1
|
Pang X, Zhang Y, Park K, Liao Z, Li J, Xu J, Hong MT, Yin G, Zhang T, Wang Y, Egelman EH, Fan J, Hsu VW, Park SY, Sun F. Structural elucidation of how ARF small GTPases induce membrane tubulation for vesicle fission. Proc Natl Acad Sci U S A 2025; 122:e2417820122. [PMID: 40117306 PMCID: PMC11962421 DOI: 10.1073/pnas.2417820122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/10/2025] [Indexed: 03/23/2025] Open
Abstract
ADP-Ribosylation Factor (ARF) small GTPases have been found to act in vesicle fission through a direct ability to tubulate membrane. We have pursued cryoelectron microscopy (EM) to reveal at 3.9 Å resolution how ARF6 assembles into a protein lattice on tubulated membrane. Molecular dynamics simulation studies confirm and extend the cryo-EM findings. The ARF6 lattice exhibits features that are distinct from those formed by other membrane-bending proteins. We identify protein contacts critical for lattice assembly and how membrane insertion results in constricted tubules. The lattice structure also enables docking by GTPase-activating proteins (GAP) to achieve vesiculation. We have also modeled ARF1 onto the ARF6 lattice, and then pursued vesicle reconstitution by the Coat Protein I (COPI) complex to further confirm that the ARF lattice acts in vesicle fission. By elucidating how an ARF protein tubulates membrane at the structural level, we have advanced the molecular understanding of how this class of transport factors promote the fission stage of vesicle formation.
Collapse
Affiliation(s)
- Xiaoyun Pang
- Key Laboratory of Biomacromolecules (Chinese Academy of Sciences), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Yan Zhang
- Key Laboratory of Biomacromolecules (Chinese Academy of Sciences), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA02115
| | - Zhenyu Liao
- Department of Materials Science and Engineering, and Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong999077, China
| | - Jian Li
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA02115
| | - Jiashu Xu
- Key Laboratory of Biomacromolecules (Chinese Academy of Sciences), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Minh-Triet Hong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Guoliang Yin
- Key Laboratory of Biomacromolecules (Chinese Academy of Sciences), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Tongming Zhang
- Key Laboratory of Biomacromolecules (Chinese Academy of Sciences), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Yaoyu Wang
- Key Laboratory of Biomacromolecules (Chinese Academy of Sciences), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22908
| | - Jun Fan
- Department of Materials Science and Engineering, and Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong999077, China
| | - Victor W. Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA02115
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Fei Sun
- Key Laboratory of Biomacromolecules (Chinese Academy of Sciences), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou510530, China
| |
Collapse
|
2
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Thorlacius A, Rulev M, Sundberg O, Sundborger-Lunna A. Peripheral membrane protein endophilin B1 probes, perturbs and permeabilizes lipid bilayers. Commun Biol 2025; 8:182. [PMID: 39910321 PMCID: PMC11799418 DOI: 10.1038/s42003-025-07610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
Bin/Amphiphysin/Rvs167 (BAR) domain containing proteins are peripheral membrane proteins that regulate intracellular membrane curvature. BAR protein endophilin B1 plays a key role in multiple cellular processes critical for oncogenesis, including autophagy and apoptosis. Amphipathic regions in endophilin B1 drive membrane association and tubulation through membrane scaffolding. Our understanding of exactly how BAR proteins like endophilin B1 promote highly diverse intracellular membrane remodeling events in the cell is severely limited due to lack of high-resolution structural information. Here we present the highest resolution cryo-EM structure of a BAR protein to date and the first structures of a BAR protein bound to a lipid bicelle. Using neural networks, we can effectively sort particle species of different stoichiometries, revealing the tremendous flexibility of post-membrane binding, pre-polymer BAR dimer organization and membrane deformation. We also show that endophilin B1 efficiently permeabilizes negatively charged liposomes that contain mitochondria-specific lipid cardiolipin and propose a new model for Bax-mediated cell death.
