1
|
Li X, Yang S, Wang L, Zhang X, Zhang A, Wang Y, Shi DL, Li H. Zinc Finger Protein Znf296 Is a Cardiac-Specific Splicing Regulator Required for Cardiomyocyte Formation. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:1057-1073. [PMID: 40122456 DOI: 10.1016/j.ajpath.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
Heart formation and function are tightly regulated at transcriptional and post-transcriptional levels. The dysfunction of cardiac cell-specific regulatory genes leads to various heart diseases. Heart failure is one of the most severe and complex cardiovascular diseases, which could be fatal if not treated promptly. However, the exact causes of heart failure are still unclear, especially at the level of single-gene causation. Here, an essential role was uncovered for the zinc finger protein Znf296 in heart development and cardiac contractile function. Specifically, znf296-deficient zebrafish embryos displayed heart defects characterized by decreased systolic and diastolic capacities of the ventricle and atrium. This was associated with reduced numbers and disrupted structural integrity of cardiomyocytes, including disorganized cytoskeleton and absence of sarcomeres. Mechanistically, the loss of Znf296 altered the alternative splicing of a subset of genes important for heart development and disease, such as mef2ca, sparc, tpm2, camk2g1, tnnt3b, and pdlim5b. Furthermore, Znf296 biochemically and functionally interacted with myelin transcription factor 1-like, a (Myt1la) in regulating cardiac-specific splicing and heart development. Importantly, ZNF296 also regulated alternative splicing in human cardiomyocytes to maintain structural integrity. These results suggest that Znf296 plays a conserved role for the differentiation of cardiomyocytes and the proper function of the cardiovascular system.
Collapse
Affiliation(s)
- Xianpeng Li
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuaiqi Yang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao, China
| | - Lu Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao, China
| | - Xiangmin Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao, China
| | - Ailong Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yunchao Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao, China
| | - De-Li Shi
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao, China; Sorbonne Université, Institut de Biologie Paris-Seine, Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 8263, INSERM U1345, Development, Adaptation and Ageing, Paris, France.
| | - Hongyan Li
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
2
|
Jin C, Ye Y, Gao L, Zhong Z, Zhou C, Wu X, Li X, Zhou G, Chen S, Wei Y, Cai L, Liu S, Xu J. Biological function of RNA-binding proteins in myocardial infarction: a potential emerging therapeutic limelight. Cell Biosci 2025; 15:65. [PMID: 40413549 PMCID: PMC12102849 DOI: 10.1186/s13578-025-01408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/08/2025] [Indexed: 05/27/2025] Open
Abstract
Myocardial infarction (MI) is currently one of the most fatal cardiovascular diseases worldwide. The screening, treatment, and prognosis of MI are top priorities for cardiovascular centers globally due to its characteristic occult onset, high lethality, and poor prognosis. MI is caused by coronary artery occlusion induced by coronary atherosclerotic plaque blockage or other factors, leading to ischemic necrosis and apoptosis of cardiomyocytes. Although significant advancements have been made in the study of cardiomyocytes at the cellular and molecular levels, RNA-binding proteins (RBPs) have not been extensively explored in the context of MI. RBPs, as key regulators coordinating cell differentiation and tissue homeostasis, exhibit specific functions in gene transcription, RNA modification and processing, and post-transcriptional gene expression. By binding to their target RNA, RBPs coordinate various RNA dynamics, including cellular metabolism, subcellular localization, and translation efficiency, thereby controlling the expression of encoded proteins. Classical RBPs, including HuR, hnRNPs, and RBM family molecules, have been identified as critical regulators in myocardial hypoxia, oxidative stress, pro-inflammatory responses, and fibrotic repair. These RBPs exert their effects by modulating key pathophysiological pathways in MI, thereby influencing specific cardiac outcomes. Additionally, specific RBPs, such as QKI and fused in sarcoma (FUS), are implicated in the apoptotic pathways activated during MI. This apoptotic pathway represents a significant molecular phenotype in MI, offering novel perspectives and insights for mitigating cardiomyocyte apoptosis and attenuating the progression of MI. Therefore, this review systematically summarizes the role of RBPs in the main pathophysiological stages of MI and explores their potential therapeutic prospects.
Collapse
Affiliation(s)
- Chenyang Jin
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xudong Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lidong Cai
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Singh P, Crossman DK, Cheng C, Trainor PJ, Sharafeldin N, Wang X, Zhou L, Hageman L, Armenian SH, Balis FM, Hawkins DS, Keller FG, Hudson MM, Neglia JP, Ginsberg JP, Landier W, Bhatia S. Alternative mRNA splicing in anthracycline-induced cardiomyopathy - a COG-ALTE03N1 report. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2025; 11:47. [PMID: 40382596 PMCID: PMC12084991 DOI: 10.1186/s40959-025-00345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Anthracycline-induced cardiomyopathy is a well-established adverse consequence in childhood cancer survivors. Altered mRNA expression in the peripheral blood has been found at the level of genes and pathways among anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. However, the role of aberrant alternative splicing in anthracycline-induced cardiomyopathy remains unexplored. The present study examined if transcript-specific events, due to alternative splicing occur in anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. METHODS Participants were anthracycline-exposed childhood cancer survivors with cardiomyopathy (cases) matched with anthracycline-exposed childhood cancer survivors without cardiomyopathy (controls; matched on primary cancer diagnosis, year of diagnosis, and race/ethnicity). mRNA sequencing was performed on total RNA from peripheral blood in 32 cases and 32 matched controls. Event-level splicing tool, rMATS (replicate Multivariate Analysis of Transcript Splicing) was used for quantitative profiling of alternative splicing events. RESULTS A total of 45 alternative splicing events in 36 genes were identified. Using a prioritization strategy to filter the alternative splicing events, intron retention in RPS24 and skipped exon of PFND5 showed differential expression of altered transcripts. CONCLUSIONS We identified specific alternative splicing events in anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. Our findings suggest that differential alternative splicing events can provide additional insight into the peripheral blood transcriptomic landscape of anthracycline-induced cardiomyopathy.
Collapse
Affiliation(s)
- Purnima Singh
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Changde Cheng
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patrick J Trainor
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Noha Sharafeldin
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xuexia Wang
- Department of Biostatistics, Florida International University, Miami, FL, USA
| | - Liting Zhou
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saro H Armenian
- Department of Population Sciences, City of Hope, Duarte, CA, USA
| | - Frank M Balis
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Frank G Keller
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Melissa M Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph P Neglia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jill P Ginsberg
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wendy Landier
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| |
Collapse
|
4
|
Saquet A, Ying Z, Shi D, Grifone R. Knockout of rbm24a and rbm24b genes in zebrafish impairs skeletal and cardiac muscle integrity and function during development. Dev Dyn 2025; 254:420-435. [PMID: 39323318 PMCID: PMC12047425 DOI: 10.1002/dvdy.743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/23/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGOUND Skeletal and cardiac muscles are contractile tissues whose development and function are dependent on genetic programs that must be precisely orchestrated in time and space. In addition to transcription factors, RNA-binding proteins tightly regulate gene expression by controlling the fate of RNA transcripts, thus specific proteins levels within the cell. Rbm24 has been identified as a key player of myogenesis and cardiomyogenesis in several vertebrates, by controlling various aspects of post-transcriptional regulation, including pre-mRNA alternative splicing and mRNA stabilization. In zebrafish, knockdown of rbm24a or rbm24b also causes skeletal and cardiac muscle phenotypes, but how their combined loss affects muscle integrity and function remains elusive. RESULTS By genome editing, we have generated rbm24a and rbm24b single mutants as well as double mutants. Structural analyses indicate that homozygous rbm24a and rbm24b double mutants exhibit severe somitic muscle and cardiac phenotypes, although rbm24b single mutants are obviously normal. We further show that the loss of rbm24a and rbm24b disrupts sarcomere organization, impairing functional contractility and motility of skeletal and cardiac muscles. CONCLUSION The rbm24 mutant zebrafish represents a new genetic tool for in-depth studies of Rbm24-mediated post-transcriptional regulation of skeletal and cardiac muscle development, disease and regeneration.
Collapse
Affiliation(s)
- Audrey Saquet
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris‐Seine (IBPS)Sorbonne UniversitéParisFrance
| | - Ziwei Ying
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris‐Seine (IBPS)Sorbonne UniversitéParisFrance
| | - De‐Li Shi
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris‐Seine (IBPS)Sorbonne UniversitéParisFrance
- Department of Medical ResearchAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Raphaëlle Grifone
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris‐Seine (IBPS)Sorbonne UniversitéParisFrance
| |
Collapse
|
5
|
Liu J, Yao D, Zhou F, Li K, Sun W, Wang S, Cai C, Xu X. RBM24-mediated biogenesis of circ23679 protects cardiomyocytes against apoptosis via sponging miR-15b-5p. Int J Biol Macromol 2025; 310:143242. [PMID: 40250678 DOI: 10.1016/j.ijbiomac.2025.143242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Circular RNAs (circRNAs) have emerged as significant members of gene regulatory networks and play important roles in normal heart biology and cardiac diseases. RNA binding proteins (RBPs) are key regulatory factors in circRNA formation; however, the mechanisms by which RBP regulate circRNA production remain unclear. RNA binding motif protein 24 (RBM24) is essential for alternative splicing of genes related to cardiac function, and its loss leads to dilated cardiomyopathy and heart failure. In this study, we performed circRNA profiling on hearts from wild-type and Rbm24 knockout mice, identifying the differential expression of circRNAs. We demonstrated that RBM24 could directly bind to pre-mRNA, facilitating the inclusion of specific exons to provide a substrate for circ23679 production. Moreover, RBM24-regulated circRNA production depended on its phosphorylation status. Further, we showed that RBM24-mediated circ23679 acted as a sponge of miR-15b-5p, and a deficient in circ23679-mediated 'sponging events' could drive cardiac apoptosis. Conversely, circ23679 overexpression inhibited cardiac apoptosis and alleviated the disease phenotype in mouse models of heart failure. Thus, our study not only proposes a novel model in which RBPs provide the substrate for circRNA formation but also reveals that RBM24-dependent circRNA production is a crucial post-transcriptional regulatory circuit in cardiac pathogenesis.
Collapse
Affiliation(s)
- Jing Liu
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China.
| | - Dongbo Yao
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China
| | - Fangwen Zhou
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China
| | - Keyue Li
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China
| | - Wenhao Sun
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China
| | - Shanshan Wang
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China
| | - Can Cai
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China
| | - Xiuqin Xu
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China.
| |
Collapse
|
6
|
Zhang Y, Wang J, Fang H, Hu S, Yang B, Zhou J, Grifone R, Li P, Lu T, Wang Z, Zhang C, Huang Y, Wu D, Gong Q, Shi DL, Li A, Shao M. Rbm24a dictates mRNA recruitment for germ granule assembly in zebrafish. EMBO J 2025:10.1038/s44318-025-00442-z. [PMID: 40281355 DOI: 10.1038/s44318-025-00442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
The germ granules are ribonucleoprotein (RNP) biomolecular condensates that determine the fate of primordial germ cells (PGCs) and serve as a model for studying RNP granule assembly. Here, we show that the maternal RNA-binding protein Rbm24a is a key factor governing the specific sorting of mRNAs into germ granules. Mechanistically, Rbm24a interacts with the germ plasm component Buc to dictate the specific recruitment of germ plasm mRNAs into phase-separated condensates. Germ plasm particles lacking Rbm24a and mRNAs fail to undergo kinesin-dependent transport toward cleavage furrows where small granules fuse into large aggregates. Therefore, the loss of maternal Rbm24a causes a complete degradation of the germ plasm and the disappearance of PGCs. These findings demonstrate that the Rbm24a/Buc complex functions as a nucleating organizer of germ granules, highlighting an emerging mechanism for RNA-binding proteins in reading and recruiting RNA components into a phase-separated protein scaffold.
Collapse
Affiliation(s)
- Yizhuang Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Jiasheng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Hailing Fang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Shuqi Hu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
| | - Boya Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Jiayi Zhou
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Raphaëlle Grifone
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8263, INSERM U1345, Development, Adaptation and Ageing, Paris, France
| | - Panfeng Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
| | - Tong Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Zhengyang Wang
- Shandong University Taishan College, 266237, Qingdao, China
| | - Chong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 524045, Zhanjiang, China
| | - Yubin Huang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, 266237, Qingdao, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, 266237, Qingdao, China
| | - Qianqian Gong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - De-Li Shi
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8263, INSERM U1345, Development, Adaptation and Ageing, Paris, France.
- Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Ang Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China.
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China.
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China.
