1
|
Osswald M, Barros-Carvalho A, Carmo AM, Loyer N, Gracio PC, Sunkel CE, Homem CCF, Januschke J, Morais-de-Sá E. aPKC regulates apical constriction to prevent tissue rupture in the Drosophila follicular epithelium. Curr Biol 2022; 32:4411-4427.e8. [PMID: 36113470 PMCID: PMC9632327 DOI: 10.1016/j.cub.2022.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 01/02/2023]
Abstract
Apical-basal polarity is an essential epithelial trait controlled by the evolutionarily conserved PAR-aPKC polarity network. Dysregulation of polarity proteins disrupts tissue organization during development and in disease, but the underlying mechanisms are unclear due to the broad implications of polarity loss. Here, we uncover how Drosophila aPKC maintains epithelial architecture by directly observing tissue disorganization after fast optogenetic inactivation in living adult flies and ovaries cultured ex vivo. We show that fast aPKC perturbation in the proliferative follicular epithelium produces large epithelial gaps that result from increased apical constriction, rather than loss of apical-basal polarity. Accordingly, we can modulate the incidence of epithelial gaps by increasing and decreasing actomyosin-driven contractility. We traced the origin of these large epithelial gaps to tissue rupture next to dividing cells. Live imaging shows that aPKC perturbation induces apical constriction in non-mitotic cells within minutes, producing pulling forces that ultimately detach dividing and neighboring cells. We further demonstrate that epithelial rupture requires a global increase of apical constriction, as it is prevented by the presence of non-constricting cells. Conversely, a global induction of apical tension through light-induced recruitment of RhoGEF2 to the apical side is sufficient to produce tissue rupture. Hence, our work reveals that the roles of aPKC in polarity and actomyosin regulation are separable and provides the first in vivo evidence that excessive tissue stress can break the epithelial barrier during proliferation.
Collapse
Affiliation(s)
- Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - André Barros-Carvalho
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana M Carmo
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Nicolas Loyer
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK
| | - Patricia C Gracio
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1150-199 Lisbon, Portugal
| | - Claudio E Sunkel
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Catarina C F Homem
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1150-199 Lisbon, Portugal
| | - Jens Januschke
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
2
|
Differential phase register of Hes1 oscillations with mitoses underlies cell-cycle heterogeneity in ER + breast cancer cells. Proc Natl Acad Sci U S A 2021; 118:2113527118. [PMID: 34725165 PMCID: PMC8609326 DOI: 10.1073/pnas.2113527118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Tumors exhibit heterogeneities that are not due to mutations, including cancer stem cells with different potencies. We show that the cancer stem-cell state predisposed to dormancy in vivo has a highly variable and long cell cycle. Using single-cell live imaging for the transcriptional repressor Hes1 (a key molecule in cancer), we show a type of circadian-like oscillatory expression of Hes1 in all cells in the population. The most potent cancer stem cells tend to divide around the trough of the Hes1 oscillatory wave, a feature predictive of a long cell cycle. A concept proposed here is that the position of cell division with respect to the Hes1 wave is predictive of its prospective cell-cycle length and cancer cellular substate. Here, we study the dynamical expression of endogenously labeled Hes1, a transcriptional repressor implicated in controlling cell proliferation, to understand how cell-cycle length heterogeneity is generated in estrogen receptor (ER)+ breast cancer cells. We find that Hes1 shows oscillatory expression with ∼25 h periodicity and during each cell cycle has a variable peak in G1, a trough around G1–S transition, and a less variable second peak in G2/M. Compared to other subpopulations, the cell cycle in CD44HighCD24Low cancer stem cells is longest and most variable. Most cells divide around the peak of the Hes1 expression wave, but preceding mitoses in slow dividing CD44HighCD24Low cells appear phase-shifted, resulting in a late-onset Hes1 peak in G1. The position, duration, and shape of this peak, rather than the Hes1 expression levels, are good predictors of cell-cycle length. Diminishing Hes1 oscillations by enforcing sustained expression slows down the cell cycle, impairs proliferation, abolishes the dynamic expression of p21, and increases the percentage of CD44HighCD24Low cells. Reciprocally, blocking the cell cycle causes an elongation of Hes1 periodicity, suggesting a bidirectional interaction of the Hes1 oscillator and the cell cycle. We propose that Hes1 oscillations are functionally important for the efficient progression of the cell cycle and that the position of mitosis in relation to the Hes1 wave underlies cell-cycle length heterogeneity in cancer cell subpopulations.