Collapse
Affiliation(s)
- Arni Thorlacius
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Maksim Rulev
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Oscar Sundberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
4
|
Saha S, Mandal A, Ranjan A, Ghosh DK. Membrane tension sensing formin-binding protein 1 is a neuronal nutrient stress-responsive Golgiphagy receptor. Metabolism 2025; 162:156040. [PMID: 39341273 DOI: 10.1016/j.metabol.2024.156040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Nutrient stress-responsive neuronal homeostasis relies on intricate autophagic mechanisms that modulate various organelle integrity and function. The selective autophagy of the Golgi, known as Golgiphagy, regulates secretory processes by modulating vesicle trafficking during nutrient starvation. RESULTS In this study, we explored a genetic screen of BAR-domain-containing proteins to elucidate the role of formin-binding protein 1 (FNBP1) as a Golgiphagy receptor in modulating Golgi dynamics in response to varying nutrient availability in neurons. Mapping the systems network of FNBP1 and its interacting proteins reveals the putative involvement of FNBP1 in autophagy and Golgi-associated processes. While nutrient depletion causes Golgi fragmentation, FNBP1 preferentially localizes to the fragmented Golgi membrane through its 284FEDYTQ289 motif during nutrient stress. Simultaneously, FNBP1 engages in molecular interactions with LC3B through a conserved 131WKQL134 LC3 interacting region, thereby sequestering the fragmented Golgi membrane in neuronal autophagosomes. Increased aggregation of GM130, abnormal clumping of RAB11-positive secretory granules, and enhanced senescent death of FNBP1-depleted starved neurons indicate disruptions of neuronal homeostasis under metabolic stress. CONCLUSION The identification of FNBP1 as a nutrient stress-responsive Golgiphagy receptor expands our insights into the molecular mechanisms underlying Golgiphagy, establishing the crosstalk between nutrient sensing and membrane tension-sensing regulatory autophagic processes of Golgi turnover in neurons.
Collapse
Affiliation(s)
- Smita Saha
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India; Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anirban Mandal
- Department of Microbiology, Mrinalini Datta Mahavidyapith, Kolkata, West Bengal, India
| | - Akash Ranjan
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
5
|
Gopaldass N, Chen KE, Collins B, Mayer A. Assembly and fission of tubular carriers mediating protein sorting in endosomes. Nat Rev Mol Cell Biol 2024; 25:765-783. [PMID: 38886588 DOI: 10.1038/s41580-024-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
Endosomes are central protein-sorting stations at the crossroads of numerous membrane trafficking pathways in all eukaryotes. They have a key role in protein homeostasis and cellular signalling and are involved in the pathogenesis of numerous diseases. Endosome-associated protein assemblies or coats collect transmembrane cargo proteins and concentrate them into retrieval domains. These domains can extend into tubular carriers, which then pinch off from the endosomal membrane and deliver the cargoes to appropriate subcellular compartments. Here we discuss novel insights into the structure of a number of tubular membrane coats that mediate the recruitment of cargoes into these carriers, focusing on sorting nexin-based coats such as Retromer, Commander and ESCPE-1. We summarize current and emerging views of how selective tubular endosomal carriers form and detach from endosomes by fission, highlighting structural aspects, conceptual challenges and open questions.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brett Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
6
|
Liao Z, Si T, Kai JJ, Fan J. Mechanism of Membrane Curvature Induced by SNX1: Insights from Molecular Dynamics Simulations. J Phys Chem B 2024; 128:2144-2153. [PMID: 38408890 DOI: 10.1021/acs.jpcb.3c07009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
SNX proteins have been found to induce membrane remodeling to facilitate the generation of transport carriers in endosomal pathways. However, the molecular mechanism of membrane bending and the role of lipids in the bending process remain elusive. Here, we conducted coarse-grained molecular dynamics simulations to investigate the role of the three structural modules (PX, BAR, and AH) of SNX1 and the PI3P lipids in membrane deformation. We observed that the presence of all three domains is essential for SNX1 to achieve a stable membrane deformation. BAR is capable of remodeling the membrane through the charged residues on its concave surface, but it requires PX and AH to establish stable membrane binding. AH penetrates into the lipid membrane, thereby promoting the induction of membrane curvature; however, it is inadequate on its own to maintain membrane bending. PI3P lipids are also indispensable for membrane remodeling, as they play a dominant role in the interactions of lipids with the BAR domain. Our results enhance the comprehension of the molecular mechanism underlying SNX1-induced membrane curvature and help future studies of curvature-inducing proteins.
Collapse
Affiliation(s)
- Zhenyu Liao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077 Hong Kong, China
| | - Ting Si
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077 Hong Kong, China
- Department of Physics, City University of Hong Kong, Kowloon 999077 Hong Kong, China
| | - Ji-Jung Kai
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077 Hong Kong, China
- Centre for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon 999077 Hong Kong, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077 Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077 Hong Kong, China
- Centre for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon 999077 Hong Kong, China
| |
Collapse
|
7
|
Pang X, Zhang Y, Park K, Liao Z, Li J, Xu J, Hong MT, Yin G, Zhang T, Wang Y, Egelman EH, Fan J, Park SY, Hsu VW, Sun F. Structural elucidation of how ARF small GTPases induce membrane tubulation for vesicle fission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572083. [PMID: 38187566 PMCID: PMC10769218 DOI: 10.1101/2023.12.19.572083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The ADP-Ribosylation Factor (ARF) small GTPases have been found to act in vesicle fission through a direct ability to tubulate membrane. Here, we have used cryo-electron microscopy (EM) to solve the structure of an ARF6 protein lattice assembled on tubulated membrane to 3.9 Å resolution. ARF6 forms tetramers that polymerize into helical arrays to form this lattice. We identify, and confirm functionally, protein contacts critical for this lattice formation. The solved structure also suggests how the ARF amphipathic helix is positioned in the lattice for membrane insertion, and how a GTPase-activating protein (GAP) docks onto the lattice to catalyze ARF-GTP hydrolysis in completing membrane fission. As ARF1 and ARF6 are structurally conserved, we have also modeled ARF1 onto the ARF6 lattice, which has allowed us to pursue the reconstitution of Coat Protein I (COPI) vesicles to confirm more definitively that the ARF lattice acts in vesicle fission. Our findings are notable for having achieved the first detailed glimpse of how a small GTPase bends membrane and having provided a molecular understanding of how an ARF protein acts in vesicle fission.