- Shandong University-Yuanchen Joint Biomedical Technology Laboratory, 266237, Qingdao, China.
| |
Collapse
|
7
|
Shi DL, Grifone R, Zhang X, Li H. Rbm24-mediated post-transcriptional regulation of skeletal and cardiac muscle development, function and regeneration. J Muscle Res Cell Motil 2025; 46:53-65. [PMID: 39614020 DOI: 10.1007/s10974-024-09685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
RNA-binding proteins are critically involved in the post-transcriptional control of gene expression during embryonic development and in adult life, contributing to regulating cell differentiation and maintaining tissue homeostasis. Compared to the relatively well documented functions of transcription factors, the regulatory roles of RNA-binding proteins in muscle development and function remain largely elusive. However, deficiency of many RNA-binding proteins has been associated with muscular defects, neuromuscular disorders and heart diseases, such as myotonic dystrophy, amyotrophic lateral sclerosis, and cardiomyopathy. Rbm24 is highly conserved among vertebrates and is one of the best characterized RNA-binding proteins with crucial implication in the myogenic and cardiomyogenic programs. It presents the distinctive particularity of displaying highly restricted expression in both skeletal and cardiac muscles, with changes in subcellular localization during the process of differentiation. Functional analyses using different vertebrate models have clearly demonstrated its requirement for skeletal muscle differentiation and regeneration as well as for myocardium organization and cardiac function, by regulating the expression of both common and distinct target genes in these tissues. The challenge remains to decipher the dynamic feature of post-transcriptional circuits regulated by Rbm24 during skeletal myogenesis, cardiomyogenesis, and muscle repair. This review discusses current understanding of its function in striated muscles and its possible implication in human disease, with the aim of identifying research gaps for future investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS UMR7622, INSERM U1156, LBD, Paris, F-75005, France.
| | - Raphaëlle Grifone
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS UMR7622, INSERM U1156, LBD, Paris, F-75005, France
| | - Xiangmin Zhang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Hongyan Li
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
8
|
Yang S, Li D. The role of circRNA in breast cancer drug resistance. PeerJ 2024; 12:e18733. [PMID: 39713143 PMCID: PMC11662897 DOI: 10.7717/peerj.18733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Among women with cancer, breast cancer has surpassed lung cancer to become the most prevalent type of cancer globally. High-throughput sequencing of breast cancer tissues from many patients has revealed significant variations in circRNA expression across different types of breast cancer. Chemotherapy is currently a very important method for treating breast cancer; however, as the number of chemotherapy sessions increases and considering factors such as the patient's immune response, drug resistance has become a challenging issue in treating breast cancer. It is well known that drug resistance is associated with multiple factors, and different resistance mechanisms involve different roles of circRNA. This review consolidates literature from the past 5 years and addresses the shortcomings in the broad description of circRNA's role in breast cancer drug resistance. It categorizes and describes the drug resistance and its mechanisms in different types of breast cancer, as well as the roles of circRNA and signaling pathways in drug resistance.
Collapse
Affiliation(s)
- Shaofeng Yang
- Inner Mongolia Medical University Hospital, Hohhot, China
| | - Donghai Li
- Inner Mongolia Medical University Hospital, Hohhot, China
| |
Collapse
|
9
|
Wang W, Fan X, Liu W, Huang Y, Zhao S, Yang Y, Tang Z. The Spatial-Temporal Alternative Splicing Profile Reveals the Functional Diversity of FXR1 Isoforms in Myogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405157. [PMID: 39499773 PMCID: PMC11653684 DOI: 10.1002/advs.202405157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/08/2024] [Indexed: 11/07/2024]
Abstract
Alternative splicing (AS) is a fundamental mechanism contributing to proteome diversity, yet its comprehensive landscape and regulatory dynamics during skeletal muscle development remain largely unexplored. Here, the temporal AS profiles are investigated during myogenesis in five vertebrates, conducting comprehensive profiling across 27 developmental stages in skeletal muscle and encompassing ten tissues in adult pigs. The analysis reveals a pervasive and evolutionarily conserved pattern of alternative exon usage throughout myogenic differentiation, with hundreds of skipped exons (SEs) showing developmental regulation, particularly within skeletal muscle. Notably, this study identifies a muscle-specific SE (exon 15) within the Fxr1 gene, whose AS generates two dynamically expressed isoforms with distinct functions: the isoform without exon 15 (Fxr1E15 -) regulates myoblasts proliferation, while the isoform incorporating exon 15 (Fxr1E15+) promotes myogenic differentiation and fusion. Transcriptome analysis suggests that specifically knocking-down Fxr1E15+ isoform in myoblasts modulates differentiation by influencing gene expression and splicing of specific targets. The increased inclusion of exon 15 during differentiation is mediated by the binding of Rbm24 to the intron. Furthermore, in vivo experiments indicate that the Fxr1E15+ isoform facilitates muscle regeneration. Collectively, these findings provide a comprehensive resource for AS studies in skeletal muscle development, underscoring the diverse functions and regulatory mechanisms governing distinct Fxr1 isoforms in myogenesis.
Collapse
Affiliation(s)
- Wei Wang
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Weiwei Liu
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
- Guangxi Key Laboratory of Animal BreedingDisease Control and PreventionCollege of Animal Science & TechnologyGuangxi UniversityNanning530004China
| | - Yuxin Huang
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
- Guangxi Key Laboratory of Animal BreedingDisease Control and PreventionCollege of Animal Science & TechnologyGuangxi UniversityNanning530004China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Yalan Yang
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| |
Collapse
|
10
|
Yang H, Sun L, Bai X, Cai B, Tu Z, Fang C, Bian Y, Zhang X, Han X, Lv D, Zhang C, Li B, Luo S, Du B, Li L, Yao Y, Dong Z, Huang Z, Su G, Li H, Wang QK, Zhang M. Dysregulated RBM24 phosphorylation impairs APOE translation underlying psychological stress-induced cardiovascular disease. Nat Commun 2024; 15:10181. [PMID: 39580475 PMCID: PMC11585567 DOI: 10.1038/s41467-024-54519-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
Psychological stress contributes to cardiovascular disease (CVD) and sudden cardiac death, yet its molecular basis remains obscure. RNA binding protein RBM24 plays a critical role in cardiac development, rhythm regulation, and cellular stress. Here, we show that psychological stress activates RBM24 S181 phosphorylation through eIF4E2-GSK3β signaling, which causally links psychological stress to CVD by promoting APOE translation (apolipoprotein E). Using an Rbm24 S181A KI mouse model, we show that impaired S181 phosphorylation leads to cardiac contractile dysfunction, atrial fibrillation, dyslipidemia, reduced muscle strength, behavioral abnormalities, and sudden death under acute and chronic psychological stressors. The impaired S181 phosphorylation of RBM24 inhibits cardiac translation, including APOE translation. Notably, cardiomyocyte-specific expression of APOE rescues cardiac electrophysiological abnormalities and contractile dysfunction, through preventing ROS stress and mitochondrial dysfunction. Moreover, RBM24-S181 phosphorylation acts as a serum marker for chronic stress in human. These results provide a functional link between RBM24 phosphorylation, eIF4E-regulated APOE translation, and psychological-stress-induced CVD.
Collapse
Affiliation(s)
- He Yang
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Sun
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemei Bai
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bingcheng Cai
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zepeng Tu
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Fang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Bian
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyu Zhang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xudong Han
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dayin Lv
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chi Zhang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bo Li
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Bingbing Du
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lan Li
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufeng Yao
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuowei Huang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Guanhua Su
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Li
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China.
- School of Biotechnology of Shandong Polytechnic, Jinan, Shandong, 250101, China.
| | - Qing K Wang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Min Zhang
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Wu T, Chen Z, Zhang Z, Zhou X, Gu Y, Dinenno FA, Chen J. RBPMS and RBPMS2 Cooperate to Safeguard Cardiac Splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622565. [PMID: 39574760 PMCID: PMC11581027 DOI: 10.1101/2024.11.07.622565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Background Mutations in cardiac splicing factors (SFs) cause cardiomyopathy and congenital heart disease, underscoring the critical role of SFs in cardiac development and disease. Cardiac SFs are implicated to cooperatively regulate the splicing of essential cardiac genes, but the functional importance of their collaboration remains unclear. RNA Binding Protein with Multiple Splicing (RBPMS) and RBPMS2 are SFs involved in heart development and exhibit similar splicing regulatory activities in vitro , but it is unknown whether they cooperate to regulate splicing in vivo . Methods Rbpms and Rbpms2 single or double cardiomyocyte (CM)-specific knockout (KO) mice were generated and analyzed for cardiac phenotypes. RNA sequencing was performed to assess gene expression and splicing changes in single and double KOs. In silico analyses were used to dissect the mechanisms underlying distinct and overlapping roles of RBPMS and RBPMS2 in heart development. Results Mice lacking both RBPMS and RBPMS2 in CMs died before embryonic day 13.5 and developed sarcomere disarray, whereas Rbpms or Rbpms2 single CM-specific KO mice had normal sarcomere assembly and survived to adulthood. Defective sarcomere assembly is likely owing to the widespread mis-splicing of genes essential for cardiac contraction in double KO mice, underscoring the overlapping role of RBPMS and RBPMS2 in splicing regulation. Mechanistically, we found RBPMS and RBPMS collectively promote cardiac splicing program while repressing non-cardiac splicing programs. Moreover, RNA splicing maps suggested that the binding location of RBPMS and RBPMS2 on pre-mRNA dictates whether they function as splicing activators or repressors. Lastly, the requirement for RBPMS and/or RBPMS2 for splicing regulation arises from intrinsic features of the target exons. Conclusions Our results demonstrate that RBPMS and RBPMS2 work in concert to safeguard the splicing of genes essential for cardiac contraction, highlighting the importance of SF collaboration in maintaining cardiac splicing signature, which should be taken into consideration when devising future therapeutic approaches through modulating the activity of SFs. Novelty and Significance What Is Known?: Mutations in cardiac splicing factors (SFs) cause cardiomyopathy and congenital heart disease, and the splicing of cardiac genes is regulated by multiple SFs. However, the functional importance of the collaboration among specific cardiac SFs is unknown.RBPMS has emerged as a cardiac SF for sarcomere genes but is not required for sarcomere assembly. RBPMS2 can substitute RBPMS in in vitro splicing assays, yet its role in mammalian cardiomyocytes (CMs) remains unclear. What New Information Does This Article Contribute?: RBPMS and RBPMS2 have both distinct and overlapping roles in CMs.RBPMS and RBPMS2 collectively contribute to the maintenance of cardiac splicing program, which is essential for sarcomere assembly and embryonic survival.RNA splicing map of RBPMS and RBPMS2 reveals that they can function either as splicing activators or repressors, depending on their binding locations on pre-mRNA. This study provides compelling evidence of cooperation between cardiac splicing factors during heart development, which, to our knowledge, has not been demonstrated in vivo . Rbpms and Rbpms2 CM-specific double KO mice die in utero and exhibit sarcomere disarray, whereas single KO mice survive to adulthood with normal sarcomere structure but manifest distinct cardiac phenotypes, suggesting RBPMS and RBPMS2 possess both distinct and overlapping functions in CMs. Although mis-splicing in cardiac genes can be seen in all three KOs, the splicing signature of double KO hearts drastically shifts towards non-cardiac tissues, including more prominent mis-splicing in genes related to cardiac contractile function. Our study further reveals that the splicing regulation of RBPMS and RBPMS2 has the characteristics of "positional effects", i.e., the binding location on pre-mRNA dictates whether they function as splicing activators or repressors; and the intrinsic features of the target exon determine the requirement for one or two RBPMS proteins for splicing regulation. Our study sheds light on the functional importance of cardiac SF cooperation in maintaining cardiac splicing signature during heart development.
Collapse
|
12
|
Xu R, Li S, Chien CJ, Zhong Y, Xiao H, Fang S, Du S. Expression of Smyd1b_tv1 by Alternative Splicing in Cardiac Muscle is Critical for Sarcomere Organization in Cardiomyocytes and Heart Function. Mol Cell Biol 2024; 44:543-561. [PMID: 39320962 PMCID: PMC11583600 DOI: 10.1080/10985549.2024.2402660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 09/27/2024] Open
Abstract
Smyd1, a member of the Smyd lysine methyltransferase family, plays an important role in myofibrillogenesis of skeletal and cardiac muscles. Loss of Smyd1b (a Smyd1 ortholog) function in zebrafish results in embryonic death from heart malfunction. smyd1b encodes two isoforms, Smyd1b_tv1 and Smyd1b_tv2, differing by 13 amino acids due to alternative splicing. While smyd1 alternative splicing is evolutionarily conserved, the isoform-specific expression and function of Smyd1b_tv1 and Smyd1b_tv2 remained unknown. Here we analyzed their expression and function in skeletal and cardiac muscles. Our analysis revealed expression of smyd1b_tv1 predominately in cardiac and smyd1b_tv2 in skeletal muscles. Using zebrafish models expressing only one isoform, we demonstrated that Smyd1b_tv1 is essential for cardiomyocyte differentiation and fish viability, whereas Smyd1b_tv2 is dispensable for heart development and fish survival. Cellular and biochemical analyses revealed that Smyd1b_tv1 differs from Smyd1b_tv2 in protein localization and binding with myosin chaperones. While Smyd1b_tv2 diffused in the cytosol of muscle cells, Smyd1b_tv1 was localized to M-lines and essential for sarcomere organization in cardiomyocytes. Co-IP analysis revealed a stronger binding of Smyd1b_tv1 with chaperones and cochaperones compared with Smyd1b_tv2. Collectively, these findings highlight the nonequivalence of Smyd1b isoforms in cardiomyocyte differentiation, emphasizing the critical role of Smyd1b_tv1 in cardiac function.