Collapse
|
3
|
Pokrovsky D, Forné I, Straub T, Imhof A, Rupp RAW. A systemic cell cycle block impacts stage-specific histone modification profiles during Xenopus embryogenesis. PLoS Biol 2021; 19:e3001377. [PMID: 34491983 PMCID: PMC8535184 DOI: 10.1371/journal.pbio.3001377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/22/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022] Open
Abstract
Forming an embryo from a zygote poses an apparent conflict for epigenetic regulation. On the one hand, the de novo induction of cell fate identities requires the establishment and subsequent maintenance of epigenetic information to harness developmental gene expression. On the other hand, the embryo depends on cell proliferation, and every round of DNA replication dilutes preexisting histone modifications by incorporation of new unmodified histones into chromatin. Here, we investigated the possible relationship between the propagation of epigenetic information and the developmental cell proliferation during Xenopus embryogenesis. We systemically inhibited cell proliferation during the G1/S transition in gastrula embryos and followed their development until the tadpole stage. Comparing wild-type and cell cycle-arrested embryos, we show that the inhibition of cell proliferation is principally compatible with embryo survival and cellular differentiation. In parallel, we quantified by mass spectrometry the abundance of a large set of histone modification states, which reflects the developmental maturation of the embryonic epigenome. The arrested embryos developed abnormal stage-specific histone modification profiles (HMPs), in which transcriptionally repressive histone marks were overrepresented. Embryos released from the cell cycle block during neurulation reverted toward normality on morphological, molecular, and epigenetic levels. These results suggest that the cell cycle block by HUA alters stage-specific HMPs. We propose that this influence is strong enough to control developmental decisions, specifically in cell populations that switch between resting and proliferating states such as stem cells.
Collapse
Affiliation(s)
- Daniil Pokrovsky
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ignasi Forné
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tobias Straub
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Axel Imhof
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ralph A. W. Rupp
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Schuh L, Loos C, Pokrovsky D, Imhof A, Rupp RAW, Marr C. H4K20 Methylation Is Differently Regulated by Dilution and Demethylation in Proliferating and Cell-Cycle-Arrested Xenopus Embryos. Cell Syst 2020; 11:653-662.e8. [PMID: 33296683 DOI: 10.1016/j.cels.2020.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/05/2020] [Accepted: 11/11/2020] [Indexed: 11/26/2022]
Abstract
DNA replication during cell division leads to dilution of histone modifications and can thus affect chromatin-mediated gene regulation, raising the question of how the cell-cycle shapes the histone modification landscape, particularly during embryogenesis. We tackled this problem by manipulating the cell cycle during early Xenopus laevis embryogenesis and analyzing in vivo histone H4K20 methylation kinetics. The global distribution of un-, mono-, di-, and tri-methylated histone H4K20 was measured by mass spectrometry in normal and cell-cycle-arrested embryos over time. Using multi-start maximum likelihood optimization and quantitative model selection, we found that three specific biological methylation rate constants were required to explain the measured H4K20 methylation state kinetics. While demethylation is essential for regulating H4K20 methylation kinetics in non-cycling cells, demethylation is very likely dispensable in rapidly dividing cells of early embryos, suggesting that cell-cycle-mediated dilution of H4K20 methylation is an essential regulatory component for shaping its epigenetic landscape during early development. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Lea Schuh
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany; Department of Mathematics, Technical University of Munich, Garching 85748, Germany
| | - Carolin Loos
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany; Department of Mathematics, Technical University of Munich, Garching 85748, Germany; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniil Pokrovsky
- Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Axel Imhof
- Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Ralph A W Rupp
- Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany.