Collapse
Affiliation(s)
- Xiaoyun Pang
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Equal contribution
| | - Yan Zhang
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Equal contribution
| | - Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
- Equal contribution
| | - Zhenyu Liao
- City University of Hong Kong, Hong Kong, China
| | - Jian Li
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - Jiashu Xu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minh-Triet Hong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Guoliang Yin
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongming Zhang
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaoyu Wang
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, VA 22908 USA
| | - Jun Fan
- City University of Hong Kong, Hong Kong, China
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Allen JR, Wilkinson EG, Strader LC. Creativity comes from interactions: modules of protein interactions in plants. FEBS J 2022; 289:1492-1514. [PMID: 33774929 PMCID: PMC8476656 DOI: 10.1111/febs.15847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
Protein interactions are the foundation of cell biology. For robust signal transduction to occur, proteins interact selectively and modulate their behavior to direct specific biological outcomes. Frequently, modular protein interaction domains are central to these processes. Some of these domains bind proteins bearing post-translational modifications, such as phosphorylation, whereas other domains recognize and bind to specific amino acid motifs. Other modules act as diverse protein interaction scaffolds or can be multifunctional, forming head-to-head homodimers and binding specific peptide sequences or membrane phospholipids. Additionally, the so-called head-to-tail oligomerization domains (SAM, DIX, and PB1) can form extended polymers to regulate diverse aspects of biology. Although the mechanism and structures of these domains are diverse, they are united by their modularity. Together, these domains are versatile and facilitate the evolution of complex protein interaction networks. In this review, we will highlight the role of select modular protein interaction domains in various aspects of plant biology.
Collapse
Affiliation(s)
- Jeffrey R. Allen
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Edward G. Wilkinson
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Lucia C. Strader
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
9
|
Mechanism of negative membrane curvature generation by I-BAR domains. Structure 2021; 29:1440-1452.e4. [PMID: 34520736 DOI: 10.1016/j.str.2021.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022]
Abstract
The membrane sculpting ability of BAR domains has been attributed to the intrinsic curvature of their banana-shaped dimeric structure. However, there is often a mismatch between this intrinsic curvature and the diameter of the membrane tubules generated. I-BAR domains are especially mysterious since they are almost flat but generate high negative membrane curvature. Here, we use atomistic implicit-solvent computer modeling to show that the membrane bending of the IRSp53 I-BAR domain is dictated by its higher oligomeric structure, whose curvature is completely unrelated to the intrinsic curvature of the dimer. Two other I-BARs give similar results, whereas a flat F-BAR sheet develops a concave membrane-binding interface, consistent with its observed positive membrane curvature generation. Laterally interacting helical spirals of I-BAR dimers on tube interiors are stable and have an enhanced binding energy that is sufficient for membrane bending to experimentally observed tubule diameters at a reasonable surface density.
Collapse
|
10
|
Tsai FC, Simunovic M, Sorre B, Bertin A, Manzi J, Callan-Jones A, Bassereau P. Comparing physical mechanisms for membrane curvature-driven sorting of BAR-domain proteins. SOFT MATTER 2021; 17:4254-4265. [PMID: 33870384 DOI: 10.1039/d0sm01573c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein enrichment at specific membrane locations in cells is crucial for many cellular functions. It is well-recognized that the ability of some proteins to sense membrane curvature contributes partly to their enrichment in highly curved cellular membranes. In the past, different theoretical models have been developed to reveal the physical mechanisms underlying curvature-driven protein sorting. This review aims to provide a detailed discussion of the two continuous models that are based on the Helfrich elasticity energy, (1) the spontaneous curvature model and (2) the curvature mismatch model. These two models are commonly applied to describe experimental observations of protein sorting. We discuss how they can be used to explain the curvature-induced sorting data of two BAR proteins, amphiphysin and centaurin. We further discuss how membrane rigidity, and consequently the membrane curvature generated by BAR proteins, could influence protein organization on the curved membranes. Finally, we address future directions in extending these models to describe some cellular phenomena involving protein sorting.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, CNRS UMR168, Sorbonne Université, Laboratoire Physico Chimie Curie, 75005 Paris, France.
