1
|
Hancock LP, Palmer JS, Allwood EG, Smaczynska-de Rooij II, Hodder AJ, Rowe ML, Williamson MP, Ayscough KR. Competitive binding of actin and SH3 domains at proline-rich regions of Las17/WASP regulates actin polymerisation. Commun Biol 2025; 8:759. [PMID: 40374776 DOI: 10.1038/s42003-025-08188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
Eukaryotic actin filaments bind factors that regulate their assembly and disassembly creating a self-organising system, the actin cytoskeleton. Despite extensive knowledge of signals that modulate actin organisation, significant gaps remain in our understanding of spatiotemporal regulation of de novo filament initiation. Yeast Las17/WASP is essential for actin polymerisation initiation supporting membrane invagination in Saccharomyces cerevisiae endocytosis and therefore its tight regulation is critical. The adaptor protein Sla1 inhibits Las17 but mechanisms underpinning Las17 activation remain elusive. Here we show that Las17 binding of tandem Sla1 SH3 domains is >100-fold stronger than single domains. Furthermore, SH3 domains directly compete with G-actin for binding in the Las17 polyproline region, thus rationalising how SH3 interactions can affect actin polymerisation despite their distance from C-terminal actin-binding and Arp2/3-interacting VCA domains. Our data and proposed model also highlight the likely importance of multiple weak interactions that together ensure spatial and temporal regulation of endocytosis.
Collapse
Affiliation(s)
- Lewis P Hancock
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - John S Palmer
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Ellen G Allwood
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | | | - Michelle L Rowe
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
2
|
Draper-Barr G, Defelipe LA, Ruiz-Carrillo D, Gustavsson E, Landau M, García-Alai M. Sla2 is a core interaction hub for clathrin light chain and the Pan1/End3/Sla1 complex. Structure 2025:S0969-2126(25)00147-9. [PMID: 40347949 DOI: 10.1016/j.str.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/25/2025] [Accepted: 04/15/2025] [Indexed: 05/14/2025]
Abstract
The interaction network of Sla2, a vital endocytic mid-coat adaptor protein, undergoes constant rearrangement. Sla2 serves as a scaffold linking the membrane to the actin cytoskeleton, with its role modulated by the clathrin light chain (CLC), which inhibits Sla2's function under certain conditions. We show that Sla2 has two independent binding sites for CLC: one previously described in homologs of fungi (Sla2) and metazoa (Hip1R), and a second found only in Fungi. We present the structural model of the Sla2 actin-binding domains in the context of regulatory structural domains by cryoelectron microscopy. We provide an interaction map of Sla2 and the regulatory proteins Sla1 and Pan1, predicted by AI modeling and confirmed by molecular biophysics techniques. Pan1 may compete with CLC for the conserved Sla2-binding site. These results enhance the mapping of crucial interactions at endocytic checkpoints and highlight the divergence between Metazoa and Fungi in this vital process.
Collapse
Affiliation(s)
- George Draper-Barr
- European Molecular Biology Laboratory, DESY, Building 25a, Hamburg 22607, Germany; Centre for Structural Systems Biology (CSSB), DESY, Building 15, Hamburg 22607, Germany
| | - Lucas A Defelipe
- European Molecular Biology Laboratory, DESY, Building 25a, Hamburg 22607, Germany; Centre for Structural Systems Biology (CSSB), DESY, Building 15, Hamburg 22607, Germany
| | - David Ruiz-Carrillo
- European Molecular Biology Laboratory, DESY, Building 25a, Hamburg 22607, Germany; Centre for Structural Systems Biology (CSSB), DESY, Building 15, Hamburg 22607, Germany
| | - Emil Gustavsson
- Centre for Structural Systems Biology (CSSB), DESY, Building 15, Hamburg 22607, Germany
| | - Meytal Landau
- European Molecular Biology Laboratory, DESY, Building 25a, Hamburg 22607, Germany; Centre for Structural Systems Biology (CSSB), DESY, Building 15, Hamburg 22607, Germany; University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany; Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Maria García-Alai
- European Molecular Biology Laboratory, DESY, Building 25a, Hamburg 22607, Germany; Centre for Structural Systems Biology (CSSB), DESY, Building 15, Hamburg 22607, Germany.
| |
Collapse
|
3
|
Schönnenbeck P, Junglas B, Sachse C. CryoVIA: An image analysis toolkit for the quantification of membrane structures from cryo-EM micrographs. Structure 2025; 33:808-819.e4. [PMID: 39919734 DOI: 10.1016/j.str.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/26/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Imaging of lipid structures and associated protein complexes using cryoelectron microscopy (cryo-EM) is a common visualization and structure determination technique. The quantitative analysis of the membrane structures, however, is not routine and time consuming in particular when large amounts of data are involved. Here, we introduce the automated image-processing software cryo-vesicle image analyzer (CryoVIA) that parametrizes lipid structures of large datasets from cryo-EM images. This toolkit combines segmentation, structure identification with methods to automatically perform a large-scale data analysis of local and global membrane properties such as bilayer thickness, size, and curvature including membrane shape classifications. We included analyses of exemplary datasets of different lipid compositions and protein-induced lipid changes through an endosomal sorting complexes required for transport III (ESCRT-III) membrane remodeling protein. The toolkit opens new possibilities to systematically study structural properties of membrane structures and their modifications from cryo-EM images.
Collapse
Affiliation(s)
- Philipp Schönnenbeck
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Benedikt Junglas
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
4
|
Junglas B, Hudina E, Schönnenbeck P, Ritter I, Heddier A, Santiago-Schübel B, Huesgen PF, Schneider D, Sachse C. Structural plasticity of bacterial ESCRT-III protein PspA in higher-order assemblies. Nat Struct Mol Biol 2025; 32:23-34. [PMID: 39152237 PMCID: PMC11746142 DOI: 10.1038/s41594-024-01359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/21/2024] [Indexed: 08/19/2024]
Abstract
Eukaryotic members of the endosome sorting complex required for transport-III (ESCRT-III) family have been shown to form diverse higher-order assemblies. The bacterial phage shock protein A (PspA) has been identified as a member of the ESCRT-III superfamily, and PspA homo-oligomerizes to form rod-shaped assemblies. As observed for eukaryotic ESCRT-III, PspA forms tubular assemblies of varying diameters. Using electron cryo-electron microscopy, we determined 61 Synechocystis PspA structures and observed in molecular detail how the structural plasticity of PspA rods is mediated by conformational changes at three hinge regions in the monomer and by the fixed and changing molecular contacts between protomers. Moreover, we reduced and increased the structural plasticity of PspA rods by removing the loop connecting helices α3/α4 and the addition of nucleotides, respectively. Based on our analysis of PspA-mediated membrane remodeling, we suggest that the observed mode of structural plasticity is a prerequisite for the biological function of ESCRT-III members.
Collapse
Affiliation(s)
- Benedikt Junglas
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Esther Hudina
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Philipp Schönnenbeck
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Ilona Ritter
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Anja Heddier
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Beatrix Santiago-Schübel
- Zentralinstitut für Engineering, Elektronik und Analytik (ZEA-3), Forschungszentrum Jülich, Jülich, Germany
| | - Pitter F Huesgen
- Zentralinstitut für Engineering, Elektronik und Analytik (ZEA-3), Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Aging-related Disorders (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
5
|
Defelipe LA, Veith K, Burastero O, Kupriianova T, Bento I, Skruzny M, Kölbel K, Uetrecht C, Thuenauer R, García-Alai MM. Subtleties in Clathrin heavy chain binding boxes provide selectivity among adaptor proteins of budding yeast. Nat Commun 2024; 15:9655. [PMID: 39511183 PMCID: PMC11543927 DOI: 10.1038/s41467-024-54037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Clathrin forms a triskelion, or three-legged, network that regulates cellular processes by facilitating cargo internalization and trafficking in eukaryotes. Its N-terminal domain is crucial for interacting with adaptor proteins, which link clathrin to the membrane and engage with specific cargo. The N-terminal domain contains up to four adaptor-binding sites, though their role in preferential occupancy by adaptor proteins remains unclear. In this study, we examine the binding hierarchy of adaptors for clathrin, using integrative biophysical and structural approaches, along with in vivo functional experiments. We find that yeast epsin Ent5 has the highest affinity for clathrin, highlighting its key role in cellular trafficking. Epsins Ent1 and Ent2, crucial for endocytosis but thought to have redundant functions, show distinct binding patterns. Ent1 exhibits stronger interactions with clathrin than Ent2, suggesting a functional divergence toward actin binding. These results offer molecular insights into adaptor protein selectivity, suggesting they competitively bind clathrin while also targeting three different clathrin sites.