| |
Collapse
|
5
|
aPKC in neuronal differentiation, maturation and function. Neuronal Signal 2019; 3:NS20190019. [PMID: 32269838 PMCID: PMC7104321 DOI: 10.1042/ns20190019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
The atypical Protein Kinase Cs (aPKCs)—PRKCI, PRKCZ and PKMζ—form a subfamily within the Protein Kinase C (PKC) family. These kinases are expressed in the nervous system, including during its development and in adulthood. One of the aPKCs, PKMζ, appears to be restricted to the nervous system. aPKCs are known to play a role in a variety of cellular responses such as proliferation, differentiation, polarity, migration, survival and key metabolic functions such as glucose uptake, that are critical for nervous system development and function. Therefore, these kinases have garnered a lot of interest in terms of their functional role in the nervous system. Here we review the expression and function of aPKCs in neural development and in neuronal maturation and function. Despite seemingly paradoxical findings with genetic deletion versus gene silencing approaches, we posit that aPKCs are likely candidates for regulating many important neurodevelopmental and neuronal functions, and may be associated with a number of human neuropsychiatric diseases.
Collapse
|
6
|
Abstract
The vertebrate heart tube forms from epithelial progenitor cells in the early embryo and subsequently elongates by progressive addition of second heart field (SHF) progenitor cells from adjacent splanchnic mesoderm. Failure to maximally elongate the heart results in a spectrum of morphological defects affecting the cardiac poles, including outflow tract alignment and atrioventricular septal defects, among the most common congenital birth anomalies. SHF cells constitute an atypical apicobasally polarized epithelium with dynamic basal filopodia, located in the dorsal wall of the pericardial cavity. Recent studies have highlighted the importance of epithelial architecture and cell adhesion in the SHF, particularly for signaling events that control the progenitor cell niche during heart tube elongation. The 22q11.2 deletion syndrome gene Tbx1 regulates progenitor cell status through modulating cell shape and filopodial activity and is required for SHF contributions to both cardiac poles. Noncanonical Wnt signaling and planar cell polarity pathway genes control epithelial polarity in the dorsal pericardial wall, as progenitor cells differentiate in a transition zone at the arterial pole. Defects in these pathways lead to outflow tract shortening. Moreover, new biomechanical models of heart tube elongation have been proposed based on analysis of tissue-wide forces driving epithelial morphogenesis in the SHF, including regional cell intercalation, cell cohesion, and epithelial tension. Regulation of the epithelial properties of SHF cells is thus emerging as a key step during heart tube elongation, adding a new facet to our understanding of the mechanisms underlying both heart morphogenesis and congenital heart defects.
Collapse
Affiliation(s)
- Claudio Cortes
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Alexandre Francou
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Christopher De Bono
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Robert G Kelly
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France.
| |
Collapse
|
7
|
Wang Y, Zhao J, Cao C, Yan Y, Chen J, Feng F, Zhou N, Han S, Xu Y, Zhao J, Yan Y, Cui H. The role of E2F1-topoIIβ signaling in regulation of cell cycle exit and neuronal differentiation of human SH-SY5Y cells. Differentiation 2018; 104:1-12. [PMID: 30216786 DOI: 10.1016/j.diff.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/14/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
Abstract
This study aims to test the role of E2F1-topoIIβ signaling in neuronal differentiation of SH-SY5Y cells. With retinoic acid (RA) induction, a high percentage of cells were found to be arrested at the G0/G1 phase, with decreased levels of cyclinD1, CDK4, phosphorylation status of pRb and E2F1, in addition to an elevated level of p27. The cells were shown to differentiate into neuronal phenotypes characterized by highly expressed neuronal markers, MAP2 and enriched topoIIβ, and remarkable neurite outgrowth. Exogenously forced E2F1 expression with a specific E2F1 plasmid led to suppression of topoIIβ expression and disruption of the neuronal differentiation of SH-SY5Y cells. On further examination using the ChIP assay, we found that E2F1 bound directly to the promoter region of topoIIβ, and its binding ability was inversely correlated with topoIIβ expression in response to RA induction. Thus, our findings suggest that E2F1-topoIIβ signaling may play a role in regulation of cell cycle exit and neuronal differentiation.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Junxia Zhao
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Cuili Cao
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Yongxin Yan
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Jing Chen
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Fan Feng
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Najing Zhou
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Shuo Han
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Yannan Xu
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Juan Zhao
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Yunli Yan
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China.