| | - Mijo Simunovic
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA and Department of Genetics and Development, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, NY 10032, USA
| | - Benoit Sorre
- Institut Curie, Université PSL, CNRS UMR168, Sorbonne Université, Laboratoire Physico Chimie Curie, 75005 Paris, France. and Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Université de Paris, Paris, France.
| | - Aurélie Bertin
- Institut Curie, Université PSL, CNRS UMR168, Sorbonne Université, Laboratoire Physico Chimie Curie, 75005 Paris, France.
| | - John Manzi
- Institut Curie, Université PSL, CNRS UMR168, Sorbonne Université, Laboratoire Physico Chimie Curie, 75005 Paris, France.
| | - Andrew Callan-Jones
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Université de Paris, Paris, France.
| | - Patricia Bassereau
- Institut Curie, Université PSL, CNRS UMR168, Sorbonne Université, Laboratoire Physico Chimie Curie, 75005 Paris, France.
| |
Collapse
|
11
|
Abstract
The sorting nexin (SNX) family of proteins deform the membrane to generate transport carriers in endosomal pathways. Here, we elucidate how a prototypic member, SNX1, acts in this process. Performing cryoelectron microscopy, we find that SNX1 assembles into a protein lattice that consists of helical rows of SNX1 dimers wrapped around tubular membranes in a crosslinked fashion. We also visualize the details of this structure, which provides a molecular understanding of how various parts of SNX1 contribute to its ability to deform the membrane. Moreover, we have compared the SNX1 structure with a previously elucidated structure of an endosomal coat complex formed by retromer coupled to a SNX, which reveals how the molecular organization of the SNX in this coat complex is affected by retromer. The comparison also suggests insight into intermediary stages of assembly that results in the formation of the retromer-SNX coat complex on the membrane.
Collapse
|
12
|
Nepal B, Sepehri A, Lazaridis T. Mechanisms of negative membrane curvature sensing and generation by ESCRT III subunit Snf7. Protein Sci 2020; 29:1473-1485. [PMID: 32142182 DOI: 10.1002/pro.3851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Certain proteins have the propensity to bind to negatively curved membranes and generate negative membrane curvature. The mechanism of action of these proteins is much less studied and understood than those that sense and generate positive curvature. In this work, we use implicit membrane modeling to explore the mechanism of an important negative curvature sensing and generating protein: the main ESCRT III subunit Snf7. We find that Snf7 monomers alone can sense negative curvature and that curvature sensitivity increases for dimers and trimers. We have observed spontaneous bending of Snf7 oligomers into circular structures with preferred radius of ~20 nm. The preferred curvature of Snf7 filaments is further confirmed by the simulations of preformed spirals on a cylindrical membrane surface. Snf7 filaments cannot bind with the same interface to flat and curved membranes. We find that even when a filament has the preferred radius, it is always less stable on the flat membrane surface than on the interior cylindrical membrane surface. This provides an additional energy for membrane bending which has not been considered in the spiral spring model. Furthermore, the rings on the cylindrical spirals are bridged together by helix 4 and hence are extra stabilized compared to the spirals on the flat membrane surface.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Chemistry, City College of New York, New York, New York, USA
| | - Aliasghar Sepehri
- Department of Chemistry, City College of New York, New York, New York, USA
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, New York, New York, USA.,Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
13
|
The C-terminal acidic motif of Phafin2 inhibits PH domain binding to phosphatidylinositol 3-phosphate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183230. [PMID: 32126233 DOI: 10.1016/j.bbamem.2020.183230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Changes in membrane curvature are required to control the function of subcellular compartments; malfunctions of such processes are associated with a wide range of human diseases. Membrane remodeling often depends upon the presence of phosphoinositides, which recruit protein effectors for a variety of cellular functions. Phafin2 is a phosphatidylinositol 3-phosphate (PtdIns3P)-binding effector involved in endosomal and lysosomal membrane-associated signaling. Both the Phafin2 PH and the FYVE domains bind PtdIns3P, although their redundant function in the protein is unclear. Through a combination of lipid-binding assays, we found that, unlike the FYVE domain, recognition of the PH domain to PtdIns3P requires a lipid bilayer. Using site-directed mutagenesis and truncation constructs, we discovered that the Phafin2 FYVE domain is constitutive for PtdIns3P binding, whereas PH domain binding to PtdIns3P is autoinhibited by a conserved C-terminal acidic motif. These findings suggest that binding of the Phafin2 PH domain to PtdIns3P in membrane compartments occurs through a highly regulated mechanism. Potential mechanisms are discussed throughout this report.