Collapse
Affiliation(s)
- Rui Xu
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Siping Li
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Chien-Ju Chien
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yongwang Zhong
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Huanhuan Xiao
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shengyun Fang
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Xiao F, Nguyen NUN, Wang P, Li S, Hsu CC, Thet S, Kimura W, Luo X, Lam NT, Menendez-Montes I, Elhelaly W, Cardoso AC, Pereira AHM, Singh R, Sadayappan S, Kanchwala M, Xing C, Ladha FA, Hinson JT, Hajjar RJ, Hill JA, Sadek HA. Adducin Regulates Sarcomere Disassembly During Cardiomyocyte Mitosis. Circulation 2024; 150:791-805. [PMID: 38708635 PMCID: PMC11651639 DOI: 10.1161/circulationaha.122.059102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/29/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Recent interest in understanding cardiomyocyte cell cycle has been driven by potential therapeutic applications in cardiomyopathy. However, despite recent advances, cardiomyocyte mitosis remains a poorly understood process. For example, it is unclear how sarcomeres are disassembled during mitosis to allow the abscission of daughter cardiomyocytes. METHODS Here, we use a proteomics screen to identify adducin, an actin capping protein previously not studied in cardiomyocytes, as a regulator of sarcomere disassembly. We generated many adeno-associated viruses and cardiomyocyte-specific genetic gain-of-function models to examine the role of adducin in neonatal and adult cardiomyocytes in vitro and in vivo. RESULTS We identify adducin as a regulator of sarcomere disassembly during mammalian cardiomyocyte mitosis. α/γ-adducins are selectively expressed in neonatal mitotic cardiomyocytes, and their levels decline precipitously thereafter. Cardiomyocyte-specific overexpression of various splice isoforms and phospho-isoforms of α-adducin in vitro and in vivo identified Thr445/Thr480 phosphorylation of a short isoform of α-adducin as a potent inducer of neonatal cardiomyocyte sarcomere disassembly. Concomitant overexpression of this α-adducin variant along with γ-adducin resulted in stabilization of the adducin complex and persistent sarcomere disassembly in adult mice, which is mediated by interaction with α-actinin. CONCLUSIONS These results highlight an important mechanism for coordinating cytoskeletal morphological changes during cardiomyocyte mitosis.
Collapse
Affiliation(s)
- Feng Xiao
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ngoc Uyen Nhi Nguyen
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ping Wang
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shujuan Li
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ching-Cheng Hsu
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Suwannee Thet
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wataru Kimura
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan
| | - Xiang Luo
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicholas T. Lam
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Menendez-Montes
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Waleed Elhelaly
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alisson Campos Cardoso
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Ana Helena Macedo Pereira
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Rohit Singh
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0575, USA
- Amgen Research, Department of Cardiometabolic Disorders, Amgen, South San Francisco, CA, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0575, USA
| | - Mohammed Kanchwala
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- O'Donnell School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feria A. Ladha
- University of Connecticut Health Center, Farmington, CT, USA
| | - J. Travis Hinson
- University of Connecticut Health Center, Farmington, CT, USA
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Roger J. Hajjar
- Gene & Cell Therapy Institute, Mass General Brigham, Cambridge, MA, USA
| | - Joseph A. Hill
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Moss Heart Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hesham A. Sadek
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| |
Collapse
|
14
|
Yao D, Wang X, Liu J, Xu XQ. Rbm24 modulates neuronal RNA splicing to restrict cognitive dysfunction. Int J Biol Macromol 2024; 276:133853. [PMID: 39004256 DOI: 10.1016/j.ijbiomac.2024.133853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Synaptic dysfunction is associated with early neurodegenerative changes and cognitive deficits. Neuronal cell-specific alternative splicing (AS) programs exclusively encode unique neuron- and synapse-specific proteins. However, it remains unclear whether splicing disturbances in neurons influence the pathogenesis of cognitive impairment. Here, we observed that RNA-binding motif protein 24 (RBM24) expression was decreased in Alzheimer's disease (AD) patients. Using conditional RBM24 knockout mice, we demonstrated that deletion of RBM24 in the brain resulted in learning and memory impairment. Electrophysiological recordings from hippocampal slices from mice lacking RBM24 revealed multiple defects in excitatory synaptic function and plasticity. Furthermore, RNA sequencing and splicing analysis showed that RBM24 regulates a network of genes related to cognitive function. Deletion of RBM24 disrupted the AS of synapse-associated genes, including GluR2 and Prrt1, the major disease genes involved in cognitive impairment and memory loss, leading to cognitive dysfunction. Together, our results suggest that the regulation of mRNA splicing by RBM24 is a key process involved in maintaining normal synaptic function and provide novel mechanistic insights into the pathogenesis of AD.
Collapse
Affiliation(s)
- Dongbo Yao
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiaoxia Wang
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Jing Liu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiu Qin Xu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China.
| |
Collapse
|
15
|
Völkers M, Preiss T, Hentze MW. RNA-binding proteins in cardiovascular biology and disease: the beat goes on. Nat Rev Cardiol 2024; 21:361-378. [PMID: 38163813 DOI: 10.1038/s41569-023-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Cardiac development and function are becoming increasingly well understood from different angles, including signalling, transcriptional and epigenetic mechanisms. By contrast, the importance of the post-transcriptional landscape of cardiac biology largely remains to be uncovered, building on the foundation of a few existing paradigms. The discovery during the past decade of hundreds of additional RNA-binding proteins in mammalian cells and organs, including the heart, is expected to accelerate progress and has raised intriguing possibilities for better understanding the intricacies of cardiac development, metabolism and adaptive alterations. In this Review, we discuss the progress and new concepts on RNA-binding proteins and RNA biology and appraise them in the context of common cardiovascular clinical conditions, from cell and organ-wide perspectives. We also discuss how a better understanding of cardiac RNA-binding proteins can fill crucial knowledge gaps in cardiology and might pave the way to developing better treatments to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg and Mannheim, Germany
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.
| |
Collapse
|
16
|
Cao J, Wei Z, Nie Y, Chen HZ. Therapeutic potential of alternative splicing in cardiovascular diseases. EBioMedicine 2024; 101:104995. [PMID: 38350330 PMCID: PMC10874720 DOI: 10.1016/j.ebiom.2024.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
RNA splicing is an important RNA processing step required by multiexon protein-coding mRNAs and some noncoding RNAs. Precise RNA splicing is required for maintaining gene and cell function; however, mis-spliced RNA transcripts can lead to loss- or gain-of-function effects in human diseases. Mis-spliced RNAs induced by gene mutations or the dysregulation of splicing regulators may result in frameshifts, nonsense-mediated decay (NMD), or inclusion/exclusion of exons. Genetic animal models have characterised multiple splicing factors required for cardiac development or function. Moreover, sarcomeric and ion channel genes, which are closely associated with cardiovascular function and disease, are hotspots for AS. Here, we summarise splicing factors and their targets that are associated with cardiovascular diseases, introduce some therapies potentially related to pathological AS targets, and raise outstanding questions and future directions in this field.
Collapse
Affiliation(s)
- Jun Cao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China; University of Texas Medical Branch at Galveston, TX, 77555, USA
| | - Ziyu Wei
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
17
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
18
|
Chen G, Chen J, Qi L, Yin Y, Lin Z, Wen H, Zhang S, Xiao C, Bello SF, Zhang X, Nie Q, Luo W. Bulk and single-cell alternative splicing analyses reveal roles of TRA2B in myogenic differentiation. Cell Prolif 2024; 57:e13545. [PMID: 37705195 PMCID: PMC10849790 DOI: 10.1111/cpr.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Alternative splicing (AS) disruption has been linked to disorders of muscle development, as well as muscular atrophy. However, the precise changes in AS patterns that occur during myogenesis are not well understood. Here, we employed isoform long-reads RNA-seq (Iso-seq) and single-cell RNA-seq (scRNA-seq) to investigate the AS landscape during myogenesis. Our Iso-seq data identified 61,146 full-length isoforms representing 11,682 expressed genes, of which over 52% were novel. We identified 38,022 AS events, with most of these events altering coding sequences and exhibiting stage-specific splicing patterns. We identified AS dynamics in different types of muscle cells through scRNA-seq analysis, revealing genes essential for the contractile muscle system and cytoskeleton that undergo differential splicing across cell types. Gene-splicing analysis demonstrated that AS acts as a regulator, independent of changes in overall gene expression. Two isoforms of splicing factor TRA2B play distinct roles in myogenic differentiation by triggering AS of TGFBR2 to regulate canonical TGF-β signalling cascades differently. Our study provides a valuable transcriptome resource for myogenesis and reveals the complexity of AS and its regulation during myogenesis.
Collapse
Affiliation(s)
- Genghua Chen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jiahui Chen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lin Qi
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Yunqian Yin
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Zetong Lin
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Huaqiang Wen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Shuai Zhang
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Chuanyun Xiao
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Semiu Folaniyi Bello
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Xiquan Zhang
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Qinghua Nie
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Wen Luo
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
19
|
Wang W, Li W, Liu W, Wang Z, Xie B, Yang X, Tang Z. Exploring Multi-Tissue Alternative Splicing and Skeletal Muscle Metabolism Regulation in Obese- and Lean-Type Pigs. Genes (Basel) 2024; 15:196. [PMID: 38397185 PMCID: PMC10888101 DOI: 10.3390/genes15020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Alternative splicing (AS) is a crucial mechanism in post-transcriptional regulation, contributing significantly to the diversity of the transcriptome and proteome. In this study, we performed a comprehensive AS profile in nine tissues obtained from Duroc (lean-type) and Luchuan (obese-type) pigs. Notably, 94,990 AS events from 14,393 genes were identified. Among these AS events, it was observed that 80% belonged to the skipped exon (SE) type. Functional enrichment analysis showed that genes with more than ten AS events were closely associated with tissue-specific functions. Additionally, the analysis of overlap between differentially alternative splicing genes (DSGs) and differentially expressed genes (DEGs) revealed the highest number of overlapped genes in the heart and skeletal muscle. The novelty of our study is that it identified and validated three genes (PYGM, MAPK11 and CAMK2B) in the glucagon signaling pathway, and their alternative splicing differences were highly significant across two pig breeds. In conclusion, our study offers novel insights into the molecular regulation of diverse tissue physiologies and the phenotypic differences between obese- and lean-type pigs, which are helpful for pig breeding.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China;
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.L.); (W.L.); (Z.W.)
| | - Wangchang Li
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.L.); (W.L.); (Z.W.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Weiwei Liu
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.L.); (W.L.); (Z.W.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zishuai Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.L.); (W.L.); (Z.W.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Bingkun Xie
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530001, China;
| | - Xiaogan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Zhonglin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China;
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.L.); (W.L.); (Z.W.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530001, China;
| |
Collapse
|
20
|
Berkholz J, Schmitt A, Fragasso A, Schmid AC, Munz B. Smyd1: Implications for novel approaches in rhabdomyosarcoma therapy. Exp Cell Res 2024; 434:113863. [PMID: 38097153 DOI: 10.1016/j.yexcr.2023.113863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
Rhabdomyosarcoma (RMS), a tumor that consists of poorly differentiated skeletal muscle cells, is the most common soft-tissue sarcoma in children. Despite considerable progress within the last decades, therapeutic options are still limited, warranting the need for novel approaches. Recent data suggest deregulation of the Smyd1 protein, a sumoylation target as well as H3K4me2/3 methyltransferase and transcriptional regulator in myogenesis, and its binding partner skNAC, in RMS cells. Here, we show that despite the fact that most RMS cells express at least low levels of Smyd1 and skNAC, failure to upregulate expression of these genes in reaction to differentiation-promoting signals can always be observed. While overexpression of the Smyd1 gene enhances many aspects of RMS cell differentiation and inhibits proliferation rate and metastatic potential of these cells, functional integrity of the putative Smyd1 sumoylation motif and its SET domain, the latter being crucial for HMT activity, appear to be prerequisites for most of these effects. Based on these findings, we explored the potential for novel RMS therapeutic strategies, employing small-molecule compounds to enhance Smyd1 activity. In particular, we tested manipulation of (a) Smyd1 sumoylation, (b) stability of H3K4me2/3 marks, and (c) calpain activity, with calpains being important targets of Smyd1 in myogenesis. We found that specifically the last strategy might represent a promising approach, given that suitable small-molecule compounds will be available for clinical use in the future.