Collapse
Affiliation(s)
- Lucas A Defelipe
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Katharina Veith
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Osvaldo Burastero
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Tatiana Kupriianova
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Isabel Bento
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
| | - Michal Skruzny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Carl Zeiss Microscopy GmbH, Jena, Germany
| | - Knut Kölbel
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Deutsches Elektronen Synchrotron - DESY, Hamburg, Germany
| | - Charlotte Uetrecht
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Deutsches Elektronen Synchrotron - DESY, Hamburg, Germany
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - Roland Thuenauer
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Technology Platform Light Microscopy (TPLM), Universität Hamburg (UHH), Hamburg, Germany
| | - Maria M García-Alai
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
| |
Collapse
|
6
|
Johnson A. Mechanistic divergences of endocytic clathrin-coated vesicle formation in mammals, yeasts and plants. J Cell Sci 2024; 137:jcs261847. [PMID: 39161994 PMCID: PMC11361644 DOI: 10.1242/jcs.261847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Clathrin-coated vesicles (CCVs), generated by clathrin-mediated endocytosis (CME), are essential eukaryotic trafficking organelles that transport extracellular and plasma membrane-bound materials into the cell. In this Review, we explore mechanisms of CME in mammals, yeasts and plants, and highlight recent advances in the characterization of endocytosis in plants. Plants separated from mammals and yeast over 1.5 billion years ago, and plant cells have distinct biophysical parameters that can influence CME, such as extreme turgor pressure. Plants can therefore provide a wider perspective on fundamental processes in eukaryotic cells. We compare key mechanisms that drive CCV formation and explore what these mechanisms might reveal about the core principles of endocytosis across the tree of life. Fascinatingly, CME in plants appears to more closely resemble that in mammalian cells than that in yeasts, despite plants being evolutionarily further from mammals than yeast. Endocytic initiation appears to be highly conserved across these three systems, requiring similar protein domains and regulatory processes. Clathrin coat proteins and their honeycomb lattice structures are also highly conserved. However, major differences are found in membrane-bending mechanisms. Unlike in mammals or yeast, plant endocytosis occurs independently of actin, highlighting that mechanistic assumptions about CME across different systems should be made with caution.
Collapse
Affiliation(s)
- Alexander Johnson
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna 1090, Austria
- Medical Imaging Cluster (MIC), Medical University of Vienna, Vienna 1090, Austria
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
7
|
Prischich D, Camarero N, Encinar del Dedo J, Cambra-Pellejà M, Prat J, Nevola L, Martín-Quirós A, Rebollo E, Pastor L, Giralt E, Geli MI, Gorostiza P. Light-dependent inhibition of clathrin-mediated endocytosis in yeast unveils conserved functions of the AP2 complex. iScience 2023; 26:107899. [PMID: 37766990 PMCID: PMC10520943 DOI: 10.1016/j.isci.2023.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is an essential cellular process, conserved among eukaryotes. Yeast constitutes a powerful genetic model to dissect the complex endocytic machinery, yet there is a lack of specific pharmacological agents to interfere with CME in these organisms. TL2 is a light-regulated peptide inhibitor targeting the AP2-β-adaptin/β-arrestin interaction and that can photocontrol CME with high spatiotemporal precision in mammalian cells. Here, we study endocytic protein dynamics by live-cell imaging of the fluorescently tagged coat-associated protein Sla1-GFP, demonstrating that TL2 retains its inhibitory activity in S. cerevisiae spheroplasts. This is despite the β-adaptin/β-arrestin interaction not being conserved in yeast. Our data indicate that the AP2 α-adaptin is the functional target of activated TL2. We identified as interacting partners for the α-appendage, the Eps15 and epsin homologues Ede1 and Ent1. This demonstrates that endocytic cargo loading and sensing can be executed by conserved molecular interfaces, regardless of the proteins involved.
Collapse
Affiliation(s)
- Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red – Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Núria Camarero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red – Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Javier Encinar del Dedo
- Department of Cell Biology, Institute for Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Maria Cambra-Pellejà
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Judit Prat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Laura Nevola
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrés Martín-Quirós
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Rebollo
- Molecular Imaging Platform, Institute for Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Laura Pastor
- Department of Cell Biology, Institute for Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Inorganic and Organic Chemistry, University of Barcelona (UB), Barcelona, Spain
| | - María Isabel Geli
- Department of Cell Biology, Institute for Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red – Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
8
|
Ren Y, Yang J, Fujita B, Jin H, Zhang Y, Berro J. Force redistribution in clathrin-mediated endocytosis revealed by coiled-coil force sensors. SCIENCE ADVANCES 2023; 9:eadi1535. [PMID: 37831774 PMCID: PMC10575576 DOI: 10.1126/sciadv.adi1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Forces are central to countless cellular processes, yet in vivo force measurement at the molecular scale remains difficult if not impossible. During clathrin-mediated endocytosis, forces produced by the actin cytoskeleton are transmitted to the plasma membrane by a multiprotein coat for membrane deformation. However, the magnitudes of these forces remain unknown. Here, we present new in vivo force sensors that induce protein condensation under force. We measured the forces on the fission yeast Huntingtin-Interacting Protein 1 Related (HIP1R) homolog End4p, a protein that links the membrane to the actin cytoskeleton. End4p is under ~19-piconewton force near the actin cytoskeleton, ~11 piconewtons near the clathrin lattice, and ~9 piconewtons near the plasma membrane. Our results demonstrate that forces are collected and redistributed across the endocytic machinery.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Jie Yang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Barbara Fujita
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Huaizhou Jin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yongli Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
9
|
S Cannon K, Sarsam RD, Tedamrongwanish T, Zhang K, Baker RW. Lipid nanodiscs as a template for high-resolution cryo-EM structures of peripheral membrane proteins. J Struct Biol 2023; 215:107989. [PMID: 37364761 DOI: 10.1016/j.jsb.2023.107989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Peripheral membrane proteins are ubiquitous throughout cell biology and are required for a variety of cellular processes such as signal transduction, membrane trafficking, and autophagy. Transient binding to the membrane has a profound impact on protein function, serving to induce conformational changes and alter biochemical and biophysical parameters by increasing the local concentration of factors and restricting diffusion to two dimensions. Despite the centrality of the membrane in serving as a template for cell biology, there are few reported high-resolution structures of peripheral membrane proteins bound to the membrane. We analyzed the utility of lipid nanodiscs to serve as a template for cryo-EM analysis of peripheral membrane proteins. We tested a variety of nanodiscs and we report a 3.3 Å structure of the AP2 clathrin adaptor complex bound to a 17-nm nanodisc, with sufficient resolution to visualize a bound lipid head group. Our data demonstrate that lipid nanodiscs are amenable to high-resolution structure determination of peripheral membrane proteins and provide a framework for extending this analysis to other systems.
Collapse
Affiliation(s)
- Kevin S Cannon
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA
| | - Reta D Sarsam
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA
| | - Tanita Tedamrongwanish
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA
| | - Kevin Zhang
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA
| | - Richard W Baker
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA; UNC Lineberger Comprehensive Cancer Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA.
| |
Collapse
|
10
|
Kumar G, Duggisetty SC, Srivastava A. A Review of Mechanics-Based Mesoscopic Membrane Remodeling Methods: Capturing Both the Physics and the Chemical Diversity. J Membr Biol 2022; 255:757-777. [PMID: 36197492 DOI: 10.1007/s00232-022-00268-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022]
Abstract
Specialized classes of proteins, working together in a tightly orchestrated manner, induce and maintain highly curved cellular and organelles membrane morphology. Due to the various experimental constraints, including the resolution limits of imaging techniques, it is non-trivial to accurately elucidate interactions among the various components involved in membrane deformation. The spatial and temporal scales of the systems also make it formidable to investigate them using simulations with molecular details. Interestingly, mechanics-based mesoscopic models have been used with great success in recapitulating the membrane deformations observed in experiments. In this review, we collate together and discuss the various mechanics-based mesoscopic models for protein-mediated membrane deformation studies. In particular, we provide an elaborate description of a mesoscopic model where the membrane is modeled as a triangulated sheet and proteins are represented as either nematics or filaments. This representation allows us to explore the various aspects of protein-protein and protein-membrane interactions as well as examine the underlying mechanistic pathways for emergent behavior such as curvature-mediated protein localization and membrane deformation. We also put forward current efforts in the field towards back-mapping these mesoscopic models to finer-grained particle-based models-a framework that could be used to explore how molecular interactions propagate to physical scales and vice-versa. We end the review with an integrative-modeling-based road map where experimental imaging micrograph and biochemical data are combined with mesoscopic and molecular simulations methods in a theoretically consistent manner to faithfully recapitulate the multiple length and time scales in the membrane remodeling processes.
Collapse
Affiliation(s)
- Gaurav Kumar
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, C. V. Raman Road, Bangalore, Karnataka, 560012, India
| | - Satya Chaithanya Duggisetty
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, C. V. Raman Road, Bangalore, Karnataka, 560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, C. V. Raman Road, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
11
|
Skruzny M. The endocytic protein machinery as an actin-driven membrane-remodeling machine. Eur J Cell Biol 2022; 101:151267. [PMID: 35970066 DOI: 10.1016/j.ejcb.2022.151267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
In clathrin-mediated endocytosis, a principal membrane trafficking route of all eukaryotic cells, forces are applied to invaginate the plasma membrane and form endocytic vesicles. These forces are provided by specific endocytic proteins and the polymerizing actin cytoskeleton. One of the best-studied endocytic systems is endocytosis in yeast, known for its simplicity, experimental amenability, and overall similarity to human endocytosis. Importantly, the yeast endocytic protein machinery generates and transmits tremendous force to bend the plasma membrane, making this system beneficial for mechanistic studies of cellular force-driven membrane reshaping. This review summarizes important protein players, molecular functions, applied forces, and open questions and perspectives of this robust, actin-powered membrane-remodeling protein machine.