Collapse
|
14
|
Simunovic M, Evergren E, Callan-Jones A, Bassereau P. Curving Cells Inside and Out: Roles of BAR Domain Proteins in Membrane Shaping and Its Cellular Implications. Annu Rev Cell Dev Biol 2019; 35:111-129. [DOI: 10.1146/annurev-cellbio-100617-060558] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many cellular processes rely on precise and timely deformation of the cell membrane. While many proteins participate in membrane reshaping and scission, usually in highly specialized ways, Bin/amphiphysin/Rvs (BAR) domain proteins play a pervasive role, as they not only participate in many aspects of cell trafficking but also are highly versatile membrane remodelers. Subtle changes in the shape and size of the BAR domain can greatly impact the way in which BAR domain proteins interact with the membrane. Furthermore, the activity of BAR domain proteins can be tuned by external physical parameters, and so they behave differently depending on protein surface density, membrane tension, or membrane shape. These proteins can form 3D structures that mold the membrane and alter its liquid properties, even promoting scission under various circumstances.As such, BAR domain proteins have numerous roles within the cell. Endocytosis is among the most highly studied processes in which BAR domain proteins take on important roles. Over the years, a more complete picture has emerged in which BAR domain proteins are tied to almost all intracellular compartments; examples include endosomal sorting and tubular networks in the endoplasmic reticulum and T-tubules. These proteins also have a role in autophagy, and their activity has been linked with cancer. Here, we briefly review the history of BAR domain protein discovery, discuss the mechanisms by which BAR domain proteins induce curvature, and attempt to settle important controversies in the field. Finally, we review BAR domain proteins in the context of a cell, highlighting their emerging roles in cell signaling and organelle shaping.
Collapse
Affiliation(s)
- Mijo Simunovic
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Emma Evergren
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Andrew Callan-Jones
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, 75205 Paris, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, CNRS UMR 168, Institut Curie, PSL Research University, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| |
Collapse
|
15
|
Chan C, Pang X, Zhang Y, Niu T, Yang S, Zhao D, Li J, Lu L, Hsu VW, Zhou J, Sun F, Fan J. ACAP1 assembles into an unusual protein lattice for membrane deformation through multiple stages. PLoS Comput Biol 2019; 15:e1007081. [PMID: 31291238 PMCID: PMC6663034 DOI: 10.1371/journal.pcbi.1007081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/29/2019] [Accepted: 05/06/2019] [Indexed: 11/19/2022] Open
Abstract
Studies on the Bin-Amphiphysin-Rvs (BAR) domain have advanced a fundamental understanding of how proteins deform membrane. We previously showed that a BAR domain in tandem with a Pleckstrin Homology (PH domain) underlies the assembly of ACAP1 (Arfgap with Coil-coil, Ankryin repeat, and PH domain I) into an unusual lattice structure that also uncovers a new paradigm for how a BAR protein deforms membrane. Here, we initially pursued computation-based refinement of the ACAP1 lattice to identify its critical protein contacts. Simulation studies then revealed how ACAP1, which dimerizes into a symmetrical structure in solution, is recruited asymmetrically to the membrane through dynamic behavior. We also pursued electron microscopy (EM)-based structural studies, which shed further insight into the dynamic nature of the ACAP1 lattice assembly. As ACAP1 is an unconventional BAR protein, our findings broaden the understanding of the mechanistic spectrum by which proteins assemble into higher-ordered structures to achieve membrane deformation.
Collapse
Affiliation(s)
- Chun Chan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaoyun Pang
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tongxin Niu
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shengjiang Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Daohui Zhao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jian Li
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Victor W. Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
- * E-mail: (JZ); (FS); (JF)
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (JZ); (FS); (JF)
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China
- * E-mail: (JZ); (FS); (JF)
| |
Collapse
|
16
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Song X, Liu W, Yuan X, Jiang J, Wang W, Mullen M, Zhao X, Zhang Y, Liu F, Du S, Rehman A, Tian R, Li J, Frost A, Song Z, Green HN, Henry C, Liu X, Ding X, Wang D, Yao X. Acetylation of ACAP4 regulates CCL18-elicited breast cancer cell migration and invasion. J Mol Cell Biol 2018; 10:559-572. [PMID: 30395269 PMCID: PMC6692856 DOI: 10.1093/jmcb/mjy058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 01/03/2023] Open
Abstract
Tumor metastasis represents the main causes of cancer-related death. Our recent study showed that chemokine CCL18 secreted from tumor-associated macrophages regulates breast tumor metastasis, but the underlying mechanisms remain less clear. Here, we show that ARF6 GTPase-activating protein ACAP4 regulates CCL18-elicited breast cancer cell migration via the acetyltransferase PCAF-mediated acetylation. CCL18 stimulation elicited breast cancer cell migration and invasion via PCAF-dependent acetylation. ACAP4 physically interacts with PCAF and is a cognate substrate of PCAF during CCL18 stimulation. The acetylation site of ACAP4 by PCAF was mapped to Lys311 by mass spectrometric analyses. Importantly, dynamic acetylation of ACAP4 is essential for CCL18-induced breast cancer cell migration and invasion, as overexpression of the persistent acetylation-mimicking or non-acetylatable ACAP4 mutant blocked CCL18-elicited cell migration and invasion. Mechanistically, the acetylation of ACAP4 at Lys311 reduced the lipid-binding activity of ACAP4 to ensure a robust and dynamic cycling of ARF6-ACAP4 complex with plasma membrane in response to CCL18 stimulation. Thus, these results present a previously undefined mechanism by which CCL18-elicited acetylation of the PH domain controls dynamic interaction between ACAP4 and plasma membrane during breast cancer cell migration and invasion.