Collapse
Affiliation(s)
- Janine Berkholz
- Charité - University Medicine Berlin, Institute of Physiology, Charitéplatz 1, D-10117, Berlin, Germany
| | - Angelika Schmitt
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076, Tübingen, Germany
| | - Annunziata Fragasso
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076, Tübingen, Germany
| | - Anna-Celina Schmid
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076, Tübingen, Germany
| | - Barbara Munz
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076, Tübingen, Germany; Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, D-72074 / D-72076, Tübingen, Germany.
| |
Collapse
|
21
|
Barish S, Berg K, Drozd J, Berglund-Brown I, Khizir L, Wasson LK, Seidman CE, Seidman JG, Chen S, Brueckner M. The H2Bub1-deposition complex is required for human and mouse cardiogenesis. Development 2023; 150:dev201899. [PMID: 38038666 PMCID: PMC10730087 DOI: 10.1242/dev.201899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/10/2023] [Indexed: 12/02/2023]
Abstract
De novo variants affecting monoubiquitylation of histone H2B (H2Bub1) are enriched in human congenital heart disease. H2Bub1 is required in stem cell differentiation, cilia function, post-natal cardiomyocyte maturation and transcriptional elongation. However, how H2Bub1 affects cardiogenesis is unknown. We show that the H2Bub1-deposition complex (RNF20-RNF40-UBE2B) is required for mouse cardiogenesis and for differentiation of human iPSCs into cardiomyocytes. Mice with cardiac-specific Rnf20 deletion are embryonic lethal and have abnormal myocardium. We then analyzed H2Bub1 marks during differentiation of human iPSCs into cardiomyocytes. H2Bub1 is erased from most genes at the transition from cardiac mesoderm to cardiac progenitor cells but is preserved on a subset of long cardiac-specific genes. When H2Bub1 is reduced in iPSC-derived cardiomyocytes, long cardiac-specific genes have fewer full-length transcripts. This correlates with H2Bub1 accumulation near the center of these genes. H2Bub1 accumulation near the center of tissue-specific genes was also observed in embryonic fibroblasts and fetal osteoblasts. In summary, we show that normal H2Bub1 distribution is required for cardiogenesis and cardiomyocyte differentiation, and suggest that H2Bub1 regulates tissue-specific gene expression by increasing the amount of full-length transcripts.
Collapse
Affiliation(s)
- Syndi Barish
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Kathryn Berg
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Jeffrey Drozd
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Isabella Berglund-Brown
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Labeeqa Khizir
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Lauren K. Wasson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard University, Boston, MA 02115, USA
| | | | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Martina Brueckner
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| |
Collapse
|
22
|
Zhu Z, Huo F, Zhang J, Shan H, Pei D. Crosstalk between m6A modification and alternative splicing during cancer progression. Clin Transl Med 2023; 13:e1460. [PMID: 37850412 PMCID: PMC10583157 DOI: 10.1002/ctm2.1460] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
Background N6-methyladenosine (m6A), the most prevalent internal mRNA modification in eukaryotes, is added by m6A methyltransferases, removed by m6A demethylases and recognised by m6A-binding proteins. This modification significantly influences carious facets of RNA metabolism and plays a pivotal role in cellular and physiological processes. Main body Pre-mRNA alternative splicing, a process that generates multiple splice isoforms from multi-exon genes, contributes significantly to the protein diversity in mammals. Moreover, the presence of crosstalk between m6A modification and alternative splicing, with m6A modifications on pre-mRNAs exerting regulatory control, has been established. The m6A modification modulates alternative splicing patterns by recruiting specific RNA-binding proteins (RBPs) that regulate alternative splicing or by directly influencing the interaction between RBPs and their target RNAs. Conversely, alternative splicing can impact the deposition or recognition of m6A modification on mRNAs. The integration of m6A modifications has expanded the scope of therapeutic strategies for cancer treatment, while alternative splicing offers novel insights into the mechanistic role of m6A methylation in cancer initiation and progression. Conclusion This review aims to highlight the biological functions of alternative splicing of m6A modification machinery and its implications in tumourigenesis. Furthermore, we discuss the clinical relevance of understanding m6A-dependent alternative splicing in tumour therapies.
Collapse
Affiliation(s)
- Zhi‐Man Zhu
- Department of PathologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Fu‐Chun Huo
- Department of PathologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Jian Zhang
- Department of Respiratory MedicineSecond Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Hong‐Jian Shan
- Department of OrthopedicsThe Affiliated Jiangning Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Dong‐Sheng Pei
- Department of PathologyXuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
23
|
Lu YW, Liang Z, Guo H, Fernandes T, Espinoza-Lewis RA, Wang T, Li K, Li X, Singh GB, Wang Y, Cowan D, Mably JD, Philpott CC, Chen H, Wang DZ. PCBP1 regulates alternative splicing of AARS2 in congenital cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.540420. [PMID: 37293078 PMCID: PMC10245752 DOI: 10.1101/2023.05.18.540420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alanyl-transfer RNA synthetase 2 (AARS2) is a nuclear encoded mitochondrial tRNA synthetase that is responsible for charging of tRNA-Ala with alanine during mitochondrial translation. Homozygous or compound heterozygous mutations in the Aars2 gene, including those affecting its splicing, are linked to infantile cardiomyopathy in humans. However, how Aars2 regulates heart development, and the underlying molecular mechanism of heart disease remains unknown. Here, we found that poly(rC) binding protein 1 (PCBP1) interacts with the Aars2 transcript to mediate its alternative splicing and is critical for the expression and function of Aars2. Cardiomyocyte-specific deletion of Pcbp1 in mice resulted in defects in heart development that are reminiscent of human congenital cardiac defects, including noncompaction cardiomyopathy and a disruption of the cardiomyocyte maturation trajectory. Loss of Pcbp1 led to an aberrant alternative splicing and a premature termination of Aars2 in cardiomyocytes. Additionally, Aars2 mutant mice with exon-16 skipping recapitulated heart developmental defects observed in Pcbp1 mutant mice. Mechanistically, we found dysregulated gene and protein expression of the oxidative phosphorylation pathway in both Pcbp1 and Aars2 mutant hearts; these date provide further evidence that the infantile hypertrophic cardiomyopathy associated with the disorder oxidative phosphorylation defect type 8 (COXPD8) is mediated by Aars2. Our study therefore identifies Pcbp1 and Aars2 as critical regulators of heart development and provides important molecular insights into the role of disruptions in metabolism on congenital heart defects.
Collapse
|
24
|
Montañés-Agudo P, Pinto YM, Creemers EE. Splicing factors in the heart: Uncovering shared and unique targets. J Mol Cell Cardiol 2023; 179:72-79. [PMID: 37059416 DOI: 10.1016/j.yjmcc.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 04/16/2023]
Abstract
Alternative splicing generates specialized protein isoforms that allow the heart to adapt during development and disease. The recent discovery that mutations in the splicing factor RNA-binding protein 20 (RBM20) cause a severe form of familial dilated cardiomyopathy has sparked a great interest in alternative splicing in the field of cardiology. Since then, identification of splicing factors controlling alternative splicing in the heart has grown at a rapid pace. Despite the intriguing observation that a certain overlap exists between the targets of some splicing factors, an integrated and systematic analysis of their splicing networks is missing. Here, we compared the splicing networks of individual splicing factors by re-analyzing original RNA-sequencing data from eight previously published mouse models, in which a single splicing factor has been genetically deleted (i.e. HNRNPU, MBNL1/2, QKI, RBM20, RBM24, RBPMS, SRSF3, SRSF4). We show that key splicing events in Camk2d, Ryr2, Tpm1, Tpm2 and Pdlim5 require the combined action of the majority of these splicing factors. Additionally, we identified common targets and pathways among splicing factors, with the largest overlap between the splicing networks of MBNL, QKI and RBM24. We also re-analyzed a large-scale RNA-sequencing study on hearts of 128 heart failure patients. Here, we observed that MBNL1, QKI and RBM24 expression varied greatly. This variation in expression correlated with differential splicing of their downstream targets as found in mice, suggesting that aberrant splicing by MBNL1, QKI and RBM24 might contribute to the disease mechanism in heart failure.
Collapse
Affiliation(s)
- Pablo Montañés-Agudo
- Experimental Cardiology, Room K2-112, Amsterdam UMC Location University of Amsterdam, Meibergdreef 15, Amsterdam 1105AZ, the Netherlands.
| | - Yigal M Pinto
- Experimental Cardiology, Room K2-104, Amsterdam UMC, location University of Amsterdam, Meibergdreef 15, Amsterdam 1105AZ, the Netherlands.
| | - Esther E Creemers
- Experimental Cardiology, Room K2-104-2, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 15, Amsterdam 1105AZ, the Netherlands.
| |
Collapse
|
25
|
Wang Y, Zhang C, Peng W, Du H, Xi Y, Xu Z. RBM24 is required for mouse hair cell development through regulating pre-mRNA alternative splicing and mRNA stability. J Cell Physiol 2023; 238:1095-1110. [PMID: 36947695 DOI: 10.1002/jcp.31003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
As the sensory receptor cells in vertebrate inner ear and lateral lines, hair cells are characterized by the hair bundle that consists of one tubulin-based kinocilium and dozens of actin-based stereocilia on the apical surface of each hair cell. Hair cell development is tightly regulated, and deficits in this process usually lead to hearing loss and/or balance dysfunctions. RNA-binding motif protein 24 (RBM24) is an RNA-binding protein that is specifically expressed in the hair cells in the inner ear. Previously, we showed that RBM24 affects hair cell development in zebrafish by regulating messenger RNA (mRNA) stability. In the present work, we further investigate the role of RBM24 in hearing and balance using conditional knockout mice. Our results show that Rbm24 knockout results in severe hearing and balance deficits. Hair cell development is significantly affected in Rbm24 knockout cochlea, as the hair bundles are poorly developed and eventually degenerated. Hair bundle disorganization is also observed in Rbm24 knockout vestibular hair cells, although to a lesser extent. Consistently, significant hair cell loss is observed in the cochlea but not vestibule. RNAseq analysis identified several genes whose mRNA stability or pre-mRNA alternative splicing is affected by Rbm24 knockout. Among them are Cdh23, Pcdh15, and Myo7a, which have been shown to play important roles in stereocilia development as well as mechano-electrical transduction. Taken together, our present work suggests that RBM24 is required for mouse hair cell development through regulating pre-mRNA alternative splicing as well as mRNA stability.
Collapse
Affiliation(s)
- Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Cuiqiao Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Wu Peng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yuehui Xi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
26
|
Ye R, Hu N, Cao C, Su R, Xu S, Yang C, Zhou X, Xue Y. Capture RIC-seq reveals positional rules of PTBP1-associated RNA loops in splicing regulation. Mol Cell 2023; 83:1311-1327.e7. [PMID: 36958328 DOI: 10.1016/j.molcel.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 03/25/2023]
Abstract
RNA-binding proteins (RBPs) bind at different positions of the pre-mRNA molecules to promote or reduce the usage of a particular exon. Seeking to understand the working principle of these positional effects, we develop a capture RIC-seq (CRIC-seq) method to enrich specific RBP-associated in situ proximal RNA-RNA fragments for deep sequencing. We determine hnRNPA1-, SRSF1-, and PTBP1-associated proximal RNA-RNA contacts and regulatory mechanisms in HeLa cells. Unexpectedly, the 3D RNA map analysis shows that PTBP1-associated loops in individual introns preferentially promote cassette exon splicing by accelerating asymmetric intron removal, whereas the loops spanning across cassette exon primarily repress splicing. These "positional rules" can faithfully predict PTBP1-regulated splicing outcomes. We further demonstrate that cancer-related splicing quantitative trait loci can disrupt RNA loops by reducing PTBP1 binding on pre-mRNAs to cause aberrant splicing in tumors. Our study presents a powerful method for exploring the functions of RBP-associated RNA-RNA proximal contacts in gene regulation and disease.
Collapse
Affiliation(s)
- Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Naijing Hu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruibao Su
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihan Xu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang 325003, China
| | - Chen Yang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang 325003, China
| | - Xiangtian Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang 325003, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Mehta Z, Touma M. Post-Transcriptional Modification by Alternative Splicing and Pathogenic Splicing Variants in Cardiovascular Development and Congenital Heart Defects. Int J Mol Sci 2023; 24:ijms24021555. [PMID: 36675070 PMCID: PMC9862068 DOI: 10.3390/ijms24021555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Advancements in genomics, bioinformatics, and genome editing have uncovered new dimensions in gene regulation. Post-transcriptional modifications by the alternative splicing of mRNA transcripts are critical regulatory mechanisms of mammalian gene expression. In the heart, there is an expanding interest in elucidating the role of alternative splicing in transcriptome regulation. Substantial efforts were directed toward investigating this process in heart development and failure. However, few studies shed light on alternative splicing products and their dysregulation in congenital heart defects (CHDs). While elegant reports showed the crucial roles of RNA binding proteins (RBPs) in orchestrating splicing transitions during heart development and failure, the impact of RBPs dysregulation or genetic variation on CHDs has not been fully addressed. Herein, we review the current understanding of alternative splicing and RBPs' roles in heart development and CHDs. Wediscuss the impact of perinatal splicing transition and its dysregulation in CHDs. We further summarize the discoveries made of causal splicing variants in key transcription factors that are implicated in CHDs. An improved understanding of the roles of alternative splicing in heart development and CHDs may potentially inform novel preventive and therapeutic advancements for newborn infants with CHDs.