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| |
Collapse
|
8
|
Watanabe Y, Kawaue T, Miyata T. Differentiating cells mechanically limit progenitor cells’ interkinetic nuclear migration to secure apical cytogenesis. Development 2018; 145:dev.162883. [DOI: 10.1242/dev.162883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 06/07/2018] [Indexed: 12/19/2022]
Abstract
Many proliferative epithelia are pseudostratified due to cell cycle–dependent interkinetic nuclear migration (IKNM, basal during G1 and apical during G2). Although most epithelia, including early embryonic neuroepithelia (≤100 µm thick), undergo IKNM over the entire apicobasal extent, more apicobasally elongated (300 µm) neural progenitor cells (also called “radial glia”) in the mid-embryonic mouse cerebral wall move their nuclei only within its apical (100 µm) compartment, leaving the remaining basal part nucleus-free (fiber-like). How this IKNM range (i.e., the thickness of a pseudostratified “ventricular zone” [VZ]) is determined remains unknown. Here, we report external fencing of IKNM and VZ by differentiating cells. When a tight stack of multipolar cells just basal to VZ was “drilled” via acute neuron-directed expression of diphtheria toxin, IKNM of apicobasally connected progenitor cells continued far basally (200 µm). The unfencing-induced, basally overshot nuclei stay in S phase too long and do not move apically, suggesting that external limitation of IKNM is necessary for progenitors to undergo normal cytogenetic behaviors. Thus, physical collaboration between progenitors and differentiating cells including neurons underlies brain development.
Collapse
Affiliation(s)
- Yuto Watanabe
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Takumi Kawaue
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| |
Collapse
|
9
|
Sater AK, Moody SA. Using Xenopus to understand human disease and developmental disorders. Genesis 2017; 55. [PMID: 28095616 DOI: 10.1002/dvg.22997] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/14/2016] [Indexed: 02/03/2023]
Abstract
Model animals are crucial to biomedical research. Among the commonly used model animals, the amphibian, Xenopus, has had tremendous impact because of its unique experimental advantages, cost effectiveness, and close evolutionary relationship with mammals as a tetrapod. Over the past 50 years, the use of Xenopus has made possible many fundamental contributions to biomedicine, and it is a cornerstone of research in cell biology, developmental biology, evolutionary biology, immunology, molecular biology, neurobiology, and physiology. The prospects for Xenopus as an experimental system are excellent: Xenopus is uniquely well-suited for many contemporary approaches used to study fundamental biological and disease mechanisms. Moreover, recent advances in high throughput DNA sequencing, genome editing, proteomics, and pharmacological screening are easily applicable in Xenopus, enabling rapid functional genomics and human disease modeling at a systems level.
Collapse
Affiliation(s)
- Amy K Sater
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
10
|
Molecular Control of Atypical Protein Kinase C: Tipping the Balance between Self-Renewal and Differentiation. J Mol Biol 2016; 428:1455-64. [PMID: 26992354 DOI: 10.1016/j.jmb.2016.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/20/2016] [Accepted: 03/03/2016] [Indexed: 01/05/2023]
Abstract
Complex organisms are faced with the challenge of generating and maintaining diverse cell types, ranging from simple epithelia to neurons and motile immune cells [1-3]. To meet this challenge, a complex set of regulatory pathways controls nearly every aspect of cell growth and function, including genetic and epigenetic programming, cytoskeleton dynamics, and protein trafficking. The far reach of cell fate specification pathways makes it particularly catastrophic when they malfunction, both during development and for tissue homeostasis in adult organisms. Furthermore, the therapeutic promise of stem cells derives from their ability to deftly navigate the multitude of pathways that control cell fate [4]. How the molecular components making up these pathways function to specify cell fate is beginning to become clear. Work from diverse systems suggests that the atypical Protein Kinase C (aPKC) is a key regulator of cell fate decisions in metazoans [5-7]. Here, we examine some of the diverse physiological outcomes of aPKC's function in differentiation, along with the molecular pathways that control aPKC and those that are responsive to changes in its catalytic activity.