Collapse
Affiliation(s)
- Xiaoyu Song
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Wei Liu
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xiao Yuan
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- Department of Chemistry, Southern University of Science & Technology, Shenzhen, China
| | - Jiying Jiang
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Wanjuan Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - McKay Mullen
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xuannv Zhao
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
| | - Yin Zhang
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fusheng Liu
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shihao Du
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Adeel Rehman
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science & Technology, Shenzhen, China
| | - Jian Li
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Andra Frost
- Department of Pathology, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Zhenwei Song
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
| | - Hadiyah-Nicole Green
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Calmour Henry
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xing Liu
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xia Ding
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
- Keck Center for Cellular Dynamics & Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Dongmei Wang
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
| | - Xuebiao Yao
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Science Center for Physical Sciences at Nanoscale, CAS Center of Excellence in Molecular Cell Sciences, University of Science & Technology of China, Hefei, China
| |
Collapse
|
18
|
Cullen PJ, Steinberg F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol 2018; 19:679-696. [PMID: 30194414 DOI: 10.1038/s41580-018-0053-7] [Citation(s) in RCA: 388] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Newly endocytosed integral cell surface proteins are typically either directed for degradation or subjected to recycling back to the plasma membrane. The sorting of integral cell surface proteins, including signalling receptors, nutrient transporters, ion channels, adhesion molecules and polarity markers, within the endolysosomal network for recycling is increasingly recognized as an essential feature in regulating the complexities of physiology at the cell, tissue and organism levels. Historically, endocytic recycling has been regarded as a relatively passive process, where the majority of internalized integral proteins are recycled via a nonspecific sequence-independent 'bulk membrane flow' pathway. Recent work has increasingly challenged this view. The discovery of sequence-specific sorting motifs and the identification of cargo adaptors and associated coat complexes have begun to uncover the highly orchestrated nature of endosomal cargo recycling, thereby providing new insight into the function and (patho)physiology of this process.
Collapse
Affiliation(s)
- Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| | - Florian Steinberg
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
19
|
Darvill N, Dubois DJ, Rouse SL, Hammoudi PM, Blake T, Benjamin S, Liu B, Soldati-Favre D, Matthews S. Structural Basis of Phosphatidic Acid Sensing by APH in Apicomplexan Parasites. Structure 2018; 26:1059-1071.e6. [PMID: 29910186 PMCID: PMC6084407 DOI: 10.1016/j.str.2018.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/26/2018] [Accepted: 05/08/2018] [Indexed: 10/29/2022]
Abstract
Plasmodium falciparum and Toxoplasma gondii are obligate intracellular parasites that belong to the phylum of Apicomplexa and cause major human diseases. Their access to an intracellular lifestyle is reliant on the coordinated release of proteins from the specialized apical organelles called micronemes and rhoptries. A specific phosphatidic acid effector, the acylated pleckstrin homology domain-containing protein (APH) plays a central role in microneme exocytosis and thus is essential for motility, cell entry, and egress. TgAPH is acylated on the surface of the micronemes and recruited to phosphatidic acid (PA)-enriched membranes. Here, we dissect the atomic details of APH PA-sensing hub and its functional interaction with phospholipid membranes. We unravel the key determinant of PA recognition for the first time and show that APH inserts into and clusters multiple phosphate head-groups at the bilayer binding surface.
Collapse
Affiliation(s)
- Nick Darvill
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - David J Dubois
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Sarah L Rouse
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Tom Blake
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Stefi Benjamin
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Bing Liu
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK; BioBank, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland.