Collapse
Affiliation(s)
- Michal Skruzny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
12
|
Kumar G, Srivastava A. Membrane Remodeling Due to a Mixture of Multiple Types of Curvature Proteins. J Chem Theory Comput 2022; 18:5659-5671. [PMID: 35981766 DOI: 10.1021/acs.jctc.2c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an extension of the Monte Carlo based mesoscopic membrane model, where the membrane is represented as a dynamically triangulated surface and the proteins are modeled as anisotropic inclusions formulated as in-plane nematic field variables adhering to the deformable elastic sheet. In the extended model, we have augmented the Hamiltonian to study membrane deformation due to a mixture of multiple types of curvature generating proteins. This feature opens the door for understanding how multiple kinds of curvature-generating proteins may be working in a coordinated manner to induce desired membrane morphologies. For example, among other things, we study membrane deformations and tubulation due to a mixture of positive and negative curvature proteins as mimics of various proteins from BAR domain family. We also study the effect of membrane anisotropy that manifests as differential binding affinity and organization of curvature proteins, leading to insights into the tightly regulated cargo sorting and transport processes. Our simulation results show different morphology of deformed vesicles that depend on membrane tension, the curvatures and number of the participating proteins as well as on protein-protein and membrane-protein interactions.
Collapse
Affiliation(s)
- Gaurav Kumar
- Molecular Biophysics Unit (MBU), Indian Institute of Science (IISc)-Bangalore, C. V. Raman Road, Bangalore, KA 560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit (MBU), Indian Institute of Science (IISc)-Bangalore, C. V. Raman Road, Bangalore, KA 560012, India
| |
Collapse
|
13
|
Smith SM, Smith CJ. Capturing the mechanics of clathrin-mediated endocytosis. Curr Opin Struct Biol 2022; 75:102427. [PMID: 35872561 DOI: 10.1016/j.sbi.2022.102427] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023]
Abstract
Clathrin-mediated endocytosis enables selective uptake of molecules into cells in response to changing cellular needs. It occurs through assembly of coat components around the plasma membrane that determine vesicle contents and facilitate membrane bending to form a clathrin-coated transport vesicle. In this review we discuss recent cryo-electron microscopy structures that have captured a series of events in the life cycle of a clathrin-coated vesicle. Both single particle analysis and tomography approaches have revealed details of the clathrin lattice structure itself, how AP2 may interface with clathrin within a coated vesicle and the importance of PIP2 binding for assembly of the yeast adaptors Sla2 and Ent1 on the membrane. Within cells, cryo-electron tomography of clathrin in flat lattices and high-speed AFM studies provided new insights into how clathrin morphology can adapt during CCV formation. Thus, key mechanical processes driving clathrin-mediated endocytosis have been captured through multiple techniques working in partnership.
Collapse
Affiliation(s)
- Sarah M Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Corinne J Smith
- School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
14
|
Niebling S, Veith K, Vollmer B, Lizarrondo J, Burastero O, Schiller J, Struve García A, Lewe P, Seuring C, Witt S, García-Alai M. Biophysical Screening Pipeline for Cryo-EM Grid Preparation of Membrane Proteins. Front Mol Biosci 2022; 9:882288. [PMID: 35813810 PMCID: PMC9259969 DOI: 10.3389/fmolb.2022.882288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Successful sample preparation is the foundation to any structural biology technique. Membrane proteins are of particular interest as these are important targets for drug design, but also notoriously difficult to work with. For electron cryo-microscopy (cryo-EM), the biophysical characterization of sample purity, homogeneity, and integrity as well as biochemical activity is the prerequisite for the preparation of good quality cryo-EM grids as these factors impact the result of the computational reconstruction. Here, we present a quality control pipeline prior to single particle cryo-EM grid preparation using a combination of biophysical techniques to address the integrity, purity, and oligomeric states of membrane proteins and its complexes to enable reproducible conditions for sample vitrification. Differential scanning fluorimetry following the intrinsic protein fluorescence (nDSF) is used for optimizing buffer and detergent conditions, whereas mass photometry and dynamic light scattering are used to assess aggregation behavior, reconstitution efficiency, and oligomerization. The data collected on nDSF and mass photometry instruments can be analyzed with web servers publicly available at spc.embl-hamburg.de. Case studies to optimize conditions prior to cryo-EM sample preparation of membrane proteins present an example quality assessment to corroborate the usefulness of our pipeline.
Collapse
Affiliation(s)
- Stephan Niebling
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Katharina Veith
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Benjamin Vollmer
- Centre for Structural Systems Biology (CSSB), Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | - Osvaldo Burastero
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Janina Schiller
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Angelica Struve García
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Philipp Lewe
- Centre for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolin Seuring
- Centre for Structural Systems Biology (CSSB), Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Susanne Witt
- Centre for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - María García-Alai
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- *Correspondence: María García-Alai,
| |
Collapse
|
15
|
Kaplan C, Kenny SJ, Chen X, Schöneberg J, Sitarska E, Diz-Muñoz A, Akamatsu M, Xu K, Drubin DG. Load adaptation by endocytic actin networks. Mol Biol Cell 2022; 33:ar50. [PMID: 35389747 PMCID: PMC9265150 DOI: 10.1091/mbc.e21-11-0589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/11/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) robustness under elevated membrane tension is maintained by actin assembly-mediated force generation. However, whether more actin assembles at endocytic sites in response to increased load has not previously been investigated. Here actin network ultrastructure at CME sites was examined under low and high membrane tension. Actin and N-WASP spatial organization indicate that actin polymerization initiates at the base of clathrin-coated pits and that the network then grows away from the plasma membrane. Actin network height at individual CME sites was not coupled to coat shape, raising the possibility that local differences in mechanical load feed back on assembly. By manipulating membrane tension and Arp2/3 complex activity, we tested the hypothesis that actin assembly at CME sites increases in response to elevated load. Indeed, in response to elevated membrane tension, actin grew higher, resulting in greater coverage of the clathrin coat, and CME slowed. When membrane tension was elevated and the Arp2/3 complex was inhibited, shallow clathrin-coated pits accumulated, indicating that this adaptive mechanism is especially crucial for coat curvature generation. We propose that actin assembly increases in response to increased load to ensure CME robustness over a range of plasma membrane tensions.
Collapse
Affiliation(s)
- Charlotte Kaplan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Sam J. Kenny
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Xuyan Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
- Department of pharmacology and Department of chemistry and biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Ewa Sitarska
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| | - Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3220
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
| |
Collapse
|
16
|
Pashkova N, Gakhar L, Yu L, Schnicker NJ, Minard AY, Winistorfer S, Johnson IE, Piper RC. ANTH domains within CALM, HIP1R, and Sla2 recognize ubiquitin internalization signals. eLife 2021; 10:72583. [PMID: 34821552 PMCID: PMC8648300 DOI: 10.7554/elife.72583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Attachment of ubiquitin (Ub) to cell surface proteins serves as a signal for internalization via clathrin-mediated endocytosis (CME). How ubiquitinated membrane proteins engage the internalization apparatus remains unclear. The internalization apparatus contains proteins such as Epsin and Eps15, which bind Ub, potentially acting as adaptors for Ub-based internalization signals. Here, we show that additional components of the endocytic machinery including CALM, HIP1R, and Sla2 bind Ub via their N-terminal ANTH domain, a domain belonging to the superfamily of ENTH and VHS domains. Structural studies revealed that Ub binds with µM affinity to a unique C-terminal region within the ANTH domain not found in ENTH domains. Functional studies showed that combined loss of Ub-binding by ANTH-domain proteins and other Ub-binding domains within the yeast internalization apparatus caused defects in the Ub-dependent internalization of the GPCR Ste2 that was engineered to rely exclusively on Ub as an internalization signal. In contrast, these mutations had no effect on the internalization of Ste2 engineered to use an alternate Ub-independent internalization signal. These studies define new components of the internalization machinery that work collectively with Epsin and Eps15 to specify recognition of Ub as an internalization signal.