Collapse
Affiliation(s)
- Zubin Mehta
- Neonatal/Congenital Heart Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Neonatal/Congenital Heart Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
28
|
Akerberg AA, Trembley M, Butty V, Schwertner A, Zhao L, Beerens M, Liu X, Mahamdeh M, Yuan S, Boyer L, MacRae C, Nguyen C, Pu WT, Burns CE, Burns CG. RBPMS2 Is a Myocardial-Enriched Splicing Regulator Required for Cardiac Function. Circ Res 2022; 131:980-1000. [PMID: 36367103 PMCID: PMC9770155 DOI: 10.1161/circresaha.122.321728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND RBPs (RNA-binding proteins) perform indispensable functions in the post-transcriptional regulation of gene expression. Numerous RBPs have been implicated in cardiac development or physiology based on gene knockout studies and the identification of pathogenic RBP gene mutations in monogenic heart disorders. The discovery and characterization of additional RBPs performing indispensable functions in the heart will advance basic and translational cardiovascular research. METHODS We performed a differential expression screen in zebrafish embryos to identify genes enriched in nkx2.5-positive cardiomyocytes or cardiopharyngeal progenitors compared to nkx2.5-negative cells from the same embryos. We investigated the myocardial-enriched gene RNA-binding protein with multiple splicing (variants) 2 [RBPMS2)] by generating and characterizing rbpms2 knockout zebrafish and human cardiomyocytes derived from RBPMS2-deficient induced pluripotent stem cells. RESULTS We identified 1848 genes enriched in the nkx2.5-positive population. Among the most highly enriched genes, most with well-established functions in the heart, we discovered the ohnologs rbpms2a and rbpms2b, which encode an evolutionarily conserved RBP. Rbpms2 localizes selectively to cardiomyocytes during zebrafish heart development and strong cardiomyocyte expression persists into adulthood. Rbpms2-deficient embryos suffer from early cardiac dysfunction characterized by reduced ejection fraction. The functional deficit is accompanied by myofibril disarray, altered calcium handling, and differential alternative splicing events in mutant cardiomyocytes. These phenotypes are also observed in RBPMS2-deficient human cardiomyocytes, indicative of conserved molecular and cellular function. RNA-sequencing and comparative analysis of genes mis-spliced in RBPMS2-deficient zebrafish and human cardiomyocytes uncovered a conserved network of 29 ortholog pairs that require RBPMS2 for alternative splicing regulation, including RBFOX2, SLC8A1, and MYBPC3. CONCLUSIONS Our study identifies RBPMS2 as a conserved regulator of alternative splicing, myofibrillar organization, and calcium handling in zebrafish and human cardiomyocytes.
Collapse
Affiliation(s)
- Alexander A. Akerberg
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Michael Trembley
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Vincent Butty
- BioMicroCenter, Department of Biology (V.B.), Massachusetts Institute of Technology, Cambridge‚ MA
- Department of Biology (V.B., L.B.), Massachusetts Institute of Technology, Cambridge‚ MA
| | - Asya Schwertner
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Long Zhao
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Manu Beerens
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA (M.B., C.M.)
| | - Xujie Liu
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Mohammed Mahamdeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Shiaulou Yuan
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Laurie Boyer
- Department of Biology (V.B., L.B.), Massachusetts Institute of Technology, Cambridge‚ MA
- Department of Biological Engineering (L.B.), Massachusetts Institute of Technology, Cambridge‚ MA
| | - Calum MacRae
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA (M.B., C.M.)
| | - Christopher Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Innovation Research Center, Heart Vascular & Thoracic Institute, Cleveland Clinic‚ Cleveland‚ OH (C.N.)
| | - William T. Pu
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Harvard Stem Cell Institute, Cambridge, MA (W.T.P., C.E.B.)
| | - Caroline E. Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Harvard Stem Cell Institute, Cambridge, MA (W.T.P., C.E.B.)
| | - C. Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| |
Collapse
|
29
|
Liu J, Wang K, Liu X, Pan L, Zhou W, Huang J, Liu H, Su Z, Xu XQ. RBM24 controls cardiac QT interval through CaMKIIδ splicing. Cell Mol Life Sci 2022; 79:613. [PMID: 36454480 PMCID: PMC11802997 DOI: 10.1007/s00018-022-04624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 12/02/2022]
Abstract
Calcium/calmodulin-dependent kinase II delta (CaMKIIδ) is the predominant cardiac isoform and it is alternatively spliced to generate multiple variants. Variable variants allow for distinct localization and potentially different functions in the heart. Dysregulation of CaMKIIδ splicing has been demonstrated to be involved in the pathogenesis of heart diseases, such as cardiac hypertrophy, arrhythmia, and diastolic dysfunction. However, the mechanisms that regulate CaMKIIδ are incompletely understood. Here, we show that RNA binding motif protein 24 (RBM24) is a key splicing regulator of CaMKIIδ. RBM24 ablation leads to the aberrant shift of CaMKIIδ towards the δ-C isoform, which is known to activate the L-type Ca current. In line with this, we found marked alteration in Ca2+ handling followed by prolongation of the ventricular cardiac action potential and QT interval in RBM24 knockout mice, and these changes could be attenuated by treatment with an inhibitor of CaMKIIδ. Importantly, knockdown of RBM24 in human embryonic stem cell-derived cardiomyocytes showed similar electrophysiological abnormalities, suggesting the important role of RBM24 in the human heart. Thus, our data suggest that RBM24 is a critical regulator of CaMKIIδ to control the cardiac QT interval, highlighting the key role of splicing regulation in cardiac rhythm.
Collapse
Affiliation(s)
- Jing Liu
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Ke Wang
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
| | - Xingyang Liu
- School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
| | - Lei Pan
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
| | - Wanlu Zhou
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
| | - Jingru Huang
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
| | - Hongli Liu
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, People's Republic of China
| | - Zhiying Su
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, People's Republic of China
| | - Xiu Qin Xu
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China.
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, People's Republic of China.
| |
Collapse
|
30
|
Zhang J, Kong X, Sun W, Wang L, Shen T, Chen M, Chen X. The RNA-binding protein RBM24 regulates lipid metabolism and SLC7A11 mRNA stability to modulate ferroptosis and inflammatory response. Front Cell Dev Biol 2022; 10:1008576. [PMID: 36478739 PMCID: PMC9720322 DOI: 10.3389/fcell.2022.1008576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Lipids play a critical role in many cellular processes by serving as structural components of cell membranes or functioning as energy fuel and signaling molecules. The RNA-binding proteins RBM24 and RBM38 share an identical RNA-binding domain and thereby, regulate a group of same targets, such as p21. However, it is not certain whether RBM24 and RBM38 participates in lipid homeostasis. Here, lipidomic analysis showed that a deficiency in RBM24 or RBM38 leads to altered lipid metabolism, with more profound alteration by loss of RBM24 in MCF7 cells. We also showed that mice deficient in RBM24 were prone to chronic inflammation and liver steatosis, but not spontaneous tumors. These data let us speculate whether RBM24 regulates ferroptosis, a programmed cell death that links inflammation and liver steatosis via lipid peroxidation. Indeed, we found that over-expression of RBM24 protected, whereas knockout of RBM24 sensitized, cells to Erastin-induced ferroptosis by modulating the mRNA stability of SLC7A11, a ferroptosis inhibitor. Moreover, we showed that knockdown of SLC7A11 reversed the effect of RBM24 on ferroptosis. Together, our study revealed that RBM24 regulates lipid metabolism and SLC7A11 mRNA stability to modulate ferroptosis and inflammatory response.
Collapse
Affiliation(s)
- Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC, Davis, CA, United States,*Correspondence: Jin Zhang, ; Xinbin Chen,
| | - Xiangmudong Kong
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC, Davis, CA, United States
| | | | - Leyi Wang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC, Davis, CA, United States
| | - Tong Shen
- West Coast Metabolomics Center, UC, Davis, CA, United States
| | - Mingyi Chen
- Department of Pathology, Southwestern Medical Center, University of Texas, Austin, TX, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC, Davis, CA, United States,*Correspondence: Jin Zhang, ; Xinbin Chen,
| |
Collapse
|
31
|
Emerging Roles of RNA-Binding Proteins in Inner Ear Hair Cell Development and Regeneration. Int J Mol Sci 2022; 23:ijms232012393. [PMID: 36293251 PMCID: PMC9604452 DOI: 10.3390/ijms232012393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate gene expression at the post-transcriptional level. They play major roles in the tissue- and stage-specific expression of protein isoforms as well as in the maintenance of protein homeostasis. The inner ear is a bi-functional organ, with the cochlea and the vestibular system required for hearing and for maintaining balance, respectively. It is relatively well documented that transcription factors and signaling pathways are critically involved in the formation of inner ear structures and in the development of hair cells. Accumulating evidence highlights emerging functions of RBPs in the post-transcriptional regulation of inner ear development and hair cell function. Importantly, mutations of splicing factors of the RBP family and defective alternative splicing, which result in inappropriate expression of protein isoforms, lead to deafness in both animal models and humans. Because RBPs are critical regulators of cell proliferation and differentiation, they present the potential to promote hair cell regeneration following noise- or ototoxin-induced damage through mitotic and non-mitotic mechanisms. Therefore, deciphering RBP-regulated events during inner ear development and hair cell regeneration can help define therapeutic strategies for treatment of hearing loss. In this review, we outline our evolving understanding of the implications of RBPs in hair cell formation and hearing disease with the aim of promoting future research in this field.
Collapse
|
32
|
Hinkle ER, Blue RE, Tsai YH, Combs M, Davi J, Coffey AR, Boriek AM, Taylor JM, Parker JS, Giudice J. Stretching muscle cells induces transcriptional and splicing transitions and changes in SR proteins. Commun Biol 2022; 5:987. [PMID: 36123433 PMCID: PMC9485123 DOI: 10.1038/s42003-022-03915-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
Alternative splicing is an RNA processing mechanism involved in skeletal muscle development and pathology. Muscular diseases exhibit splicing alterations and changes in mechanobiology leading us to investigate the interconnection between mechanical forces and RNA processing. We performed deep RNA-sequencing after stretching muscle cells. First, we uncovered transcriptional changes in genes encoding proteins involved in muscle function and transcription. Second, we observed that numerous mechanosensitive genes were part of the MAPK pathway which was activated in response to stretching. Third, we revealed that stretching skeletal muscle cells increased the proportion of alternatively spliced cassette exons and their inclusion. Fourth, we demonstrated that the serine and arginine-rich proteins exhibited stronger transcriptional changes than other RNA-binding proteins and that SRSF4 phosphorylation is mechanosensitive. Identifying SRSF4 as a mechanosensitive RNA-binding protein that might contribute to crosstalk between mechanotransduction, transcription, and splicing could potentially reveal novel insights into muscular diseases, particularly those with unknown etiologies.
Collapse
Affiliation(s)
- Emma R Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - R Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Matthew Combs
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Jacquelyn Davi
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Alisha R Coffey
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Aladin M Boriek
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Joel S Parker
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA.
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA.
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA.
| |
Collapse
|
33
|
Han H, Best AJ, Braunschweig U, Mikolajewicz N, Li JD, Roth J, Chowdhury F, Mantica F, Nabeel-Shah S, Parada G, Brown KR, O'Hanlon D, Wei J, Yao Y, Zid AA, Comsa LC, Jen M, Wang J, Datti A, Gonatopoulos-Pournatzis T, Weatheritt RJ, Greenblatt JF, Wrana JL, Irimia M, Gingras AC, Moffat J, Blencowe BJ. Systematic exploration of dynamic splicing networks reveals conserved multistage regulators of neurogenesis. Mol Cell 2022; 82:2982-2999.e14. [PMID: 35914530 PMCID: PMC10686216 DOI: 10.1016/j.molcel.2022.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/16/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
Abstract
Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.
Collapse
Affiliation(s)
- Hong Han
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Andrew J Best
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | | | - Jack Daiyang Li
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fuad Chowdhury
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona 08003, Spain
| | - Syed Nabeel-Shah
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Guillermo Parada
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kevin R Brown
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Dave O'Hanlon
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jiarun Wei
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yuxi Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abdelrahman Abou Zid
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Lim Caden Comsa
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Mark Jen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jenny Wang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Alessandro Datti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Thomas Gonatopoulos-Pournatzis
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Center for Cancer Research National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey L Wrana
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
34
|
Malakootian M, Bagheri Moghaddam M, Kalayinia S, Farrashi M, Maleki M, Sadeghipour P, Amin A. Dilated cardiomyopathy caused by a pathogenic nucleotide variant in RBM20 in an Iranian family. BMC Med Genomics 2022; 15:106. [PMID: 35527250 PMCID: PMC9079971 DOI: 10.1186/s12920-022-01262-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/05/2022] [Indexed: 12/22/2022] Open
Abstract
Abstract
Introduction
Dilated cardiomyopathy (DCM) is characterized by the dilation and impaired contraction of 1 or both ventricles and can be caused by a variety of disorders. Up to 50% of idiopathic DCM cases have heritable familial diseases, and the clinical screening of family members is recommended. Identifying a genetic cause that can explain the DCM risk in the family can help with better screening planning and clinical decision-making. Whole-exome sequencing (WES) has aided significantly in the detection of causative genes in many genetically heterogeneous diseases. In the present study, we applied WES to identify the causative genetic variant in a family with heritable DCM.