Collapse
|
11
|
Préau L, Le Blay K, Saint Paul E, Morvan-Dubois G, Demeneix BA. Differential thyroid hormone sensitivity of fast cycling progenitors in the neurogenic niches of tadpoles and juvenile frogs. Mol Cell Endocrinol 2016; 420:138-51. [PMID: 26628040 DOI: 10.1016/j.mce.2015.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/21/2015] [Accepted: 11/22/2015] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis occurs in neural stem cell (NSC) niches where slow cycling stem cells give rise to faster cycling progenitors. In the adult mouse NSC niche thyroid hormone, T3, and its receptor TRα act as a neurogenic switch promoting progenitor cell cycle completion and neuronal differentiation. Little is known about whether and how T3 controls proliferation of differentially cycling cells during xenopus neurogenesis. To address this question, we first used Sox3 as a marker of stem cell and progenitor populations and then applied pulse-chase EdU/IdU incorporation experiments to identify Sox3-expressing slow cycling (NSC) and fast cycling progenitor cells. We focused on the lateral ventricle of Xenopus laevis and two distinct stages of development: late embryonic development (pre-metamorphic) and juvenile frogs (post-metamorphic). These stages were selected for their relatively stable thyroid hormone availability, either side of the major dynamic phase represented by metamorphosis. TRα expression was found in both pre and post-metamorphic neurogenic regions. However, exogenous T3 treatment only increased proliferation of the fast cycling Sox3+ cell population in post-metamorphic juveniles, having no detectable effect on proliferation in pre-metamorphic tadpoles. We hypothesised that the resistance of proliferative cells to exogenous T3 in pre-metamorphic tadpoles could be related to T3 inactivation by the inactivating Deiodinase 3 enzyme. Expression of dio3 was widespread in the tadpole neurogenic niche, but not in the juvenile neurogenic niche. Use of a T3-reporter transgenic line showed that in juveniles, T3 had a direct transcriptional effect on rapid cycling progenitors. Thus, the fast cycling progenitor cells in the neurogenic niche of tadpoles and juvenile frogs respond differentially to T3 as a function of developmental stage.
Collapse
Affiliation(s)
- L Préau
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - K Le Blay
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - E Saint Paul
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - G Morvan-Dubois
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - B A Demeneix
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France.
| |
Collapse
|
12
|
Leung C, Liu Y, Lu X, Kim M, Drysdale TA, Feng Q. Rac1 Signaling Is Required for Anterior Second Heart Field Cellular Organization and Cardiac Outflow Tract Development. J Am Heart Assoc 2015; 5:e002508. [PMID: 26722124 PMCID: PMC4859369 DOI: 10.1161/jaha.115.002508] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/18/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND The small GTPase Rac1 regulates diverse cellular functions, including both apicobasal and planar cell polarity pathways; however, its role in cardiac outflow tract (OFT) development remains unknown. In the present study, we aimed to examine the role of Rac1 in the anterior second heart field (SHF) splanchnic mesoderm and subsequent OFT development during heart morphogenesis. METHODS AND RESULTS Using the Cre/loxP system, mice with an anterior SHF-specific deletion of Rac1 (Rac1(SHF)) were generated. Embryos were collected at various developmental time points for immunostaining and histological analysis. Intrauterine echocardiography was also performed to assess aortic valve blood flow in embryos at embryonic day 18.5. The Rac1(SHF) splanchnic mesoderm exhibited disruptions in SHF progenitor cellular organization and proliferation. Consequently, this led to a spectrum of OFT defects along with aortic valve defects in Rac1(SHF) embryos. Mechanistically, it was found that the ability of the Rac1(SHF) OFT myocardial cells to migrate into the proximal OFT cushion was severely reduced. In addition, expression of the neural crest chemoattractant semaphorin 3c was decreased. Lineage tracing showed that anterior SHF contribution to the OFT myocardium and aortic valves was deficient in Rac1(SHF) hearts. Furthermore, functional analysis with intrauterine echocardiography at embryonic day 18.5 showed aortic valve regurgitation in Rac1(SHF) hearts, which was not seen in control hearts. CONCLUSIONS Disruptions of Rac1 signaling in the anterior SHF results in aberrant progenitor cellular organization and defects in OFT development. Our data show Rac1 signaling to be a critical regulator of cardiac OFT formation during embryonic heart development.