Collapse
Affiliation(s)
- Natalya Pashkova
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Lokesh Gakhar
- Carver College of Medicine Protein Crystallography Core, University of Iowa, Iowa City, United States.,Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, United States
| | - Liping Yu
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, United States.,Carver College of Medicine NMR Core, University of Iowa, Iowa City, United States
| | - Nicholas J Schnicker
- Carver College of Medicine Protein Crystallography Core, University of Iowa, Iowa City, United States
| | - Annabel Y Minard
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Stanley Winistorfer
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Ivan E Johnson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| |
Collapse
|
17
|
Yoshida N, Ogura I, Nagano M, Ando T, Toshima JY, Toshima J. Cooperative regulation of endocytic vesicle transport by yeast Eps15-like protein Pan1p and epsins. J Biol Chem 2021; 297:101254. [PMID: 34592316 PMCID: PMC8628263 DOI: 10.1016/j.jbc.2021.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
Dynamic actin filaments are required for the formation and internalization of endocytic vesicles. Yeast actin cables serve as a track for the translocation of endocytic vesicles to early endosomes, but the molecular mechanisms regulating the interaction between vesicles and the actin cables remain ambiguous. Previous studies have demonstrated that the yeast Eps15-like protein Pan1p plays an important role in this interaction, and that interaction is not completely lost even after deletion of the Pan1p actin-binding domain, suggesting that additional proteins mediate association of the vesicle with the actin cable. Other candidates for mediating the interaction are endocytic coat proteins Sla2p (yeast Hip1R) and Ent1p/2p (yeast epsins), as these proteins can bind to both the plasma membrane and the actin filament. Here, we investigated the degree of redundancy in the actin-binding activities of Pan1p, Sla2p, and Ent1p/2p involved in the internalization and transport of endocytic vesicles. Expression of the nonphosphorylatable form of Pan1p, Pan1-18TA, caused abnormal accumulation of both actin cables and endocytic vesicles, and this accumulation was additively suppressed by deletion of the actin-binding domains of both Pan1p and Ent1p. Interestingly, deletion of the actin-binding domains of Pan1p and Ent1p in cells lacking the ENT2 gene resulted in severely defective internalization of endocytic vesicles and recruitment of actin cables to the site of endocytosis. These results suggest that Pan1p and Ent1p/2p cooperatively regulate the interaction between the endocytic vesicle and the actin cable.
Collapse
Affiliation(s)
- Nao Yoshida
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Ippo Ogura
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Tadashi Ando
- Department of Applied Electronics, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Junko Y Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan; School of Health Science, Tokyo University of Technology, Ota-ku, Tokyo, Japan.
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan.
| |
Collapse
|
18
|
Abella M, Andruck L, Malengo G, Skruzny M. Actin-generated force applied during endocytosis measured by Sla2-based FRET tension sensors. Dev Cell 2021; 56:2419-2426.e4. [PMID: 34473942 DOI: 10.1016/j.devcel.2021.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
Mechanical forces are integral to many cellular processes, including clathrin-mediated endocytosis, a principal membrane trafficking route into the cell. During endocytosis, forces provided by endocytic proteins and the polymerizing actin cytoskeleton reshape the plasma membrane into a vesicle. Assessing force requirements of endocytic membrane remodeling is essential for understanding endocytosis. Here, we determined actin-generated force applied during endocytosis using FRET-based tension sensors inserted into the major force-transmitting protein Sla2 in yeast. We measured at least 8 pN force transmitted over Sla2 molecule, hence possibly more than 300-880 pN applied during endocytic vesicle formation. Importantly, decreasing cell turgor pressure and plasma membrane tension reduced force transmitted over the Sla2. The measurements in hypotonic conditions and mutants lacking BAR-domain membrane scaffolds then showed the limits of the endocytic force-transmitting machinery. Our study provides force values and force profiles critical for understanding the mechanics of endocytosis and potentially other key cellular membrane-remodeling processes.
Collapse
Affiliation(s)
- Marc Abella
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Lynell Andruck
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Gabriele Malengo
- Flow Cytometry and Imaging Facility, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Michal Skruzny
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany.
| |
Collapse
|
19
|
Clathrin: the molecular shape shifter. Biochem J 2021; 478:3099-3123. [PMID: 34436540 DOI: 10.1042/bcj20200740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Clathrin is best known for its contribution to clathrin-mediated endocytosis yet it also participates to a diverse range of cellular functions. Key to this is clathrin's ability to assemble into polyhedral lattices that include curved football or basket shapes, flat lattices or even tubular structures. In this review, we discuss clathrin structure and coated vesicle formation, how clathrin is utilised within different cellular processes including synaptic vesicle recycling, hormone desensitisation, spermiogenesis, cell migration and mitosis, and how clathrin's remarkable 'shapeshifting' ability to form diverse lattice structures might contribute to its multiple cellular functions.
Collapse
|
20
|
Seib E, Klein T. The role of ligand endocytosis in notch signalling. Biol Cell 2021; 113:401-418. [PMID: 34038572 DOI: 10.1111/boc.202100009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
The Notch signalling receptor is a mechanoreceptor that is activated by force. This force elicits a conformational change in Notch that results in the release of its intracellular domain into the cytosol by two consecutive proteolytic cleavages. In most cases, the force is generated by pulling of the ligands on the receptor upon their endocytosis. In this review, we summarise recent work that shed a more detailed light on the role of endocytosis during ligand-dependent Notch activation and discuss the role of ubiquitylation of the ligands during this process.
Collapse
Affiliation(s)
- Ekaterina Seib
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, Duesseldorf, 40225, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, Duesseldorf, 40225, Germany
| |
Collapse
|
21
|
Lizarrondo J, Klebl DP, Niebling S, Abella M, Schroer MA, Mertens HDT, Veith K, Thuenauer R, Svergun DI, Skruzny M, Sobott F, Muench SP, Garcia-Alai MM. Structure of the endocytic adaptor complex reveals the basis for efficient membrane anchoring during clathrin-mediated endocytosis. Nat Commun 2021; 12:2889. [PMID: 34001871 PMCID: PMC8129110 DOI: 10.1038/s41467-021-23151-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
During clathrin-mediated endocytosis, a complex and dynamic network of protein-membrane interactions cooperate to achieve membrane invagination. Throughout this process in yeast, endocytic coat adaptors, Sla2 and Ent1, must remain attached to the plasma membrane to transmit force from the actin cytoskeleton required for successful membrane invagination. Here, we present a cryo-EM structure of a 16-mer complex of the ANTH and ENTH membrane-binding domains from Sla2 and Ent1 bound to PIP2 that constitutes the anchor to the plasma membrane. Detailed in vitro and in vivo mutagenesis of the complex interfaces delineate the key interactions for complex formation and deficient cell growth phenotypes demonstrate its biological relevance. A hetero-tetrameric unit binds PIP2 molecules at the ANTH-ENTH interfaces and can form larger assemblies to contribute to membrane remodeling. Finally, a time-resolved small-angle X-ray scattering study of the interaction of these adaptor domains in vitro suggests that ANTH and ENTH domains have evolved to achieve a fast subsecond timescale assembly in the presence of PIP2 and do not require further proteins to form a stable complex. Together, these findings provide a molecular understanding of an essential piece in the molecular puzzle of clathrin-coated endocytic sites.
Collapse
Affiliation(s)
- Javier Lizarrondo
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - David P Klebl
- School of Biomedical Sciences, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Stephan Niebling
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Marc Abella
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Martin A Schroer
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Katharina Veith
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Roland Thuenauer
- Technology Platform Microscopy and Image Analysis, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Michal Skruzny
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Frank Sobott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK.,Department of Chemistry, Biomolecular and Analytical Mass Spectrometry group, University of Antwerp, Antwerp, Belgium
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Maria M Garcia-Alai
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany. .,Centre for Structural Systems Biology, Hamburg, Germany.
| |
Collapse
|
22
|
Chakrabarti R, Lee M, Higgs HN. Multiple roles for actin in secretory and endocytic pathways. Curr Biol 2021; 31:R603-R618. [PMID: 34033793 DOI: 10.1016/j.cub.2021.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actin filaments play multiple roles in the secretory pathway and in endosome dynamics in mammals, including maintenance of Golgi structure, release of membrane cargo from the trans-Golgi network (TGN), endocytosis, and endosomal sorting dynamics. In addition, TGN carrier transport and endocytosis both occur by multiple mechanisms in mammals. Actin likely plays a role in at least four mammalian endocytic pathways, five pathways for membrane release from the TGN, and three processes involving endosomes. Also, the mammalian Golgi structure is highly dynamic, and actin is likely important for these dynamics. One challenge for many of these processes is the need to deal with other membrane-associated structures, such as the cortical actin network at the plasma membrane or the matrix that surrounds the Golgi. Arp2/3 complex is a major actin assembly factor in most of the processes mentioned, but roles for formins and tandem WH2-motif-containing assembly factors are being elucidated and are anticipated to grow with further study. The specific role for actin has not been defined for most of these processes, but is likely to involve the generation of force for membrane dynamics, either by actin polymerization itself or by myosin motor activity. Defining these processes mechanistically is necessary for understanding membrane dynamics in general, as well as pathways that utilize these processes, such as autophagy.
