1
|
Zeng M, Chen L, Wang Y. Nuclear membrane: A key potential therapeutic target for lipid metabolism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:10-15. [PMID: 39433092 DOI: 10.1016/j.pbiomolbio.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Lipid homeostasis plays a pivotal role in cellular growth, necessitating the engagement of numerous lipid metabolism genes and the cohesive functioning of organelles. While the nucleus is traditionally recognized for its genetic roles, emerging evidence highlights its significant contribution to lipid homeostasis maintenance. Certain nuclear membrane proteins or associated proteins have the capacity to directly catalyze lipid synthesis or modification processes. Mutations in the genes encoding these proteins can lead to disrupted lipid metabolism, contributing to a spectrum of metabolic disorders. This article provides a comprehensive reviews of the investigations exploring the interplay between nuclear membrane proteins and lipid metabolism. Additionally, it delves into the heterogeneity of the nuclear membrane, positioning it as a novel therapeutic target for managing metabolic disorders and mitigating adverse drug reactions.
Collapse
Affiliation(s)
- Min Zeng
- Department of Gastroenterology, Liuyang Hospital of Chinese Medicine, Liuyang, Hunan, China
| | - Longgui Chen
- Department of Gastroenterology, Liuyang Hospital of Chinese Medicine, Liuyang, Hunan, China.
| | - YaZhu Wang
- Department of Cardiovascular Medicine, Liuyang Hospital of Chinese Medicine, Liuyang, Hunan, China.
| |
Collapse
|
2
|
Kim S, Phan S, Tran HT, Shaw TR, Shahmoradian SH, Ellisman MH, Veatch SL, Barmada SJ, Pappas SS, Dauer WT. TorsinA is essential for neuronal nuclear pore complex localization and maturation. Nat Cell Biol 2024; 26:1482-1495. [PMID: 39117796 PMCID: PMC11542706 DOI: 10.1038/s41556-024-01480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
As lifelong interphase cells, neurons face an array of unique challenges. A key challenge is regulating nuclear pore complex (NPC) biogenesis and localization, the mechanisms of which are largely unknown. Here we identify neuronal maturation as a period of strongly upregulated NPC biogenesis. We demonstrate that the AAA+ protein torsinA, whose dysfunction causes the neurodevelopmental movement disorder DYT-TOR1A dystonia and co-ordinates NPC spatial organization without impacting total NPC density. We generated an endogenous Nup107-HaloTag mouse line to directly visualize NPC organization in developing neurons and find that torsinA is essential for proper NPC localization. In the absence of torsinA, the inner nuclear membrane buds excessively at sites of mislocalized nascent NPCs, and the formation of complete NPCs is delayed. Our work demonstrates that NPC spatial organization and number are independently determined and identifies NPC biogenesis as a process vulnerable to neurodevelopmental disease insults.
Collapse
Affiliation(s)
- Sumin Kim
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sébastien Phan
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hung Tri Tran
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern, Dallas, TX, USA
| | - Thomas R Shaw
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Program in Applied Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Sarah H Shahmoradian
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern, Dallas, TX, USA
- Department of Biophysics, UT Southwestern, Dallas, TX, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Program in Applied Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Sami J Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| | - Samuel S Pappas
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA.
- Department of Neurology, UT Southwestern, Dallas, TX, USA.
| | - William T Dauer
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA.
- Department of Neurology, UT Southwestern, Dallas, TX, USA.
- Department of Neuroscience, UT Southwestern, Dallas, TX, USA.
| |
Collapse
|
3
|
Ma Q, Huang L, Long C, Lin W. 3D Imaging of Lipid Droplet-Nuclear Membrane Contact Sites and Cirrhotic Lipid Droplet Overexpression. Anal Chem 2024; 96:12908-12915. [PMID: 39066699 DOI: 10.1021/acs.analchem.4c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
To coordinate cellular physiology, cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites. Lipid droplets (LDs) and nuclear membrane (NM) contact sites are particularly vital communication hubs, playing key roles in the exchange of signaling molecules, lipids, and metabolites. However, there is still a lack of understanding of the specific morphology of the contact sites. Here, we combine advanced three-dimensional (3D) imaging with a high-brightness fluorescent probe specifically targeting LDs to map the structural landscape of LD-NM contact sites. The probe exhibits exceptional photophysical properties, making it highly suitable for visualizing the changes occurring in LDs during the apoptosis process. In addition, we utilize the advantages of the probe to accurately monitor the overexpression of abnormal LDs in cirrhosis by 3D imaging for the first time. The outcomes of this investigation highlight that the probe has potential as a robust imaging tool to investigate intricate biological functions of LDs and their implications in related diseases.
Collapse
Affiliation(s)
- Qingqing Ma
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ling Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Chenyuan Long
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
4
|
Kim S, Phan S, Shaw TR, Ellisman MH, Veatch SL, Barmada SJ, Pappas SS, Dauer WT. TorsinA is essential for the timing and localization of neuronal nuclear pore complex biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538491. [PMID: 37162852 PMCID: PMC10168336 DOI: 10.1101/2023.04.26.538491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nuclear pore complexes (NPCs) regulate information transfer between the nucleus and cytoplasm. NPC defects are linked to several neurological diseases, but the processes governing NPC biogenesis and spatial organization are poorly understood. Here, we identify a temporal window of strongly upregulated NPC biogenesis during neuronal maturation. We demonstrate that the AAA+ protein torsinA, whose loss of function causes the neurodevelopmental movement disorder DYT-TOR1A (DYT1) dystonia, coordinates NPC spatial organization during this period without impacting total NPC density. Using a new mouse line in which endogenous Nup107 is Halo-Tagged, we find that torsinA is essential for correct localization of NPC formation. In the absence of torsinA, the inner nuclear membrane buds excessively at sites of mislocalized, nascent NPCs, and NPC assembly completion is delayed. Our work implies that NPC spatial organization and number are independently regulated and suggests that torsinA is critical for the normal localization and assembly kinetics of NPCs.