Collapse
Affiliation(s)
- Carmen Leung
- Departments of Physiology and Pharmacology, Medicine and PediatricsSchulich School of Medicine and DentistryCollaborative Program in Developmental BiologyChildren's Health Research InstituteUniversity of Western OntarioLondonOntarioCanada
| | - Yin Liu
- Departments of Physiology and Pharmacology, Medicine and PediatricsSchulich School of Medicine and DentistryCollaborative Program in Developmental BiologyChildren's Health Research InstituteUniversity of Western OntarioLondonOntarioCanada
| | - Xiangru Lu
- Departments of Physiology and Pharmacology, Medicine and PediatricsSchulich School of Medicine and DentistryCollaborative Program in Developmental BiologyChildren's Health Research InstituteUniversity of Western OntarioLondonOntarioCanada
| | - Mella Kim
- Departments of Physiology and Pharmacology, Medicine and PediatricsSchulich School of Medicine and DentistryCollaborative Program in Developmental BiologyChildren's Health Research InstituteUniversity of Western OntarioLondonOntarioCanada
| | - Thomas A. Drysdale
- Departments of Physiology and Pharmacology, Medicine and PediatricsSchulich School of Medicine and DentistryCollaborative Program in Developmental BiologyChildren's Health Research InstituteUniversity of Western OntarioLondonOntarioCanada
| | - Qingping Feng
- Departments of Physiology and Pharmacology, Medicine and PediatricsSchulich School of Medicine and DentistryCollaborative Program in Developmental BiologyChildren's Health Research InstituteUniversity of Western OntarioLondonOntarioCanada
| |
Collapse
|
13
|
Park JY, Hughes LJ, Moon UY, Park R, Kim SB, Tran K, Lee JS, Cho SH, Kim S. The apical complex protein Pals1 is required to maintain cerebellar progenitor cells in a proliferative state. Development 2015; 143:133-46. [PMID: 26657772 DOI: 10.1242/dev.124180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 11/25/2015] [Indexed: 12/28/2022]
Abstract
Through their biased localization and function within the cell, polarity complex proteins are necessary to establish the cellular asymmetry required for tissue organization. Well-characterized germinal zones, mitogenic signals and cell types make the cerebellum an excellent model for addressing the crucial function of polarity complex proteins in the generation and organization of neural tissues. Deletion of the apical polarity complex protein Pals1 in the developing cerebellum results in a remarkably undersized cerebellum with disrupted layers in poorly formed folia and strikingly reduced granule cell production. We demonstrate that Pals1 is not only essential for cerebellum organogenesis, but also for preventing premature differentiation and thus maintaining progenitor pools in cerebellar germinal zones, including cerebellar granule neuron precursors in the external granule layer. In the Pals1 mouse mutants, the expression of genes that regulate the cell cycle was diminished, correlating with the loss of the proliferating cell population of germinal zones. Furthermore, enhanced Shh signaling through activated Smo cannot overcome impaired cerebellar cell generation, arguing for an epistatic role of Pals1 in proliferation capacity. Our study identifies Pals1 as a novel intrinsic factor that regulates the generation of cerebellar cells and Pals1 deficiency as a potential inhibitor of overactive mitogenic signaling.
Collapse
Affiliation(s)
- Jun Young Park
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Lucinda J Hughes
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA Graduate Program of Biomedical Sciences, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Uk Yeol Moon
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Raehee Park
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Sang-Bae Kim
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Khoi Tran
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Ju-Seog Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seo-Hee Cho
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
14
|
Thuret R, Auger H, Papalopulu N. Analysis of neural progenitors from embryogenesis to juvenile adult in Xenopus laevis reveals biphasic neurogenesis and continuous lengthening of the cell cycle. Biol Open 2015; 4:1772-81. [PMID: 26621828 PMCID: PMC4736028 DOI: 10.1242/bio.013391] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Xenopus laevis is a prominent model system for studying neural development, but our understanding of the long-term temporal dynamics of neurogenesis remains incomplete. Here, we present the first continuous description of neurogenesis in X. laevis, covering the entire period of development from the specification of neural ectoderm during gastrulation to juvenile frog. We have used molecular markers to identify progenitors and neurons, short-term bromodeoxyuridine (BrdU) incorporation to map the generation of newborn neurons and dual pulse S-phase labelling to characterise changes in their cell cycle length. Our study revealed the persistence of Sox3-positive progenitor cells from the earliest stages of neural development through to the juvenile adult. Two periods of intense neuronal generation were observed, confirming the existence of primary and secondary waves of neurogenesis, punctuated by a period of quiescence before metamorphosis and culminating in another period of quiescence in the young adult. Analysis of multiple parameters indicates that neural progenitors alternate between global phases of differentiation and amplification and that, regardless of their behaviour, their cell cycle lengthens monotonically during development, at least at the population level.