Methods
WES was applied to identify genetic variants on a 26-year-old man as the proband of a family with DCM. Subsequently, Sanger sequencing was performed to confirm the variant in the patient and all the available affected and unaffected family members. The pathogenicity of the variant was evaluated through co-segregation analysis in the family and employment of in silico predictive software.
Results
WES demonstrated the missense pathogenic heterozygous nucleotide variant, c.1907G > A, (p.Arg636His, rs267607004, NM_0011343), in exon 9 of the RBM20 gene in the proband. The variant was co-segregated in all the affected family members in a heterozygous form and the unaffected family members. The in silico analysis confirmed the variant as pathogenic.
Conclusion
Pathogenic RBM20 nucleotide variants are associated with arrhythmogenic DCM. We believe that our report is the first to show an RBM20 variant in Iranian descent associated with DCM.
Collapse
|
35
|
Gan P, Wang Z, Morales MG, Zhang Y, Bassel-Duby R, Liu N, Olson EN. RBPMS is an RNA-binding protein that mediates cardiomyocyte binucleation and cardiovascular development. Dev Cell 2022; 57:959-973.e7. [PMID: 35472321 PMCID: PMC9116735 DOI: 10.1016/j.devcel.2022.03.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/04/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Noncompaction cardiomyopathy is a common congenital cardiac disorder associated with abnormal ventricular cardiomyocyte trabeculation and impaired pump function. The genetic basis and underlying mechanisms of this disorder remain elusive. We show that the genetic deletion of RNA-binding protein with multiple splicing (Rbpms), an uncharacterized RNA-binding factor, causes perinatal lethality in mice due to congenital cardiovascular defects. The loss of Rbpms causes premature onset of cardiomyocyte binucleation and cell cycle arrest during development. Human iPSC-derived cardiomyocytes with RBPMS gene deletion have a similar blockade to cytokinesis. Sequencing analysis revealed that RBPMS plays a role in RNA splicing and influences RNAs involved in cytoskeletal signaling pathways. We found that RBPMS mediates the isoform switching of the heart-enriched LIM domain protein Pdlim5. The loss of Rbpms leads to an abnormal accumulation of Pdlim5-short isoforms, disrupting cardiomyocyte cytokinesis. Our findings connect premature cardiomyocyte binucleation to noncompaction cardiomyopathy and highlight the role of RBPMS in this process.
Collapse
Affiliation(s)
- Peiheng Gan
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhaoning Wang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Maria Gabriela Morales
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
36
|
RBM24 in the Post-Transcriptional Regulation of Cancer Progression: Anti-Tumor or Pro-Tumor Activity? Cancers (Basel) 2022; 14:cancers14071843. [PMID: 35406615 PMCID: PMC8997389 DOI: 10.3390/cancers14071843] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary RBM24 is a highly conserved RNA-binding protein that plays critical roles in the post-transcriptional regulation of gene expression for initiating cell differentiation during embryonic development and for maintaining tissue homeostasis in adult life. Evidence is now accumulating that it is frequently dysregulated across human cancers. Importantly, RBM24 may act as a tumor suppressor or as an oncogene in a context- or background-dependent manner. Its activity can be regulated by protein–protein interactions and post-translational modifications, making it a potential therapeutic target for cancer treatment. However, molecular mechanisms underlying its function in tumor growth and metastasis remain elusive. Further investigation will be necessary to better understand how its post-transcriptional regulatory activity is controlled and how it is implicated in tumor progression. This review provides a comprehensive analysis of recent findings on the implication of RBM24 in cancer and proposes future research directions to delve more deeply into the mechanisms underlying its tumor-suppressive function or oncogenic activity. Abstract RNA-binding proteins are critical post-transcriptional regulators of gene expression. They are implicated in a wide range of physiological and pathological processes by modulating nearly every aspect of RNA metabolisms. Alterations in their expression and function disrupt tissue homeostasis and lead to the occurrence of various cancers. RBM24 is a highly conserved protein that binds to a large spectrum of target mRNAs and regulates many post-transcriptional events ranging from pre-mRNA splicing to mRNA stability, polyadenylation and translation. Studies using different animal models indicate that it plays an essential role in promoting cellular differentiation during organogenesis and tissue regeneration. Evidence is also accumulating that its dysregulation frequently occurs across human cancers. In several tissues, RBM24 clearly functions as a tumor suppressor, which is consistent with its inhibitory potential on cell proliferation. However, upregulation of RBM24 in other cancers appears to promote tumor growth. There is a possibility that RBM24 displays both anti-tumor and pro-tumor activities, which may be regulated in part through differential interactions with its protein partners and by its post-translational modifications. This makes it a potential biomarker for diagnosis and prognosis, as well as a therapeutic target for cancer treatment. The challenge remains to determine the post-transcriptional mechanisms by which RBM24 modulates gene expression and tumor progression in a context- or background-dependent manner. This review discusses recent findings on the potential function of RBM24 in tumorigenesis and provides future directions for better understanding its regulatory role in cancer cells.
Collapse
|
37
|
Wang Y, Li W, Zhang C, Peng W, Xu Z. RBM24 is localized to stress granules in cells under various stress conditions. Biochem Biophys Res Commun 2022; 608:96-101. [PMID: 35395551 DOI: 10.1016/j.bbrc.2022.03.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 11/02/2022]
Abstract
Stress granules (SGs) are formed when untranslated messenger ribonucleoproteins (mRNPs) accumulate in cells under stress, and are thought to minimize stress-induced damage and promote cell survival. RBM24 (RNA-binding motif protein 24) is an RNA-binding protein that plays pivotal roles in regulating the stability or translation initiation of target mRNAs as well as alternative splicing of target pre-mRNAs. Its important physiological functions are highlighted by the fact that Rbm24 knockout mice or zebrafish suffer from dysfunction of heart, eye, and inner ear. Here we show that RBM24 is recruited into SGs under various stress conditions, suggesting that it might protect its target RNAs in cells under stress. However, SG formation is unaffected when Rbm24 expression is down-regulated. Nevertheless, RBM24 overexpression in cultured cells is sufficient to induce SG formation, suggesting that RBM24 might play an important role in SG formation. In conclusion, our present work reveals that RBM24 is a SG component, which implies that RBM24 could protect its target mRNAs in stressed cells.
Collapse
Affiliation(s)
- Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Wei Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Cuiqiao Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Wu Peng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China; Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong, 250014, China.
| |
Collapse
|
38
|
In heart failure reactivation of RNA-binding proteins is associated with the expression of 1,523 fetal-specific isoforms. PLoS Comput Biol 2022; 18:e1009918. [PMID: 35226669 PMCID: PMC8912908 DOI: 10.1371/journal.pcbi.1009918] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/10/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2023] Open
Abstract
Reactivation of fetal-specific genes and isoforms occurs during heart failure. However, the underlying molecular mechanisms and the extent to which the fetal program switch occurs remains unclear. Limitations hindering transcriptome-wide analyses of alternative splicing differences (i.e. isoform switching) in cardiovascular system (CVS) tissues between fetal, healthy adult and heart failure have included both cellular heterogeneity across bulk RNA-seq samples and limited availability of fetal tissue for research. To overcome these limitations, we have deconvoluted the cellular compositions of 996 RNA-seq samples representing heart failure, healthy adult (heart and arteria), and fetal-like (iPSC-derived cardiovascular progenitor cells) CVS tissues. Comparison of the expression profiles revealed that reactivation of fetal-specific RNA-binding proteins (RBPs), and the accompanied re-expression of 1,523 fetal-specific isoforms, contribute to the transcriptome differences between heart failure and healthy adult heart. Of note, isoforms for 20 different RBPs were among those that reverted in heart failure to the fetal-like expression pattern. We determined that, compared with adult-specific isoforms, fetal-specific isoforms encode proteins that tend to have more functions, are more likely to harbor RBP binding sites, have canonical sequences at their splice sites, and contain typical upstream polypyrimidine tracts. Our study suggests that compared with healthy adult, fetal cardiac tissue requires stricter transcriptional regulation, and that during heart failure reversion to this stricter transcriptional regulation occurs. Furthermore, we provide a resource of cardiac developmental stage-specific and heart failure-associated genes and isoforms, which are largely unexplored and can be exploited to investigate novel therapeutics for heart failure. Heart failure is a chronic condition in which the heart does not pump enough blood. It has been shown that in heart failure, the adult heart reverts to a fetal-like metabolic state and oxygen consumption. Additionally, genes and isoforms that are expressed in the heart only during fetal development (i.e. not in the healthy adult heart) are turned on in heart failure. However, the underlying molecular mechanisms and the extent to which the switch to a fetal gene program occurs remains unclear. In this study, we initially characterized the differences between the fetal and adult heart transcriptomes (entire set of expressed genes and isoforms). We found that RNA binding proteins (RBPs), a family of genes that regulate multiple aspects of a transcript’s maturation, including transcription, splicing and post-transcriptional modifications, play a central role in the differences between fetal and adult heart tissues. We observed that many RBPs that are only expressed in the heart during fetal development become reactivated in heart failure, resulting in the expression of 1,523 fetal-specific isoforms. These findings suggest that reactivation of fetal-specific RBPs in heart failure drives a transcriptome-wide switch to expression of fetal-specific isoforms; and hence that RBPs could potentially serve as novel therapeutic targets.
Collapse
|
39
|
Soubise B, Jiang Y, Douet-Guilbert N, Troadec MB. RBM22, a Key Player of Pre-mRNA Splicing and Gene Expression Regulation, Is Altered in Cancer. Cancers (Basel) 2022; 14:cancers14030643. [PMID: 35158909 PMCID: PMC8833553 DOI: 10.3390/cancers14030643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023] Open
Abstract
RNA-Binding Proteins (RBP) are very diverse and cover a large number of functions in the cells. This review focuses on RBM22, a gene encoding an RBP and belonging to the RNA-Binding Motif (RBM) family of genes. RBM22 presents a Zinc Finger like and a Zinc Finger domain, an RNA-Recognition Motif (RRM), and a Proline-Rich domain with a general structure suggesting a fusion of two yeast genes during evolution: Cwc2 and Ecm2. RBM22 is mainly involved in pre-mRNA splicing, playing the essential role of maintaining the conformation of the catalytic core of the spliceosome and acting as a bridge between the catalytic core and other essential protein components of the spliceosome. RBM22 is also involved in gene regulation, and is able to bind DNA, acting as a bona fide transcription factor on a large number of target genes. Undoubtedly due to its wide scope in the regulation of gene expression, RBM22 has been associated with several pathologies and, notably, with the aggressiveness of cancer cells and with the phenotype of a myelodysplastic syndrome. Mutations, enforced expression level, and haploinsufficiency of RBM22 gene are observed in those diseases. RBM22 could represent a potential therapeutic target in specific diseases, and, notably, in cancer.
Collapse
Affiliation(s)
- Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
| | - Yan Jiang
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- Correspondence: ; Tel.: +33-2-98-01-64-55
| |
Collapse
|
40
|
Wang R, Chen F, Chen Q, Wan X, Shi M, Chen AK, Ma Z, Li G, Wang M, Ying Y, Liu Q, Li H, Zhang X, Ma J, Zhong J, Chen M, Zhang MQ, Zhang Y, Chen Y, Zhu D. MyoD is a 3D genome structure organizer for muscle cell identity. Nat Commun 2022; 13:205. [PMID: 35017543 PMCID: PMC8752600 DOI: 10.1038/s41467-021-27865-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
The genome exists as an organized, three-dimensional (3D) dynamic architecture, and each cell type has a unique 3D genome organization that determines its cell identity. An unresolved question is how cell type-specific 3D genome structures are established during development. Here, we analyzed 3D genome structures in muscle cells from mice lacking the muscle lineage transcription factor (TF), MyoD, versus wild-type mice. We show that MyoD functions as a “genome organizer” that specifies 3D genome architecture unique to muscle cell development, and that H3K27ac is insufficient for the establishment of MyoD-induced chromatin loops in muscle cells. Moreover, we present evidence that other cell lineage-specific TFs might also exert functional roles in orchestrating lineage-specific 3D genome organization during development. Pioneer transcription factors (TFs) have been proposed to act as protein anchors to orchestrate cell type-specific 3D genome architecture. MyoD is a pioneer TF for myogenic lineage specification. Here the authors provide further support for the role of MyoD in 3D genome architecture in muscle stem cells by comparing MyoD knockout and wild-type mice.