Collapse
Affiliation(s)
- Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Miriam Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
23
|
Lee SK, Hong WJ, Silva J, Kim EJ, Park SK, Jung KH, Kim YJ. Global Identification of ANTH Genes Involved in Rice Pollen Germination and Functional Characterization of a Key Member, OsANTH3. FRONTIERS IN PLANT SCIENCE 2021; 12:609473. [PMID: 33927731 PMCID: PMC8076639 DOI: 10.3389/fpls.2021.609473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/22/2021] [Indexed: 06/02/2023]
Abstract
Pollen in angiosperms plays a critical role in double fertilization by germinating and elongating pollen tubes rapidly in one direction to deliver sperm. In this process, the secretory vesicles deliver cell wall and plasma membrane materials, and excessive materials are sequestered via endocytosis. However, endocytosis in plants is poorly understood. AP180 N-terminal homology (ANTH) domain-containing proteins function as adaptive regulators for clathrin-mediated endocytosis in eukaryotic systems. Here, we identified 17 ANTH domain-containing proteins from rice based on a genome-wide investigation. Motif and phylogenomic analyses revealed seven asparagine-proline-phenylalanine (NPF)-rich and 10 NPF-less subgroups of these proteins, as well as various clathrin-mediated endocytosis-related motifs in their C-terminals. To investigate their roles in pollen germination, we performed meta-expression analysis of all genes encoding ANTH domain-containing proteins in Oryza sativa (OsANTH genes) in anatomical samples, including pollen, and identified five mature pollen-preferred OsANTH genes. The subcellular localization of four OsANTH proteins that were preferentially expressed in mature pollen can be consistent with their role in endocytosis in the plasma membrane. Of them, OsANTH3 represented the highest expression in mature pollen. Functional characterization of OsANTH3 using T-DNA insertional knockout and gene-edited mutants revealed that a mutation in OsANTH3 decreased seed fertility by reducing the pollen germination percentage in rice. Thus, our study suggests OsANTH3-mediated endocytosis is important for rice pollen germination.
Collapse
Affiliation(s)
- Su Kyoung Lee
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jeniffer Silva
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Eui-Jung Kim
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| |
Collapse
|
24
|
Abstract
Cellular membranes are anything but flat structures. They display a wide variety of complex and beautiful shapes, most of which have evolved for a particular physiological reason and are adapted to accommodate certain cellular demands. In membrane trafficking events, the dynamic remodelling of cellular membranes is apparent. In clathrin-mediated endocytosis for example, the plasma membrane undergoes heavy deformation to generate and internalize a highly curved clathrin-coated vesicle. This process has become a model system to study proteins with the ability to sense and induce membrane curvature and over the last two decades numerous membrane remodelling molecules and molecular mechanisms have been identified in this process. In this review, we discuss the interaction of epsin1 ENTH domain with membranes, which is one of the best-studied examples of a peripheral and transiently membrane bending protein important for clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Claudia Steinem
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | | |
Collapse
|
25
|
Kroppen B, Teske N, Yambire KF, Denkert N, Mukherjee I, Tarasenko D, Jaipuria G, Zweckstetter M, Milosevic I, Steinem C, Meinecke M. Cooperativity of membrane-protein and protein-protein interactions control membrane remodeling by epsin 1 and affects clathrin-mediated endocytosis. Cell Mol Life Sci 2020; 78:2355-2370. [PMID: 32997199 PMCID: PMC7966211 DOI: 10.1007/s00018-020-03647-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/11/2020] [Accepted: 09/12/2020] [Indexed: 01/01/2023]
Abstract
Membrane remodeling is a critical process for many membrane trafficking events, including clathrin-mediated endocytosis. Several molecular mechanisms for protein-induced membrane curvature have been described in some detail. Contrary, the effect that the physico-chemical properties of the membrane have on these processes is far less well understood. Here, we show that the membrane binding and curvature-inducing ENTH domain of epsin1 is regulated by phosphatidylserine (PS). ENTH binds to membranes in a PI(4,5)P2-dependent manner but only induces curvature in the presence of PS. On PS-containing membranes, the ENTH domain forms rigid homo-oligomers and assembles into clusters. Membrane binding and membrane remodeling can be separated by structure-to-function mutants. Such oligomerization mutants bind to membranes but do not show membrane remodeling activity. In vivo, they are not able to rescue defects in epidermal growth factor receptor (EGFR) endocytosis in epsin knock-down cells. Together, these data show that the membrane lipid composition is important for the regulation of protein-dependent membrane deformation during clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Benjamin Kroppen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Nelli Teske
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - King F Yambire
- European Neuroscience Institute, Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-Society, Grisebachstr. 5, 37077, Göttingen, Germany
| | - Niels Denkert
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Indrani Mukherjee
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Daryna Tarasenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Garima Jaipuria
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ira Milosevic
- European Neuroscience Institute, Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-Society, Grisebachstr. 5, 37077, Göttingen, Germany
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Claudia Steinem
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany.
- Göttinger Zentrum für Molekulare Biowissenschaften - GZMB, 37077, Göttingen, Germany.
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany.
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
- Göttinger Zentrum für Molekulare Biowissenschaften - GZMB, 37077, Göttingen, Germany.
| |
Collapse
|
26
|
Brod J, Hellwig A, Wieland FT. Epsin but not AP-2 supports reconstitution of endocytic clathrin-coated vesicles. FEBS Lett 2020; 594:2227-2239. [PMID: 32337703 DOI: 10.1002/1873-3468.13801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
Formation of clathrin-coated vesicles (CCVs) in receptor-mediated endocytosis is a mechanistically well-established process, in which clathrin, the adaptor protein complex AP-2, and the large GTPase dynamin play crucial roles. In order to obtain more mechanistic insight into this process, here we established a giant unilamellar vesicle (GUV)-based in vitro CCV reconstitution system with chemically defined components and the full-length recombinant proteins clathrin, AP-2, epsin-1, and dynamin-2. Our results support the predominant model in which hydrolysis of GTP by dynamin is a prerequisite to generate CCVs. Strikingly, in this system at near physiological concentrations of reagents, epsin-1 alone does not have the propensity for scission but is required for bud formation, whereas AP-2 and clathrin are not sufficient. Thus, our study reveals that epsin-1 is an important factor for the maturation of clathrin coated buds, a prerequisite for vesicle generation.
Collapse
Affiliation(s)
- Jan Brod
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Germany
| | - Andrea Hellwig
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Germany
| | - Felix T Wieland
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Germany
| |
Collapse
|
27
|
Skruzny M, Pohl E, Gnoth S, Malengo G, Sourjik V. The protein architecture of the endocytic coat analyzed by FRET microscopy. Mol Syst Biol 2020; 16:e9009. [PMID: 32400111 PMCID: PMC7218409 DOI: 10.15252/msb.20199009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Endocytosis is a fundamental cellular trafficking pathway, which requires an organized assembly of the multiprotein endocytic coat to pull the plasma membrane into the cell. Although the protein composition of the endocytic coat is known, its functional architecture is not well understood. Here, we determine the nanoscale organization of the endocytic coat by FRET microscopy in yeast Saccharomyces cerevisiae. We assessed pairwise proximities of 18 conserved coat-associated proteins and used clathrin subunits and protein truncations as molecular rulers to obtain a high-resolution protein map of the coat. Furthermore, we followed rearrangements of coat proteins during membrane invagination and their binding dynamics at the endocytic site. We show that the endocytic coat proteins are not confined inside the clathrin lattice, but form distinct functional layers above and below the lattice. Importantly, key endocytic proteins transverse the clathrin lattice deeply into the cytoplasm connecting thus the membrane and cytoplasmic parts of the coat. We propose that this design enables an efficient and regulated function of the endocytic coat during endocytic vesicle formation.
Collapse
Affiliation(s)
- Michal Skruzny
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Emma Pohl
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Sandina Gnoth
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Gabriele Malengo
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Victor Sourjik
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| |
Collapse
|
28
|
Akamatsu M, Vasan R, Serwas D, Ferrin MA, Rangamani P, Drubin DG. Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis. eLife 2020; 9:49840. [PMID: 31951196 PMCID: PMC7041948 DOI: 10.7554/elife.49840] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Force generation by actin assembly shapes cellular membranes. An experimentally constrained multiscale model shows that a minimal branched actin network is sufficient to internalize endocytic pits against membrane tension. Around 200 activated Arp2/3 complexes are required for robust internalization. A newly developed molecule-counting method determined that ~200 Arp2/3 complexes assemble at sites of clathrin-mediated endocytosis in human cells. Simulations predict that actin self-organizes into a radial branched array with growing ends oriented toward the base of the pit. Long actin filaments bend between attachment sites in the coat and the base of the pit. Elastic energy stored in bent filaments, whose presence was confirmed by cryo-electron tomography, contributes to endocytic internalization. Elevated membrane tension directs more growing filaments toward the base of the pit, increasing actin nucleation and bending for increased force production. Thus, spatially constrained actin filament assembly utilizes an adaptive mechanism enabling endocytosis under varying physical constraints. The outer membrane of a cell is a tight but elastic barrier that controls what enters or leaves the cell. Large molecules typically cannot cross this membrane unaided. Instead, to enter the cell, they must be packaged into a pocket of the membrane that is then pulled inside. This process, called endocytosis, shuttles material into a cell hundreds of times a minute. Endocytosis relies on molecular machines that assemble and disassemble at the membrane as required. One component, a protein called actin, self-assembles near the membrane into long filaments with many repeated subunits. These filaments grow against the membrane, pulling it inwards. But it was not clear how actin filaments organize in such a way that allows them to pull on the membrane with enough force – and without a template to follow. Akamatsu et al. set about identifying how actin operates during endocytosis by using computer simulations that were informed by measurements made in living cells. The simulations included information about the location of actin and other essential molecules, along with the details of how these molecules work individually and together. Akamatsu et al. also developed a method to count the numbers of molecules of a key protein at individual sites of endocytosis. High-resolution imaging was then used to create 3D pictures of actin and endocytosis in action in human cells grown in the laboratory. The analysis showed the way actin filaments arrange themselves depends on the starting positions of a few key molecules that connect to actin. Imaging confirmed that, like a pole-vaulting pole, the flexible actin filaments bend to store energy and then release it to pull the membrane inwards during endocytosis. Finally, the simulations predicted that the collection of filaments adapts its shape and size in response to the resistance of the elastic membrane. This makes the system opportunistic and adaptable to the unpredictable environment within cells.