| | - Steve Matthews
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK; BioBank, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
20
|
Feng J, He L, Li Y, Xiao F, Hu G. Modeling of PH Domains and Phosphoinositides Interactions and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:19-32. [DOI: 10.1007/5584_2018_236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Pinar M, Peñalva MA. Aspergillus nidulansBapH is a RAB11 effector that connects membranes in the Spitzenkörper with basal autophagy. Mol Microbiol 2017; 106:452-468. [DOI: 10.1111/mmi.13777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Mario Pinar
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas del CSIC, Ramiro de Maeztu 9; Madrid 28040 Spain
| | - Miguel A. Peñalva
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas del CSIC, Ramiro de Maeztu 9; Madrid 28040 Spain
| |
Collapse
|
22
|
Clathrin-Independent Endocytosis Suppresses Cancer Cell Blebbing and Invasion. Cell Rep 2017; 20:1893-1905. [DOI: 10.1016/j.celrep.2017.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 06/15/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023] Open
|
23
|
Chan KC, Lu L, Sun F, Fan J. Molecular Details of the PH Domain of ACAP1BAR-PH Protein Binding to PIP-Containing Membrane. J Phys Chem B 2017; 121:3586-3596. [DOI: 10.1021/acs.jpcb.6b09563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kevin Chun Chan
- Department
of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
| | - Lanyuan Lu
- School
of Biological Sciences, Nanyang Technological University, 639798, Singapore
| | - Fei Sun
- National
Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Center
for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Fan
- Department
of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Center for
Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
BAR Domain-Containing FAM92 Proteins Interact with Chibby1 To Facilitate Ciliogenesis. Mol Cell Biol 2016; 36:2668-2680. [PMID: 27528616 DOI: 10.1128/mcb.00160-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/05/2016] [Indexed: 02/03/2023] Open
Abstract
Chibby1 (Cby1) is a small, conserved coiled-coil protein that localizes to centrioles/basal bodies and plays a crucial role in the formation and function of cilia. During early stages of ciliogenesis, Cby1 is required for the efficient recruitment of small vesicles at the distal end of centrioles to facilitate basal body docking to the plasma membrane. Here, we identified family with sequence similarity 92, member A (FAM92A) and FAM92B, which harbor predicted lipid-binding BAR domains, as novel Cby1-interacting partners using tandem affinity purification and mass spectrometry. We found that in cultured cell lines, FAM92A colocalizes with Cby1 at the centrioles/basal bodies of primary cilia, while FAM92B is undetectable. In airway multiciliated cells, both FAM92A and -92B colocalize with Cby1 at the base of cilia. Notably, the centriolar localization of FAM92A and -92B depends largely on Cby1. Knockdown of FAM92A in RPE1 cells impairs ciliogenesis. Consistent with the membrane-remodeling properties of BAR domains, FAM92A and -92B in cooperation with Cby1 induce deformed membrane-like structures containing the small GTPase Rab8 in cultured cells. Our results therefore suggest that FAM92 proteins interact with Cby1 to promote ciliogenesis via regulation of membrane-remodeling processes.
Collapse
|
25
|
How curvature-generating proteins build scaffolds on membrane nanotubes. Proc Natl Acad Sci U S A 2016; 113:11226-11231. [PMID: 27655892 DOI: 10.1073/pnas.1606943113] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bin/Amphiphysin/Rvs (BAR) domain proteins control the curvature of lipid membranes in endocytosis, trafficking, cell motility, the formation of complex subcellular structures, and many other cellular phenomena. They form 3D assemblies that act as molecular scaffolds to reshape the membrane and alter its mechanical properties. It is unknown, however, how a protein scaffold forms and how BAR domains interact in these assemblies at protein densities relevant for a cell. In this work, we use various experimental, theoretical, and simulation approaches to explore how BAR proteins organize to form a scaffold on a membrane nanotube. By combining quantitative microscopy with analytical modeling, we demonstrate that a highly curving BAR protein endophilin nucleates its scaffolds at the ends of a membrane tube, contrary to a weaker curving protein centaurin, which binds evenly along the tube's length. Our work implies that the nature of local protein-membrane interactions can affect the specific localization of proteins on membrane-remodeling sites. Furthermore, we show that amphipathic helices are dispensable in forming protein scaffolds. Finally, we explore a possible molecular structure of a BAR-domain scaffold using coarse-grained molecular dynamics simulations. Together with fluorescence microscopy, the simulations show that proteins need only to cover 30-40% of a tube's surface to form a rigid assembly. Our work provides mechanical and structural insights into the way BAR proteins may sculpt the membrane as a high-order cooperative assembly in important biological processes.
Collapse
|
26
|
Oligomerization but Not Membrane Bending Underlies the Function of Certain F-BAR Proteins in Cell Motility and Cytokinesis. Dev Cell 2016; 35:725-36. [PMID: 26702831 DOI: 10.1016/j.devcel.2015.11.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/12/2015] [Accepted: 11/21/2015] [Indexed: 12/22/2022]
Abstract
F-BAR proteins function in diverse cellular processes by linking membranes to the actin cytoskeleton. Through oligomerization, multiple F-BAR domains can bend membranes into tubules, though the physiological importance of F-BAR-to-F-BAR assemblies is not yet known. Here, we investigate the F-BAR domain of the essential cytokinetic scaffold, Schizosaccharomyces pombe Cdc15, during cytokinesis. Challenging a widely held view that membrane deformation is a fundamental property of F-BARs, we report that the Cdc15 F-BAR binds, but does not deform, membranes in vivo or in vitro, and six human F-BAR domains-including those from Fer and RhoGAP4-share this property. Nevertheless, tip-to-tip interactions between F-BAR dimers are critical for Cdc15 oligomerization and high-avidity membrane binding, stabilization of contractile ring components at the medial cortex, and the fidelity of cytokinesis. F-BAR oligomerization is also critical for Fer and RhoGAP4 physiological function, demonstrating its broad importance to F-BAR proteins that function without membrane bending.