Collapse
Affiliation(s)
- Ruiting Wang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Fengling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Qian Chen
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Xin Wan
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Minglei Shi
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China
| | - Zhao Ma
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China.,Department of Biomedical Engineering, College of Engineering, Peking University, 100871, Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellent in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Science, 100049, Beijing, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellent in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Science, 100049, Beijing, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China.,Department of Biomedical Engineering, College of Engineering, Peking University, 100871, Beijing, China
| | - Qinyao Liu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Hu Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510320, Guangzhou, China
| | - Xu Zhang
- Beijing institute of collaborative innovation, 100094, Beijing, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Jiayun Zhong
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Meihong Chen
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China. .,MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Medicine, Tsinghua University, 100084, Beijing, China. .,Department of Biological Sciences, Center for Systems Biology, The University of Texas, Dallas 800 West Campbell Road, RL11, Richardson, TX, 75080-3021, USA.
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China.
| | - Yang Chen
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China. .,MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China. .,MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Medicine, Tsinghua University, 100084, Beijing, China.
| | - Dahai Zhu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510320, Guangzhou, China.
| |
Collapse
|
41
|
Lachke SA. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Exp Eye Res 2022; 214:108889. [PMID: 34906599 PMCID: PMC8792301 DOI: 10.1016/j.exer.2021.108889] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023]
Abstract
Development of the ocular lens - a transparent tissue capable of sustaining frequent shape changes for optimal focusing power - pushes the boundaries of what cells can achieve using the molecular toolkit encoded by their genomes. The mammalian lens contains broadly two types of cells, the anteriorly located monolayer of epithelial cells which, at the equatorial region of the lens, initiate differentiation into fiber cells that contribute to the bulk of the tissue. This differentiation program involves massive upregulation of select fiber cell-expressed RNAs and their subsequent translation into high amounts of proteins, such as crystallins. But intriguingly, fiber cells achieve this while also simultaneously undergoing significant morphological changes such as elongation - involving about 1000-fold length-wise increase - and migration, which requires modulation of cytoskeletal and cell adhesion factors. Adding further to the challenges, these molecular and cellular events have to be coordinated as fiber cells progress toward loss of their nuclei and organelles, which irreversibly compromises their potential for harnessing genetically hardwired information. A long-standing question is how processes downstream of signaling and transcription, which may also participate in feedback regulation, contribute toward orchestrating these cellular differentiation events in the lens. It is now becoming clear from findings over the past decade that post-transcriptional gene expression regulatory mechanisms are critical in controlling cellular proteomes and coordinating key processes in lens development and fiber cell differentiation. Indeed, RNA-binding proteins (RBPs) such as Caprin2, Celf1, Rbm24 and Tdrd7 have now been described in mediating post-transcriptional control over key factors (e.g. Actn2, Cdkn1a (p21Cip1), Cdkn1b (p27Kip1), various crystallins, Dnase2b, Hspb1, Pax6, Prox1, Sox2) that are variously involved in cell cycle, transcription, cytoskeleton maintenance and differentiation in the lens. Furthermore, deficiencies of these RBPs have been shown to result in various eye and lens defects and/or cataract. Because fiber cell differentiation in the lens occurs throughout life, the underlying regulatory mechanisms operational in development are expected to also be recruited for the maintenance of transparency in aged lenses. Indeed, in support of this, TDRD7 and CAPRIN2 loci have been linked to age-related cataract in humans. Here, I will review the role of key RBPs in the lens and their importance in understanding the pathology of lens defects. I will discuss advances in RBP-based gene expression control, in general, and the important challenges that need to be addressed in the lens to define the mechanisms that determine the epithelial and fiber cell proteome. Finally, I will also discuss in detail several key future directions including the application of bioinformatics approaches such as iSyTE to study RBP-based post-transcriptional gene expression control in the aging lens and in the context of age-related cataract.
Collapse
Affiliation(s)
- Salil A Lachke
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA; Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
42
|
Lu SHA, Lee KZ, Yeh YC, Pan CY, Hsu PWC, Su LY, Tsai SY. Alternative Splicing Mediated by RNA-Binding Protein RBM24 Facilitates Cardiac Myofibrillogenesis in a Differentiation Stage-Specific Manner. Circ Res 2021; 130:112-129. [PMID: 34816743 DOI: 10.1161/circresaha.121.320080] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Mutations in genes encoding sarcomeric proteins lead to failures in sarcomere assembly, the building blocks of contracting muscles, resulting in cardiomyopathies that are a leading cause of morbidity and mortality worldwide. Splicing variants of sarcomeric proteins are crucial at different stages of myofibrillogenesis, accounting for sarcomeric structural integrity. RNA-binding motif protein 24 (RBM24) is known as a tissue-specific splicing regulator that plays an essential role in cardiogenesis. However, it had been unclear if the developmental stage-specific alternative splicing facilitated by RBM24 contributes to sarcomere assembly and cardiogenesis. Our aim isto study the molecular mechanism by which RBM24 regulates cardiogenesis and sarcomere assembly in a temporal-dependent manner. Methods: We ablated RBM24 from human embryonic stem cells (hESCs) using CRISPR/Cas9 techniques. Results: Although RBM24-/- hESCs still differentiated into sarcomere-hosting cardiomyocytes, they exhibited disrupted sarcomeric structures with punctate Z-lines due to impaired myosin replacement during early myofibrillogenesis. Transcriptomics revealed >4000 genes regulated by RBM24. Among them, core myofibrillogenesis proteins (e.g. ACTN2, TTN, and MYH10) were misspliced. Consequently, MYH6 cannot replace non-muscle myosin MYH10, leading to myofibrillogenesis arrest at the early premyofibril stage and causing disrupted sarcomeres. Intriguingly, we found that the actin-binding domain (ABD; encoded by exon 6) of the Z-line anchor protein ACTN2 is predominantly excluded from early cardiac differentiation, whereas it is consistently included in human adult heart. CRISPR/Cas9-mediated deletion of exon 6 from ACTN2 in hESCs, as well as forced expression of full-length ACTN2 in RBM24-/- hESCs, further corroborated that inclusion of exon 6 is critical for sarcomere assembly. Overall, we have demonstrated that RBM24-facilitated inclusion of exon 6 in ACTN2 at distinct stages of cardiac differentiation is evolutionarily conserved and crucial to sarcomere assembly and integrity. Conclusions: RBM24 acts as a master regulator to modulate the temporal dynamics of core myofibrillogenesis genes and thereby orchestrates sarcomere organization.
Collapse
Affiliation(s)
| | | | - Yu-Chen Yeh
- Life Science, National Taiwan University, TAIWAN
| | | | - Paul Wei-Che Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, TAIWAN
| | - Liang-Yu Su
- Life Science, National Taiwan University, TAIWAN
| | - Su-Yi Tsai
- Life Science, National Taiwan University, TAIWAN
| |
Collapse
|
43
|
van den Hoogenhof MMG, El Azzouzi H, Beqqali A. Editorial: RNA Biology in Cardiovascular Disease. Front Genet 2021; 12:775091. [PMID: 34712276 PMCID: PMC8546179 DOI: 10.3389/fgene.2021.775091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Maarten M G van den Hoogenhof
- Institute of Experimental Cardiology, Heidelberg University Clinic, Heidelberg, Germany.,Partner Site Heidelberg, German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Hamid El Azzouzi
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Abdelaziz Beqqali
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
44
|
Shi DL, Grifone R. RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease. Front Cell Dev Biol 2021; 9:738978. [PMID: 34616743 PMCID: PMC8488162 DOI: 10.3389/fcell.2021.738978] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Embryonic myogenesis is a temporally and spatially regulated process that generates skeletal muscle of the trunk and limbs. During this process, mononucleated myoblasts derived from myogenic progenitor cells within the somites undergo proliferation, migration and differentiation to elongate and fuse into multinucleated functional myofibers. Skeletal muscle is the most abundant tissue of the body and has the remarkable ability to self-repair by re-activating the myogenic program in muscle stem cells, known as satellite cells. Post-transcriptional regulation of gene expression mediated by RNA-binding proteins is critically required for muscle development during embryogenesis and for muscle homeostasis in the adult. Differential subcellular localization and activity of RNA-binding proteins orchestrates target gene expression at multiple levels to regulate different steps of myogenesis. Dysfunctions of these post-transcriptional regulators impair muscle development and homeostasis, but also cause defects in motor neurons or the neuromuscular junction, resulting in muscle degeneration and neuromuscular disease. Many RNA-binding proteins, such as members of the muscle blind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) families, display both overlapping and distinct targets in muscle cells. Thus they function either cooperatively or antagonistically to coordinate myoblast proliferation and differentiation. Evidence is accumulating that the dynamic interplay of their regulatory activity may control the progression of myogenic program as well as stem cell quiescence and activation. Moreover, the role of RNA-binding proteins that regulate post-transcriptional modification in the myogenic program is far less understood as compared with transcription factors involved in myogenic specification and differentiation. Here we review past achievements and recent advances in understanding the functions of RNA-binding proteins during skeletal muscle development, regeneration and disease, with the aim to identify the fundamental questions that are still open for further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| | - Raphaëlle Grifone
- Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| |
Collapse
|
45
|
Xia RM, Liu T, Li WG, Xu XQ. RNA-binding protein RBM24 represses colorectal tumourigenesis by stabilising PTEN mRNA. Clin Transl Med 2021; 11:e383. [PMID: 34709758 PMCID: PMC8506628 DOI: 10.1002/ctm2.383] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND RNA-binding motif protein 24 (RBM24) functions as a splicing regulator, which is critical for organ development and is dysregulated in human cancers. Here, we aim to uncover the biological function of RBM24 in colorectal tumourigenesis. METHODS Xenograft tumour model, Rbm24 knockout and Apcmin/+ mouse models were utilised. Colorectal cancer cells overexpressing or silencing RBM24 were established. RNA immunoprecipitation (RIP) assay was conducted to detect protein-RNA associations. Gene expression was measured by immunohistochemistry, western blotting, or quantitative PCR (qPCR). RESULTS Rbm24-knockout mice developed spontaneous colorectal adenomas with lower expression of phosphatase and tensin homolog (PTEN). Immunohistochemical staining for the proliferation markers Ki-67 and pHH3 and BrdU assay showed intestinal hyperplasia in Rbm24-knockout mice compared to wild-type mice. RBM24 expression in colorectal adenoma tissues of Apcmin/+ mouse was downregulated compared with adjacent normal samples and was positively correlated with PTEN expression. In vitro, RBM24 overexpression suppressed cell proliferation, migration, invasion and increased sensitivity to 5-FU or cisplatin in CRC cells. Mechanistically, RBM24 maintained PTEN mRNA stability by directly binding to the GT-rich region at positions 8101-8251 in the 3'-UTR of PTEN mRNA, prolonging the half-life of PTEN mRNA, thereby increasing PTEN expression. Hence, low expression of RBM24 downregulated PTEN mRNA, causing the activation of PI3K-Akt signalling in CRC cells. Furthermore, RBM24 expression in CRC tissues was lower than adjacent normal samples. RBM24 expression was positively correlated with PTEN expression and negatively correlated with Ki-67 level. CRC patients with high RBM24 expression had a favourable outcome. CONCLUSIONS Taken together, RBM24 expression is markedly lower in colorectal tumours than in para-carcinoma tissues. Rbm24-knockout mice develop spontaneous colorectal adenomas. RBM24 directly binds and stabilises PTEN mRNA, which could cause the suppression of CRC cell proliferation, migration and invasion, thereby repressing colorectal tumourigenesis. These findings support the tumour-suppressive role of RBM24. Targeting RBM24 holds strong promise for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Rong Mu Xia
- Institute of Stem Cell and Regenerative MedicineSchool of MedicineXiamen UniversityXiamenFujianPeople's Republic of China
| | - Tao Liu
- Department of Hepatobiliary SurgerySchool of MedicineXiang'an Hospital of Xiamen UniversityXiamen UniversityXiamenFujianPeople's Republic of China
| | - Wen Gang Li
- Institute of Stem Cell and Regenerative MedicineSchool of MedicineXiamen UniversityXiamenFujianPeople's Republic of China
- Department of Hepatobiliary SurgerySchool of MedicineXiang'an Hospital of Xiamen UniversityXiamen UniversityXiamenFujianPeople's Republic of China
| | - Xiu Qin Xu
- Institute of Stem Cell and Regenerative MedicineSchool of MedicineXiamen UniversityXiamenFujianPeople's Republic of China
| |
Collapse
|
46
|
Dumont AA, Dumont L, Zhou D, Giguère H, Pileggi C, Harper ME, Blondin DP, Scott MS, Auger-Messier M. Cardiomyocyte-specific Srsf3 deletion reveals a mitochondrial regulatory role. FASEB J 2021; 35:e21544. [PMID: 33819356 DOI: 10.1096/fj.202002293rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 11/11/2022]
Abstract
Serine-rich splicing factor 3 (SRSF3) was recently reported as being necessary to preserve RNA stability via an mTOR mechanism in a cardiac mouse model in adulthood. Here, we demonstrate the link between Srsf3 and mitochondrial integrity in an embryonic cardiomyocyte-specific Srsf3 conditional knockout (cKO) mouse model. Fifteen-day-old Srsf3 cKO mice showed dramatically reduced (below 50%) survival and reduced the left ventricular systolic performance, and histological analysis of these hearts revealed a significant increase in cardiomyocyte size, confirming the severe remodeling induced by Srsf3 deletion. RNA-seq analysis of the hearts of 5-day-old Srsf3 cKO mice revealed early changes in expression levels and alternative splicing of several transcripts related to mitochondrial integrity and oxidative phosphorylation. Likewise, the levels of several protein complexes of the electron transport chain decreased, and mitochondrial complex I-driven respiration of permeabilized cardiac muscle fibers from the left ventricle was impaired. Furthermore, transmission electron microscopy analysis showed disordered mitochondrial length and cristae structure. Together with its indispensable role in the physiological maintenance of mouse hearts, these results highlight the previously unrecognized function of Srsf3 in regulating the mitochondrial integrity.