Collapse
Affiliation(s)
- Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, United States
| | - Daniel Serwas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Michael A Ferrin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, United States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
29
|
Heidemann J, Kölbel K, Konijnenberg A, Van Dyck J, Garcia-Alai M, Meijers R, Sobott F, Uetrecht C. Further insights from structural mass spectrometry into endocytosis adaptor protein assemblies. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 447:116240. [PMID: 33244295 PMCID: PMC7116418 DOI: 10.1016/j.ijms.2019.116240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
As a fundament in many biologically relevant processes, endocytosis in its different guises has been arousing interest for decades and still does so. This is true for the actual transport and its initiation alike. In clathrin-mediated endocytosis, a comparatively well understood endocytic pathway, a set of adaptor proteins bind specific lipids in the plasma membrane, subsequently assemble and thus form a crucial bridge from clathrin to actin for the ongoing process. These adaptor proteins are highly interesting themselves and the subject of this manuscript. Using many of the instruments that are available now in the mass spectrometry toolbox, we added some facets to the picture of how these minimal assemblies may look, how they form, and what influences the structure. Especially, lipids in the adaptor protein complexes result in reduced charging of a normal sized complex due to their specific binding position. The results further support our structural model of a double ring structure with interfacial lipids.
Collapse
Affiliation(s)
- Johannes Heidemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Knut Kölbel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Albert Konijnenberg
- University of Antwerp, Biomolecular & Analytical Mass Spectrometry, Chemistry Dept. Campus Groenenborger V4, Groenenborgerlaan, 171 2020, Antwerp, Belgium
| | - Jeroen Van Dyck
- University of Antwerp, Biomolecular & Analytical Mass Spectrometry, Chemistry Dept. Campus Groenenborger V4, Groenenborgerlaan, 171 2020, Antwerp, Belgium
| | - Maria Garcia-Alai
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Frank Sobott
- University of Antwerp, Biomolecular & Analytical Mass Spectrometry, Chemistry Dept. Campus Groenenborger V4, Groenenborgerlaan, 171 2020, Antwerp, Belgium
- Astbury Centre for Structural Molecular and Cellular Biology, School of Molecular and Cellular Biology, University of Leeds, LS3 9JT, United Kingdom
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Corresponding author. Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany.
| |
Collapse
|
30
|
Manenschijn HE, Picco A, Mund M, Rivier-Cordey AS, Ries J, Kaksonen M. Type-I myosins promote actin polymerization to drive membrane bending in endocytosis. eLife 2019; 8:44215. [PMID: 31385806 PMCID: PMC6684269 DOI: 10.7554/elife.44215] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Clathrin-mediated endocytosis in budding yeast requires the formation of a dynamic actin network that produces the force to invaginate the plasma membrane against the intracellular turgor pressure. The type-I myosins Myo3 and Myo5 are important for endocytic membrane reshaping, but mechanistic details of their function remain scarce. Here, we studied the function of Myo3 and Myo5 during endocytosis using quantitative live-cell imaging and genetic perturbations. We show that the type-I myosins promote, in a dose-dependent way, the growth and expansion of the actin network, which controls the speed of membrane and coat internalization. We found that this myosin-activity is independent of the actin nucleation promoting activity of myosins, and cannot be compensated for by increasing actin nucleation. Our results suggest a new mechanism for type-I myosins to produce force by promoting actin filament polymerization.
Collapse
Affiliation(s)
- Hetty E Manenschijn
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andrea Picco
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Markus Mund
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Jonas Ries
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Marko Kaksonen
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Yabuno Y, Uchihashi T, Sasakura T, Shimizu H, Naito Y, Fukushima K, Ota K, Kogo M, Nojima H, Yabuta N. Clathrin heavy chain phosphorylated at T606 plays a role in proper cell division. Cell Cycle 2019; 18:1976-1994. [PMID: 31272276 PMCID: PMC6681784 DOI: 10.1080/15384101.2019.1637201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022] Open
Abstract
Clathrin regulates mitotic progression, in addition to membrane trafficking. However, the detailed regulatory mechanisms of clathrin during mitosis remain elusive. Here, we demonstrate novel regulation of clathrin during mitotic phase of the cell cycle. Clathrin heavy chain (CHC) was phosphorylated at T606 by its association partner cyclin G-associated kinase (GAK). This phosphorylation was required for proper cell proliferation and tumor growth of cells implanted into nude mice. Immunofluorescence analysis showed that the localization of CHC-pT606 signals changed during mitosis. CHC-pT606 signals localized in the nucleus and at the centrosome during interphase, whereas CHC signals were mostly cytoplasmic. Co-immunoprecipitation suggested that CHC formed a complex with GAK and polo-like kinase 1 (PLK1). Depletion of GAK using siRNA induced metaphase arrest and aberrant localization of CHC-pT606, which abolished Kiz-pT379 (as a phosphorylation target of PLK1) signals on chromatin at metaphase. Taken together, we propose that the GAK_CHC-pT606_PLK1_Kiz-pT379 axis plays a role in proliferation of cancer cells.
Collapse
Affiliation(s)
- Yusuke Yabuno
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Toshihiro Uchihashi
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Towa Sasakura
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Shimizu
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoko Naito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Kohshiro Fukushima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kaori Ota
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
32
|
Riggi M, Bourgoint C, Macchione M, Matile S, Loewith R, Roux A. TORC2 controls endocytosis through plasma membrane tension. J Cell Biol 2019; 218:2265-2276. [PMID: 31123183 PMCID: PMC6605812 DOI: 10.1083/jcb.201901096] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/11/2019] [Accepted: 05/06/2019] [Indexed: 12/27/2022] Open
Abstract
Target of rapamycin complex 2 (TORC2) is a conserved protein kinase that regulates multiple plasma membrane (PM)-related processes, including endocytosis. Direct, chemical inhibition of TORC2 arrests endocytosis but with kinetics that is relatively slow and therefore inconsistent with signaling being mediated solely through simple phosphorylation cascades. Here, we show that in addition to and independently from regulation of the phosphorylation of endocytic proteins, TORC2 also controls endocytosis by modulating PM tension. Elevated PM tension, upon TORC2 inhibition, impinges on endocytosis at two different levels by (1) severing the bonds between the PM adaptor proteins Sla2 and Ent1 and the actin cytoskeleton and (2) hindering recruitment of Rvs167, an N-BAR-containing protein important for vesicle fission to endocytosis sites. These results underline the importance of biophysical cues in the regulation of cellular and molecular processes.
Collapse
Affiliation(s)
- Margot Riggi
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland.,Department of Biochemistry, University of Geneva, Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland
| | - Clélia Bourgoint
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Mariano Macchione
- Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland.,Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland.,Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland .,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland .,Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland
| |
Collapse
|
33
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
34
|
Mund M, van der Beek JA, Deschamps J, Dmitrieff S, Hoess P, Monster JL, Picco A, Nédélec F, Kaksonen M, Ries J. Systematic Nanoscale Analysis of Endocytosis Links Efficient Vesicle Formation to Patterned Actin Nucleation. Cell 2018; 174:884-896.e17. [PMID: 30057119 PMCID: PMC6086932 DOI: 10.1016/j.cell.2018.06.032] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/27/2018] [Accepted: 06/13/2018] [Indexed: 11/18/2022]
Abstract
Clathrin-mediated endocytosis is an essential cellular function in all eukaryotes that is driven by a self-assembled macromolecular machine of over 50 different proteins in tens to hundreds of copies. How these proteins are organized to produce endocytic vesicles with high precision and efficiency is not understood. Here, we developed high-throughput superresolution microscopy to reconstruct the nanoscale structural organization of 23 endocytic proteins from over 100,000 endocytic sites in yeast. We found that proteins assemble by radially ordered recruitment according to function. WASP family proteins form a circular nanoscale template on the membrane to spatially control actin nucleation during vesicle formation. Mathematical modeling of actin polymerization showed that this WASP nano-template optimizes force generation for membrane invagination and substantially increases the efficiency of endocytosis. Such nanoscale pre-patterning of actin nucleation may represent a general design principle for directional force generation in membrane remodeling processes such as during cell migration and division.