Collapse
Affiliation(s)
- Raphaël Thuret
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Hélène Auger
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
15
|
Zielke N, Edgar BA. FUCCI sensors: powerful new tools for analysis of cell proliferation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:469-87. [PMID: 25827130 PMCID: PMC6681141 DOI: 10.1002/wdev.189] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/11/2015] [Accepted: 02/26/2015] [Indexed: 01/09/2023]
Abstract
Visualizing the cell cycle behavior of individual cells within living organisms can facilitate the understanding of developmental processes such as pattern formation, morphogenesis, cell differentiation, growth, cell migration, and cell death. Fluorescence Ubiquitin Cell Cycle Indicator (FUCCI) technology offers an accurate, versatile, and universally applicable means of achieving this end. In recent years, the FUCCI system has been adapted to several model systems including flies, fish, mice, and plants, making this technology available to a wide range of researchers for studies of diverse biological problems. Moreover, a broad range of FUCCI‐expressing cell lines originating from diverse cell types have been generated, hence enabling the design of advanced studies that combine in vivo experiments and cell‐based methods such as high‐content screening. Although only a short time has passed since its introduction, the FUCCI technology has already provided fundamental insight into how cells establish quiescence and how G1 phase length impacts the balance between pluripotency and stem cell differentiation. Further discoveries using the FUCCI technology are sure to come. WIREs Dev Biol 2015, 4:469–487. doi: 10.1002/wdev.189 This article is categorized under:
Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Technologies > Generating Chimeras and Lineage Analysis Technologies > Analysis of Cell, Tissue, and Animal Phenotypes
Collapse
Affiliation(s)
- N Zielke
- Deutsches Krebsforschungszentrum (DKFZ), Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Allianz, Heidelberg, Germany
| | - B A Edgar
- Deutsches Krebsforschungszentrum (DKFZ), Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Allianz, Heidelberg, Germany
| |
Collapse
|
16
|
Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72:1559-76. [PMID: 25558812 PMCID: PMC11113123 DOI: 10.1007/s00018-014-1815-9] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023]
Abstract
The identification of neurological symptoms caused by vitamin A deficiency pointed to a critical, early developmental role of vitamin A and its metabolite, retinoic acid (RA). The ability of RA to induce post-mitotic, neural phenotypes in various stem cells, in vitro, served as early evidence that RA is involved in the switch between proliferation and differentiation. In vivo studies have expanded this "opposing signal" model, and the number of primary neurons an embryo develops is now known to depend critically on the levels and spatial distribution of RA. The proneural and neurogenic transcription factors that control the exit of neural progenitors from the cell cycle and allow primary neurons to develop are partly elucidated, but the downstream effectors of RA receptor (RAR) signaling (many of which are putative cell cycle regulators) remain largely unidentified. The molecular mechanisms underlying RA-induced primary neurogenesis in anamniote embryos are starting to be revealed; however, these data have been not been extended to amniote embryos. There is growing evidence that bona fide RARs are found in some mollusks and other invertebrates, but little is known about their necessity or functions in neurogenesis. One normal function of RA is to regulate the cell cycle to halt proliferation, and loss of RA signaling is associated with dedifferentiation and the development of cancer. Identifying the genes and pathways that mediate cell cycle exit downstream of RA will be critical for our understanding of how to target tumor differentiation. Overall, elucidating the molecular details of RAR-regulated neurogenesis will be decisive for developing and understanding neural proliferation-differentiation switches throughout development.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Stephanie Cherie Wu
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
- Department of Pharmaceutical Sciences, University of California, Irvine, USA
| |
Collapse
|