Collapse
Affiliation(s)
- Audrey-Ann Dumont
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauralyne Dumont
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Delong Zhou
- Département de microbiologie et d'infectiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Giguère
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Chantal Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Denis P Blondin
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michelle S Scott
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mannix Auger-Messier
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
47
|
Boeckel JN, Möbius-Winkler M, Müller M, Rebs S, Eger N, Schoppe L, Tappu R, Kokot KE, Kneuer JM, Gaul S, Bordalo DM, Lai A, Haas J, Ghanbari M, Drewe-Boss P, Liss M, Katus HA, Ohler U, Gotthardt M, Laufs U, Streckfuss-Bömeke K, Meder B. SLM2 Is A Novel Cardiac Splicing Factor Involved in Heart Failure due to Dilated Cardiomyopathy. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:129-146. [PMID: 34273561 PMCID: PMC9510876 DOI: 10.1016/j.gpb.2021.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Alternative mRNA splicing is a fundamental process to increase the versatility of the genome. In humans, cardiac mRNA splicing is involved in the pathophysiology of heart failure. Mutations in the splicing factor RNA binding motif protein 20 (RBM20) cause severe forms of cardiomyopathy. To identify novel cardiomyopathy-associated splicing factors, RNA-seq and tissue-enrichment analyses were performed, which identified up-regulated expression of Sam68-Like mammalian protein 2 (SLM2) in the left ventricle of dilated cardiomyopathy (DCM) patients. In the human heart, SLM2 binds to important transcripts of sarcomere constituents, such as those encoding myosin light chain 2 (MYL2), troponin I3 (TNNI3), troponin T2 (TNNT2), tropomyosin 1/2 (TPM1/2), and titin (TTN). Mechanistically, SLM2 mediates intron retention, prevents exon exclusion, and thereby mediates alternative splicing of the mRNA regions encoding the variable proline-, glutamate-, valine-, and lysine-rich (PEVK) domain and another part of the I-band region of titin. In summary, SLM2 is a novel cardiac splicing regulator with essential functions for maintaining cardiomyocyte integrity by binding to and processing the mRNAs of essential cardiac constituents such as titin.
Collapse
Affiliation(s)
- Jes-Niels Boeckel
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | | | - Marion Müller
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany; Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen 32545, Germany
| | - Sabine Rebs
- Department of Cardiology and Pneumology, University Hospital, Georg-August University Goettingen, Goettingen 37075, Germany; German Center for Cardiovascular Research (DZHK), Partner site Goettingen, Goettingen 37075, Germany
| | - Nicole Eger
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Laura Schoppe
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Rewati Tappu
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Karoline E Kokot
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Jasmin M Kneuer
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Diana M Bordalo
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Alan Lai
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Jan Haas
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Mahsa Ghanbari
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany; Institute of Biology, Humboldt Universität zu Berlin, Berlin 10099, Germany
| | - Philipp Drewe-Boss
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany; Institute of Biology, Humboldt Universität zu Berlin, Berlin 10099, Germany
| | - Martin Liss
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13092, Germany; German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin 10117, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany; Institute of Biology, Humboldt Universität zu Berlin, Berlin 10099, Germany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13092, Germany; German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin 10117, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Katrin Streckfuss-Bömeke
- Department of Cardiology and Pneumology, University Hospital, Georg-August University Goettingen, Goettingen 37075, Germany; German Center for Cardiovascular Research (DZHK), Partner site Goettingen, Goettingen 37075, Germany
| | - Benjamin Meder
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany; Stanford Genome Technology Center, Department of Genetics, Stanford Medical School, Palo Alto, CA 94304, USA.
| |
Collapse
|
48
|
Dash S, Brastrom LK, Patel SD, Scott CA, Slusarski DC, Lachke SA. The master transcription factor SOX2, mutated in anophthalmia/microphthalmia, is post-transcriptionally regulated by the conserved RNA-binding protein RBM24 in vertebrate eye development. Hum Mol Genet 2021; 29:591-604. [PMID: 31814023 DOI: 10.1093/hmg/ddz278] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/24/2019] [Accepted: 11/10/2019] [Indexed: 11/14/2022] Open
Abstract
Mutations in the key transcription factor, SOX2, alone account for 20% of anophthalmia (no eye) and microphthalmia (small eye) birth defects in humans-yet its regulation is not well understood, especially on the post-transcription level. We report the unprecedented finding that the conserved RNA-binding motif protein, RBM24, positively controls Sox2 mRNA stability and is necessary for optimal SOX2 mRNA and protein levels in development, perturbation of which causes ocular defects, including microphthalmia and anophthalmia. RNA immunoprecipitation assay indicates that RBM24 protein interacts with Sox2 mRNA in mouse embryonic eye tissue. and electrophoretic mobility shift assay shows that RBM24 directly binds to the Sox2 mRNA 3'UTR, which is dependent on AU-rich elements (ARE) present in the Sox2 mRNA 3'UTR. Further, we demonstrate that Sox2 3'UTR AREs are necessary for RBM24-based elevation of Sox2 mRNA half-life. We find that this novel RBM24-Sox2 regulatory module is essential for early eye development in vertebrates. We show that Rbm24-targeted deletion using a constitutive CMV-driven Cre in mouse, and rbm24a-CRISPR/Cas9-targeted mutation or morpholino knockdown in zebrafish, results in Sox2 downregulation and causes the developmental defects anophthalmia or microphthalmia, similar to human SOX2-deficiency defects. We further show that Rbm24 deficiency leads to apoptotic defects in mouse ocular tissue and downregulation of eye development markers Lhx2, Pax6, Jag1, E-cadherin and gamma-crystallins. These data highlight the exquisite specificity that conserved RNA-binding proteins like RBM24 mediate in the post-transcriptional control of key transcription factors, namely, SOX2, associated with organogenesis and human developmental defects.
Collapse
Affiliation(s)
- Soma Dash
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - Lindy K Brastrom
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Shaili D Patel
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - C Anthony Scott
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|
49
|
Yin YW, Liu KL, Lu BS, Li W, Niu YL, Zhao CM, Yang Z, Guo PY, Qi JC. RBM24 exacerbates bladder cancer progression by forming a Runx1t1/TCF4/miR-625-5p feedback loop. Exp Mol Med 2021; 53:933-946. [PMID: 34021255 PMCID: PMC8178337 DOI: 10.1038/s12276-021-00623-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/31/2021] [Accepted: 02/23/2021] [Indexed: 12/02/2022] Open
Abstract
RNA–binding motif protein 24 (RBM24) acts as a multifunctional determinant of cell fate, proliferation, apoptosis, and differentiation during development by regulating premRNA splicing and mRNA stability. It is also implicated in carcinogenesis, but the functions of RBM24 in bladder cancer (BC) remain unclear. In the present study, we revealed that RBM24 was upregulated in BC tissues. Importantly, we found that a higher level of RBM24 was correlated with poor prognosis in BC patients. Overexpression of RBM24 promoted BC cell proliferation, while depletion of RBM24 inhibited BC cell proliferation in vivo and in vitro. Mechanistically, RBM24 positively regulated Runx1t1 expression in BC cells by binding to and enhancing Runx1t1 mRNA stability. Furthermore, Runx1t1 in turn promoted RBM24 expression by interacting with the transcription factor TCF4 and suppressing the transcription of miR-625-5p, which directly targets RBM24 and suppresses RBM24 expression. RBM24-regulated BC cell proliferation was moderated via the Runx1t1/TCF4/miR-625-5p feedback loop. These results indicate that the RBM24/Runx1t1/TCF4/miR-625-5p positive feedback loop participates in BC progression. Disruption of this pathway may be a potential therapeutic strategy for BC treatment. A protein called RBM24 promotes progression of bladder cancer (BC) by forming a positive feedback loop with a specific transcription factor, driving cancer cell proliferation. Survival rates for BC are low, and the current imperfect understanding of the underlying mechanisms makes it difficult to treat. Ping-Ying Guo at Hebei Medical University in Shijiazhuang, China, and co-workers investigated the role of RBM24, known to be involved in other cancers, and found increased levels in BC tissues. Higher levels were associated with a poor prognosis. Further investigation revealed that RBM24 boosts levels of the transcription factor, which suppresses a molecule that in turn suppresses RBM24, forming a positive feedback loop promoting BC cell proliferation. Interrupting the feedback loop decreased tumor size in a mouse model. These results may help identify better treatments for BC.
Collapse
Affiliation(s)
- Yue-Wei Yin
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P.R. China.,Hebei Institute of Urology, Shijiazhuang, 050000, P.R. China
| | - Kai-Long Liu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P.R. China.,Hebei Institute of Urology, Shijiazhuang, 050000, P.R. China
| | - Bao-Sai Lu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P.R. China.,Hebei Institute of Urology, Shijiazhuang, 050000, P.R. China
| | - Wei Li
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P.R. China.,Hebei Institute of Urology, Shijiazhuang, 050000, P.R. China
| | - Ya-Lin Niu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P.R. China
| | - Chen-Ming Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P.R. China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P.R. China.,Hebei Institute of Urology, Shijiazhuang, 050000, P.R. China
| | - Ping-Ying Guo
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P.R. China. .,Hebei Institute of Urology, Shijiazhuang, 050000, P.R. China.
| | - Jin-Chun Qi
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P.R. China. .,Hebei Institute of Urology, Shijiazhuang, 050000, P.R. China.
| |
Collapse
|
50
|
Grifone R, Saquet A, Desgres M, Sangiorgi C, Gargano C, Li Z, Coletti D, Shi DL. Rbm24 displays dynamic functions required for myogenic differentiation during muscle regeneration. Sci Rep 2021; 11:9423. [PMID: 33941806 PMCID: PMC8093301 DOI: 10.1038/s41598-021-88563-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle has a remarkable capacity of regeneration after injury, but the regulatory network underlying this repair process remains elusive. RNA-binding proteins play key roles in the post-transcriptional regulation of gene expression and the maintenance of tissue homeostasis and plasticity. Rbm24 regulates myogenic differentiation during early development, but its implication in adult muscle is poorly understood. Here we show that it exerts multiple functions in muscle regeneration. Consistent with its dynamic subcellular localization during embryonic muscle development, Rbm24 also displays cytoplasm to nucleus translocation during C2C12 myoblast differentiation. In adult mice, Rbm24 mRNA is enriched in slow-twitch muscles along with myogenin mRNA. The protein displays nuclear localization in both slow and fast myofibers. Upon injury, Rbm24 is rapidly upregulated in regenerating myofibers and accumulates in the myonucleus of nascent myofibers. Through satellite cell transplantation, we demonstrate that Rbm24 functions sequentially to regulate myogenic differentiation and muscle regeneration. It is required for myogenin expression at early stages of muscle injury and for muscle-specific pre-mRNA alternative splicing at late stages of regeneration. These results identify Rbm24 as a multifaceted regulator of myoblast differentiation. They provide insights into the molecular pathway orchestrating the expression of myogenic factors and muscle functional proteins during regeneration.
Collapse
Affiliation(s)
- Raphaëlle Grifone
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France.
| | - Audrey Saquet
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France
| | - Manon Desgres
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France
| | - Claudia Sangiorgi
- Biological Adaptation and Ageing (B2A), CNRS UMR8256 and INSERM U1164, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France
| | - Caterina Gargano
- Biological Adaptation and Ageing (B2A), CNRS UMR8256 and INSERM U1164, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France
| | - Zhenlin Li
- Biological Adaptation and Ageing (B2A), CNRS UMR8256 and INSERM U1164, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France
| | - Dario Coletti
- Biological Adaptation and Ageing (B2A), CNRS UMR8256 and INSERM U1164, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France.,Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Histology and Medical Embryology Section, Sapienza University of Rome, 00161, Rome, Italy
| | - De-Li Shi
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005, Paris, France.
| |
Collapse
|