Collapse
Affiliation(s)
- Markus Mund
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Johannes Albertus van der Beek
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Joran Deschamps
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Serge Dmitrieff
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Philipp Hoess
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Jooske Louise Monster
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Andrea Picco
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
| | - François Nédélec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Marko Kaksonen
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
| | - Jonas Ries
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
35
|
Takatori S, Tomita T. AP180 N-Terminal Homology (ANTH) and Epsin N-Terminal Homology (ENTH) Domains: Physiological Functions and Involvement in Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:55-76. [DOI: 10.1007/5584_2018_218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Miao Y, Tipakornsaowapak T, Zheng L, Mu Y, Lewellyn E. Phospho-regulation of intrinsically disordered proteins for actin assembly and endocytosis. FEBS J 2018; 285:2762-2784. [PMID: 29722136 DOI: 10.1111/febs.14493] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/04/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Abstract
Actin filament assembly contributes to the endocytic pathway pleiotropically, with active roles in clathrin-dependent and clathrin-independent endocytosis as well as subsequent endosomal trafficking. Endocytosis comprises a series of dynamic events, including the initiation of membrane curvature, bud invagination, vesicle abscission and subsequent vesicular transport. The ultimate success of endocytosis requires the coordinated activities of proteins that trigger actin polymerization, recruit actin-binding proteins (ABPs) and organize endocytic proteins (EPs) that promote membrane curvature through molecular crowding or scaffolding mechanisms. A particularly interesting phenomenon is that multiple EPs and ABPs contain a substantial percentage of intrinsically disordered regions (IDRs), which can contribute to protein coacervation and phase separation. In addition, intrinsically disordered proteins (IDPs) frequently contain sites for post-translational modifications (PTMs) such as phosphorylation, and these modifications exhibit a high preference for IDR residues [Groban ES et al. (2006) PLoS Comput Biol 2, e32]. PTMs are implicated in regulating protein function by modulating the protein conformation, protein-protein interactions and the transition between order and disorder states of IDPs. The molecular mechanisms by which IDRs of ABPs and EPs fine-tune actin assembly and endocytosis remain mostly unexplored and elusive. In this review, we analyze protein sequences of budding yeast EPs and ABPs, and discuss the potential underlying mechanisms for regulating endocytosis and actin assembly through the emerging concept of IDR-mediated protein multivalency, coacervation, and phase transition, with an emphasis on the phospho-regulation of IDRs. Finally, we summarize the current understanding of how these mechanisms coordinate actin cytoskeleton assembly and membrane curvature formation during endocytosis in budding yeast.
Collapse
Affiliation(s)
- Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eric Lewellyn
- Department of Biology, Division of Natural Sciences, St Norbert College, De Pere, WI, USA
| |
Collapse
|
37
|
Local actin polymerization during endocytic carrier formation. Biochem Soc Trans 2018; 46:565-576. [DOI: 10.1042/bst20170355] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022]
Abstract
Extracellular macromolecules, pathogens and cell surface proteins rely on endocytosis to enter cells. Key steps of endocytic carrier formation are cargo molecule selection, plasma membrane folding and detachment from the cell surface. While dedicated proteins mediate each step, the actin cytoskeleton contributes to all. However, its role can be indirect to the actual molecular events driving endocytosis. Here, we review our understanding of the molecular steps mediating local actin polymerization during the formation of endocytic carriers. Clathrin-mediated endocytosis is the least reliant on local actin polymerization, as it is only engaged to counter forces induced by membrane tension or cytoplasmic pressure. Two opposite situations are coated pit formation in yeast and at the basolateral surface of polarized mammalian cells which are, respectively, dependent and independent on actin polymerization. Conversely, clathrin-independent endocytosis forming both nanometer [CLIC (clathrin-independent carriers)/GEEC (glycosylphosphatidylinositol (GPI)-anchored protein enriched endocytic compartments), caveolae, FEME (fast endophilin-mediated endocytosis) and IL-2β (interleukin-2β) uptake] and micrometer carriers (macropinocytosis) are dependent on actin polymerization to power local membrane deformation and carrier budding. A variety of endocytic adaptors can recruit and activate the Cdc42/N-WASP or Rac1/WAVE complexes, which, in turn, engage the Arp2/3 complex, thereby mediating local actin polymerization at the membrane. However, the molecular steps for RhoA and formin-mediated actin bundling during endocytic pit formation remain unclear.
Collapse
|
38
|
Structural Lipids Enable the Formation of Functional Oligomers of the Eukaryotic Purine Symporter UapA. Cell Chem Biol 2018; 25:840-848.e4. [PMID: 29681524 PMCID: PMC6058078 DOI: 10.1016/j.chembiol.2018.03.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/27/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022]
Abstract
The role of membrane lipids in modulating eukaryotic transporter assembly and function remains unclear. We investigated the effect of membrane lipids in the structure and transport activity of the purine transporter UapA from Aspergillus nidulans. We found that UapA exists mainly as a dimer and that two lipid molecules bind per UapA dimer. We identified three phospholipid classes that co-purified with UapA: phosphatidylcholine, phosphatidylethanolamine (PE), and phosphatidylinositol (PI). UapA delipidation caused dissociation of the dimer into monomers. Subsequent addition of PI or PE rescued the UapA dimer and allowed recovery of bound lipids, suggesting a central role of these lipids in stabilizing the dimer. Molecular dynamics simulations predicted a lipid binding site near the UapA dimer interface. Mutational analyses established that lipid binding at this site is essential for formation of functional UapA dimers. We propose that structural lipids have a central role in the formation of functional, dimeric UapA. Mass spectrometry reveals specific lipid binding to the eukaryotic transporter UapA Interfacial lipids stabilize the functional UapA dimer MD simulations reveal the lipid binding sites Mutagenesis of a lipid binding site disrupts UapA dimerization and function in vivo
Collapse
|
39
|
Picco A, Kukulski W, Manenschijn HE, Specht T, Briggs JAG, Kaksonen M. The contributions of the actin machinery to endocytic membrane bending and vesicle formation. Mol Biol Cell 2018; 29:1346-1358. [PMID: 29851558 PMCID: PMC5994895 DOI: 10.1091/mbc.e17-11-0688] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Branched and cross-linked actin networks mediate cellular processes that move and shape membranes. To understand how actin contributes during the different stages of endocytic membrane reshaping, we analyzed deletion mutants of yeast actin network components using a hybrid imaging approach that combines live imaging with correlative microscopy. We could thus temporally dissect the effects of different actin network perturbations, revealing distinct stages of actin-based membrane reshaping. Our data show that initiation of membrane bending requires the actin network to be physically linked to the plasma membrane and to be optimally cross-linked. Once initiated, the membrane invagination process is driven by nucleation and polymerization of new actin filaments, independent of the degree of cross-linking and unaffected by a surplus of actin network components. A key transition occurs 2 s before scission, when the filament nucleation rate drops. From that time point on, invagination growth and vesicle scission are driven by an expansion of the actin network without a proportional increase of net actin amounts. The expansion is sensitive to the amount of filamentous actin and its cross-linking. Our results suggest that the mechanism by which actin reshapes the membrane changes during the progress of endocytosis, possibly adapting to varying force requirements.
Collapse
Affiliation(s)
- Andrea Picco
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Wanda Kukulski
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Hetty E Manenschijn
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Tanja Specht
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - John A G Briggs
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Marko Kaksonen
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
40
|
Direct imaging and computational cryo-electron microscopy of ribbons and nanotubes. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
41
|
|
42
|
|
43
|
Garcia-Alai MM, Heidemann J, Skruzny M, Gieras A, Mertens HDT, Svergun DI, Kaksonen M, Uetrecht C, Meijers R. Epsin and Sla2 form assemblies through phospholipid interfaces. Nat Commun 2018; 9:328. [PMID: 29362354 PMCID: PMC5780493 DOI: 10.1038/s41467-017-02443-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/30/2017] [Indexed: 01/22/2023] Open
Abstract
In clathrin-mediated endocytosis, adapter proteins assemble together with clathrin through interactions with specific lipids on the plasma membrane. However, the precise mechanism of adapter protein assembly at the cell membrane is still unknown. Here, we show that the membrane-proximal domains ENTH of epsin and ANTH of Sla2 form complexes through phosphatidylinositol 4,5-bisphosphate (PIP2) lipid interfaces. Native mass spectrometry reveals how ENTH and ANTH domains form assemblies by sharing PIP2 molecules. Furthermore, crystal structures of epsin Ent2 ENTH domain from S. cerevisiae in complex with PIP2 and Sla2 ANTH domain from C. thermophilum illustrate how allosteric phospholipid binding occurs. A comparison with human ENTH and ANTH domains reveal only the human ENTH domain can form a stable hexameric core in presence of PIP2, which could explain functional differences between fungal and human epsins. We propose a general phospholipid-driven multifaceted assembly mechanism tolerating different adapter protein compositions to induce endocytosis.
