 1. Furthermore, Sch B markedly increased the apoptosis of AML-12 and RAW 264.7 cells with a decrease in the expression of B-cell lymphoma-extra-large and (Bcl-xl) B-cell lymphoma 2 (Bcl-2), but an increase in the expression of B-cell lymphoma 2-associated X protein (Bax). Sch B promoted the cleavage of caspase 3 and poly-adenosine diphosphate-ribose polymerase (PARP) in both cell lines. Additionally, Sch B significantly induced autophagy of AML-12 and RAW 264.7 cells. Sch B inhibited the activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway, as indicated by their altered phosphorylation, contributing to the proautophagic effect of Sch B. Taken together, our findings show that the inducing effects of Sch B on cell cycle arrest, apoptosis, and autophagy may contribute to its liver toxic effects, which might provide a clue for the investigation of the molecular toxic targets and underlying mechanisms for Sch B-induced hepatotoxicity in herbal consumers. More studies are warranted to fully delineate the underlying mechanisms, efficacy, and safety of Sch B for clinical use.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China ; Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Hua Jin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Chengbin Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Kam-Ming Ko
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Si-Yuan Pan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
20
|
Aleem E, Arceci RJ. Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol 2015; 3:16. [PMID: 25914884 PMCID: PMC4390903 DOI: 10.3389/fcell.2015.00016] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed.
Collapse
Affiliation(s)
- Eiman Aleem
- Department of Child Health, The Ronald A. Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix Phoenix, AZ, USA ; Department of Zoology, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Robert J Arceci
- Department of Child Health, The Ronald A. Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix Phoenix, AZ, USA
| |
Collapse
|
21
|
Aurora kinase A is required for hematopoiesis but is dispensable for murine megakaryocyte endomitosis and differentiation. Blood 2015; 125:2141-50. [PMID: 25670627 DOI: 10.1182/blood-2014-12-615401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aurora kinase A (AURKA) is a therapeutic target in acute megakaryocytic leukemia. However, its requirement in normal hematopoiesis and megakaryocyte development has not been extensively characterized. Based on its role as a cell cycle regulator, we predicted that an Aurka deficiency would lead to severe abnormalities in all hematopoietic lineages. Here we reveal that loss of Aurka in hematopoietic cells causes profound cell autonomous defects in the peripheral blood and bone marrow. Surprisingly, in contrast to the survival defects of nearly all hematopoietic lineages, deletion of Aurka was associated with increased differentiation and polyploidization of megakaryocytes both in vivo and in vitro. Furthermore, in contrast to other cell types examined, megakaryocytes continued DNA synthesis after loss of Aurka. Thus, like other cell cycle regulators such as Aurkb and survivin, Aurka is required for hematopoiesis, but is dispensable for megakaryocyte endomitosis. Our work supports a growing body of evidence that the megakaryocyte endomitotic cell cycle differs significantly from the proliferative cell cycle.
Collapse
|