Collapse
Affiliation(s)
- Sumin Kim
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Sébastien Phan
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA
| | - Thomas R. Shaw
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA
| | - Sarah L. Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - Sami J. Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Samuel S. Pappas
- Peter O’Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX
- Department of Neurology, UT Southwestern, Dallas, TX
| | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX
- Department of Neurology, UT Southwestern, Dallas, TX
- Department of Neuroscience, UT Southwestern, Dallas, TX
| |
Collapse
|
5
|
Coupling lipid synthesis with nuclear envelope remodeling. Trends Biochem Sci 2022; 47:52-65. [PMID: 34556392 PMCID: PMC9943564 DOI: 10.1016/j.tibs.2021.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/12/2021] [Accepted: 08/25/2021] [Indexed: 01/10/2023]
Abstract
The nuclear envelope (NE) is a protective barrier to the genome, yet its membranes undergo highly dynamic remodeling processes that are necessary for cell growth and maintenance. While mechanisms by which proteins promote NE remodeling are emerging, the types of bilayer lipids and the lipid-protein interactions that define and sculpt nuclear membranes remain elusive. The NE is continuous with the endoplasmic reticulum (ER) and recent evidence suggests that lipids produced in the ER are harnessed to remodel nuclear membranes. In this review, we examine new roles for lipid species made proximally within the ER and locally at the NE to control NE dynamics. We further explore how the biosynthesis of lipids coordinates NE remodeling to ensure genome protection.
Collapse
|
6
|
Deolal P, Mishra K. Regulation of diverse nuclear shapes: pathways working independently, together. Commun Integr Biol 2021; 14:158-175. [PMID: 34262635 PMCID: PMC8259725 DOI: 10.1080/19420889.2021.1939942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane-bound organelles provide physical and functional compartmentalization of biological processes in eukaryotic cells. The characteristic shape and internal organization of these organelles is determined by a combination of multiple internal and external factors. The maintenance of the shape of nucleus, which houses the genetic material within a double membrane bilayer, is crucial for a seamless spatio-temporal control over nuclear and cellular functions. Dynamic morphological changes in the shape of nucleus facilitate various biological processes. Chromatin packaging, nuclear and cytosolic protein organization, and nuclear membrane lipid homeostasis are critical determinants of overall nuclear morphology. As such, a multitude of molecular players and pathways act together to regulate the nuclear shape. Here, we review the known mechanisms governing nuclear shape in various unicellular and multicellular organisms, including the non-spherical nuclei and non-lamin-related structural determinants. The review also touches upon cellular consequences of aberrant nuclear morphologies.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
7
|
André S, Pinto AE, Silva GL, Silva F, Serpa J, Félix A. Male Breast Cancer-Immunohistochemical Patterns and Clinical Relevance of FASN, ATF3, and Collagen IV. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2021; 15:11782234211002496. [PMID: 33888988 PMCID: PMC8040573 DOI: 10.1177/11782234211002496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
Background Male breast carcinoma (male BC) is an uncommon neoplasia without individualized strategies for diagnosis and therapeutics. Low overall survival (OS) rates have been reported, mostly associated with patients' advanced stage and older age. Intratumoral heterogeneity versus homogeneity of malignant epithelial cells seems to be an important factor to consider for the development of combination therapies with curative intention. Objective In this preliminary study, we aim to provide valuable insight into the distinct clinicopathologic features of male BC. Material and methods In a series of 40 male BC patients, we evaluated by immunohistochemistry androgen receptor; activating transcription factor 3 (ATF3); p16; cyclin D1; fatty acid synthase (FASN); fatty acid transport protein 1 (FATP1); β1, β3, β4, and β6 integrins; collagen I and collagen IV; and their interactions. Kaplan-Meier survival curves and log-rank tests were assessed for statistical analysis. Results Homogeneous epithelial staining of p16, ATF3, β6 integrin, FASN, and FATP1 was found to be significantly intercorrelated, and associated with high Ki67. These markers also stained tumor stromal fibroblasts. The prognostic analysis showed statistically significant associations of FASN with disease-free survival (DFS) and OS, as well as of ATF3 with OS and collagen IV with DFS. Conclusions This study highlights, as a novel finding, the relevance of FASN, ATF3, and collagen IV immunophenotypes, which may have innovative application in the clinical management of male BC.
Collapse
Affiliation(s)
- Saudade André
- Department of Pathology, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
| | - António E Pinto
- Department of Pathology, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
| | - Giovani L Silva
- Department of Mathematics of Higher Technical Institute (Instituto Superior Técnico), Faculty of Sciences (Faculdade de Ciências), University of Lisbon, Lisbon, Portugal.,Statistics and Applications Center of University of Lisbon (CEAUL), Lisbon, Portugal
| | - Fernanda Silva
- CEDOC, NOVA Medical School, NOVA University, Lisbon, Portugal
| | - Jacinta Serpa
- CEDOC, NOVA Medical School, NOVA University, Lisbon, Portugal
| | - Ana Félix
- Department of Pathology, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal.,CEDOC, NOVA Medical School, NOVA University, Lisbon, Portugal
| |
Collapse
|