Collapse
Affiliation(s)
- Maria M Garcia-Alai
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Johannes Heidemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Michal Skruzny
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Anna Gieras
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
- University Medical Center Hamburg - Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Marko Kaksonen
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany.
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany.
| |
Collapse
|
44
|
Yamamoto W, Wada S, Nagano M, Aoshima K, Siekhaus DE, Toshima JY, Toshima J. Distinct roles for plasma membrane PtdIns(4)P and PtdIns(4,5)P 2 during receptor-mediated endocytosis in yeast. J Cell Sci 2018; 131:jcs.207696. [PMID: 29192062 DOI: 10.1242/jcs.207696] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/14/2017] [Indexed: 01/15/2023] Open
Abstract
Clathrin-mediated endocytosis requires the coordinated assembly of various endocytic proteins and lipids at the plasma membrane. Accumulating evidence demonstrates a crucial role for phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] in endocytosis but specific roles for phosphatidylinositol-4-phosphate [PtdIns(4)P], other than as the biosynthetic precursor of PtdIns(4,5)P2, have not been clarified. In this study we investigated the roles of PtdIns(4)P and PtdIns(4,5)P2 in receptor-mediated endocytosis through the construction of temperature-sensitive (ts) mutants for the phosphatidylinositol 4-kinases (PI4-kinases) Stt4p and Pik1p and the 1-phosphatidylinositol-4-phosphate 5-kinase [PtdIns(4) 5-kinase] Mss4p. Quantitative analyses of endocytosis revealed that both the stt4tspik1ts and mss4ts mutants have a severe defect in endocytic internalization. Live-cell imaging of endocytic protein dynamics in stt4tspik1ts and mss4ts mutants revealed that PtdIns(4)P is required for the recruitment of the α-factor receptor Ste2p to clathrin-coated pits, whereas PtdIns(4,5)P2 is required for membrane internalization. We also found that the localization to endocytic sites of the ENTH/ANTH domain-bearing clathrin adaptors, Ent1p, Ent2p, Yap1801p and Yap1802p, is significantly impaired in the stt4tspik1ts mutant but not in the mss4ts mutant. These results suggest distinct roles in successive steps for PtdIns(4)P and PtdIns(4,5)P2 during receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Wataru Yamamoto
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Suguru Wada
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kaito Aoshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | | | - Junko Y Toshima
- School of Health Science, Tokyo University of Technology, 5-23-22 Nishikamata, Ota-ku, Tokyo 144-8535, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
45
|
Harisa GI, Badran MM, Alanazi FK, Attia SM. An overview of nanosomes delivery mechanisms: trafficking, orders, barriers and cellular effects. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:669-679. [DOI: 10.1080/21691401.2017.1354301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gamaleldin I. Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Biochemistry, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed M. Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Fars K. Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Giani M, den Otter WK, Briels WJ. Early stages of clathrin aggregation at a membrane in coarse-grained simulations. J Chem Phys 2017; 146:155102. [DOI: 10.1063/1.4979985] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- M. Giani
- Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - W. K. den Otter
- Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - W. J. Briels
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Forschungszentrum Jülich, ICS 3, D-52425 Jülich, Germany
| |
Collapse
|
47
|
Abstract
Clathrin-mediated endocytosis is an essential cellular process that involves the concerted assembly and disassembly of many different proteins at the plasma membrane. In yeast, live-cell imaging has shown that the spatiotemporal dynamics of these proteins is highly stereotypical. Recent work has focused on determining how the timing and functions of endocytic proteins are regulated. In this Cell Science at a Glance article and accompanying poster, we review our current knowledge of the timeline of endocytic site maturation and discuss recent works focusing on how phosphorylation, ubiquitylation and lipids regulate various aspects of the process.
Collapse
Affiliation(s)
- Rebecca Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
48
|
Chaphalkar AR, Jain K, Gangan MS, Athale CA. Automated Multi-Peak Tracking Kymography (AMTraK): A Tool to Quantify Sub-Cellular Dynamics with Sub-Pixel Accuracy. PLoS One 2016; 11:e0167620. [PMID: 27992448 PMCID: PMC5167257 DOI: 10.1371/journal.pone.0167620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022] Open
Abstract
Kymographs or space-time plots are widely used in cell biology to reduce the dimensions of a time-series in microscopy for both qualitative and quantitative insight into spatio-temporal dynamics. While multiple tools for image kymography have been described before, quantification remains largely manual. Here, we describe a novel software tool for automated multi-peak tracking kymography (AMTraK), which uses peak information and distance minimization to track and automatically quantify kymographs, integrated in a GUI. The program takes fluorescence time-series data as an input and tracks contours in the kymographs based on intensity and gradient peaks. By integrating a branch-point detection method, it can be used to identify merging and splitting events of tracks, important in separation and coalescence events. In tests with synthetic images, we demonstrate sub-pixel positional accuracy of the program. We test the program by quantifying sub-cellular dynamics in rod-shaped bacteria, microtubule (MT) transport and vesicle dynamics. A time-series of E. coli cell division with labeled nucleoid DNA is used to identify the time-point and rate at which the nucleoid segregates. The mean velocity of microtubule (MT) gliding motility due to a recombinant kinesin motor is estimated as 0.5 μm/s, in agreement with published values, and comparable to estimates using software for nanometer precision filament-tracking. We proceed to employ AMTraK to analyze previously published time-series microscopy data where kymographs had been manually quantified: clathrin polymerization kinetics during vesicle formation and anterograde and retrograde transport in axons. AMTraK analysis not only reproduces the reported parameters, it also provides an objective and automated method for reproducible analysis of kymographs from in vitro and in vivo fluorescence microscopy time-series of sub-cellular dynamics.
Collapse
|
49
|
Wang X, Galletta BJ, Cooper JA, Carlsson AE. Actin-Regulator Feedback Interactions during Endocytosis. Biophys J 2016; 110:1430-43. [PMID: 27028652 DOI: 10.1016/j.bpj.2016.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/20/2016] [Accepted: 02/08/2016] [Indexed: 01/22/2023] Open
Abstract
Endocytosis mediated by clathrin, a cellular process by which cells internalize membrane receptors and their extracellular ligands, is an important component of cell signaling regulation. Actin polymerization is involved in endocytosis in varying degrees depending on the cellular context. In yeast, clathrin-mediated endocytosis requires a pulse of polymerized actin and its regulators, which recruit and activate the Arp2/3 complex. In this article, we seek to identify the main protein-protein interactions that 1) cause actin and its regulators to appear in pulses, and 2) determine the effects of key mutations and drug treatments on actin and regulator assembly. We perform a joint modeling/experimental study of actin and regulator dynamics during endocytosis in the budding yeast Saccharomyces cerevisiae. We treat both a stochastic model that grows an explicit three-dimensional actin network, and a simpler two-variable Fitzhugh-Nagumo type model. The models include a negative-feedback interaction of F-actin onto the Arp2/3 regulators. Both models explain the pulse time courses and the effects of interventions on actin polymerization: the surprising increase in the peak F-actin count caused by reduced regulator branching activity, the increase in F-actin resulting from slowing of actin disassembly, and the increased Arp2/3 regulator lifetime resulting from latrunculin treatment. In addition, they predict that decreases in the regulator branching activity lead to increases in accumulation of regulators, and we confirmed this prediction with experiments on yeast harboring mutations in the Arp2/3 regulators, using quantitative fluorescence microscopy. Our experimental measurements suggest that the regulators act quasi-independently, in the sense that accumulation of a particular regulator is most strongly affected by mutations of that regulator, as opposed to the others.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Physics, Washington University, St. Louis, Missouri
| | - Brian J Galletta
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - John A Cooper
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri
| | | |
Collapse
|
50
|
Glomb O, Gronemeyer T. Septin Organization and Functions in Budding Yeast. Front Cell Dev Biol 2016; 4:123. [PMID: 27857941 PMCID: PMC5093138 DOI: 10.3389/fcell.2016.00123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
The septins are a conserved family of GTP-binding proteins present in all eukaryotic cells except plants. They were originally discovered in the baker's yeast Saccharomyces cerevisiae that serves until today as an important model organism for septin research. In yeast, the septins assemble into a highly ordered array of filaments at the mother bud neck. The septins are regulators of spatial compartmentalization in yeast and act as key players in cytokinesis. This minireview summarizes the recent findings about structural features and cell biology of the yeast septins.
Collapse
Affiliation(s)
- Oliver Glomb
- Department of Molecular Genetics and Cell Biology, Ulm University Ulm, Germany
| | - Thomas Gronemeyer
- Department of Molecular Genetics and Cell Biology, Ulm University Ulm, Germany
| |
Collapse
|