Collapse
|
27
|
Structural insights into the cooperative remodeling of membranes by amphiphysin/BIN1. Sci Rep 2015; 5:15452. [PMID: 26487375 PMCID: PMC4614383 DOI: 10.1038/srep15452] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/24/2015] [Indexed: 01/08/2023] Open
Abstract
Amphiphysin2/BIN1 is a crescent-shaped N-BAR protein playing a key role in forming deeply invaginated tubes in muscle T-tubules. Amphiphysin2/BIN1 structurally stabilizes tubular formations in contrast to other N-BAR proteins involved in dynamic membrane scission processes; however, the molecular mechanism of the stabilizing effect is poorly understood. Using cryo-EM, we investigated the assembly of the amphiphysin/BIN1 on a membrane tube. We found that the N-BAR domains self-assemble on the membrane surface in a highly cooperative manner. Our biochemical assays and 3D reconstructions indicate that the N-terminal amphipathic helix H0 plays an important role in the initiation of the tube assembly and further in organizing BAR-mediated polymerization by locking adjacent N-BAR domains. Mutants that lack H0 or the tip portion, which is also involved in interactions of the neighboring BAR unit, lead to a disruption of the polymer organization, even though tubulation can still be observed. The regulatory region of amphiphysin/BIN1 including an SH3 domain does not have any apparent involvement in the polymer lattice. Our study indicates that the H0 helix and the BAR tip are necessary for efficient and organized self-assembly of amphiphysin/N-BAR.
Collapse
|
28
|
Hierro A, Gershlick DC, Rojas AL, Bonifacino JS. Formation of Tubulovesicular Carriers from Endosomes and Their Fusion to the trans-Golgi Network. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:159-202. [PMID: 26315886 DOI: 10.1016/bs.ircmb.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endosomes undergo extensive spatiotemporal rearrangements as proteins and lipids flux through them in a series of fusion and fission events. These controlled changes enable the concentration of cargo for eventual degradation while ensuring the proper recycling of other components. A growing body of studies has now defined multiple recycling pathways from endosomes to the trans-Golgi network (TGN) which differ in their molecular machineries. The recycling process requires specific sets of lipids, coats, adaptors, and accessory proteins that coordinate cargo selection with membrane deformation and its association with the cytoskeleton. Specific tethering factors and SNARE (SNAP (Soluble NSF Attachment Protein) Receptor) complexes are then required for the docking and fusion with the acceptor membrane. Herein, we summarize some of the current knowledge of the machineries that govern the retrograde transport from endosomes to the TGN.
Collapse
Affiliation(s)
- Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - David C Gershlick
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Tubulation by amphiphysin requires concentration-dependent switching from wedging to scaffolding. Structure 2015; 23:873-881. [PMID: 25865245 DOI: 10.1016/j.str.2015.02.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/09/2015] [Accepted: 02/24/2015] [Indexed: 02/08/2023]
Abstract
BAR proteins are involved in a variety of membrane remodeling events but how they can mold membranes into different shapes remains poorly understood. Using electron paramagnetic resonance, we find that vesicle binding of the N-BAR protein amphiphysin is predominantly mediated by the shallow insertion of amphipathic N-terminal helices. In contrast, the interaction with tubes involves deeply inserted N-terminal helices together with the concave surface of the BAR domain, which acts as a scaffold. Combined with the observed concentration dependence of tubulation and BAR domain scaffolding, the data indicate that initial membrane deformations and vesicle binding are mediated by insertion of amphipathic helical wedges, while tubulation requires high protein densities at which oligomeric BAR domain scaffolds form. In addition, we identify a pocket of residues on the concave surface of the BAR domain that insert deeply into tube membrane. Interestingly, this pocket harbors a number of disease mutants in the homologous amphiphysin 2.
Collapse
|
30
|
Abstract
Bin-Amphiphysin-Rvs (BAR) domain-containing proteins form oligomeric assemblies that aid membrane remodeling. In this issue of Developmental Cell, Pang et al. (2014) show that the BAR domain of ACAP1, although architecturally similar to other BAR domains, cooperates with its neighboring pleckstrin homology domain to deform membranes and facilitate endosomal recycling.
Collapse
Affiliation(s)
- Michael Krauss
- Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany.
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany.
| |
Collapse
|