1
|
Zhou W, Xu C, Yang S, Li H, Pan C, Jiang Z, Xie L, Li X, Qiao H, Mi D, Tang Y, Zhang L, Xi Q. An oncohistone-driven H3.3K27M/CREB5/ID1 axis maintains the stemness and malignancy of diffuse intrinsic pontine glioma. Nat Commun 2025; 16:3675. [PMID: 40246858 PMCID: PMC12006333 DOI: 10.1038/s41467-025-58795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG), a lethal pediatric cancer driven by H3K27M oncohistones, exhibits aberrant epigenetic regulation and stem-like cell states. Here, we uncover an axis involving H3.3K27M oncohistones, CREB5/ID1, which sustains the stem-like state of DIPG cells, promoting malignancy. We demonstrate that CREB5 mediates elevated ID1 levels in the H3.3K27M/ACVR1WT subtype, promoting tumor growth; while BMP signaling regulates this process in the H3.1K27M/ACVR1MUT subtype. Furthermore, we reveal that H3.3K27M directly enhances CREB5 expression by reshaping the H3K27me3 landscape at the CREB5 locus, particularly at super-enhancer regions. Additionally, we elucidate the collaboration between CREB5 and BRG1, the SWI/SNF chromatin remodeling complex catalytic subunit, in driving oncogenic transcriptional changes in H3.3K27M DIPG. Intriguingly, disrupting CREB5 super-enhancers with ABBV-075 significantly reduces its expression and inhibits H3.3K27M DIPG tumor growth. Combined treatment with ABBV-075 and a BRG1 inhibitor presents a promising therapeutic strategy for clinical translation in H3.3K27M DIPG treatment.
Collapse
Affiliation(s)
- Wei Zhou
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Cheng Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuangrui Yang
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haocheng Li
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Luyang Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohan Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huimin Qiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Da Mi
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Li Z, Portillo-Ledesma S, Janani M, Schlick T. Incorporating multiscale methylation effects into nucleosome-resolution chromatin models for simulating mesoscale fibers. J Chem Phys 2025; 162:094107. [PMID: 40047512 PMCID: PMC11888786 DOI: 10.1063/5.0242199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/04/2025] [Indexed: 03/09/2025] Open
Abstract
Histone modifications play a crucial role in regulating chromatin architecture and gene expression. Here we develop a multiscale model for incorporating methylation in our nucleosome-resolution physics-based chromatin model to investigate the mechanisms by which H3K9 and H3K27 trimethylation (H3K9me3 and H3K27me3) influence chromatin structure and gene regulation. We apply three types of energy terms for this purpose: short-range potentials are derived from all-atom molecular dynamics simulations of wildtype and methylated chromatosomes, which revealed subtle local changes; medium-range potentials are derived by incorporating contacts between HP1 and nucleosomes modified by H3K9me3, to incorporate experimental results of enhanced contacts for short chromatin fibers (12 nucleosomes); for long-range interactions we identify H3K9me3- and H3K27me3-associated contacts based on Hi-C maps with a machine learning approach. These combined multiscale effects can model methylation as a first approximation in our mesoscale chromatin model, and applications to gene systems offer new insights into the epigenetic regulation of genomes mediated by H3K9me3 and H3K27me3.
Collapse
Affiliation(s)
| | | | - Moshe Janani
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, New York 10003, USA
| | | |
Collapse
|
3
|
Wong MMK, Hachmer S, Gardner E, Runfola V, Arezza E, Megeney LA, Emerson CP, Gabellini D, Dilworth FJ. SMCHD1 activates the expression of genes required for the expansion of human myoblasts. Nucleic Acids Res 2024; 52:9450-9462. [PMID: 38994563 PMCID: PMC11381350 DOI: 10.1093/nar/gkae600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
SMCHD1 is an epigenetic regulatory protein known to modulate the targeted repression of large chromatin domains. Diminished SMCHD1 function in muscle fibers causes Facioscapulohumeral Muscular Dystrophy (FSHD2) through derepression of the D4Z4 chromatin domain, an event which permits the aberrant expression of the disease-causing gene DUX4. Given that SMCHD1 plays a broader role in establishing the cellular epigenome, we examined whether loss of SMCHD1 function might affect muscle homeostasis through additional mechanisms. Here we show that acute depletion of SMCHD1 results in a DUX4-independent defect in myoblast proliferation. Genomic and transcriptomic experiments determined that SMCHD1 associates with enhancers of genes controlling cell cycle to activate their expression. Amongst these cell cycle regulatory genes, we identified LAP2 as a key target of SMCHD1 required for the expansion of myoblasts, where the ectopic expression of LAP2 rescues the proliferation defect of SMCHD1-depleted cells. Thus, the epigenetic regulator SMCHD1 can play the role of a transcriptional co-activator for maintaining the expression of genes required for muscle progenitor expansion. This DUX4-independent role for SMCHD1 in myoblasts suggests that the pathology of FSHD2 may be a consequence of defective muscle regeneration in addition to the muscle wasting caused by spurious DUX4 expression.
Collapse
Affiliation(s)
- Matthew Man-Kin Wong
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
| | - Sarah Hachmer
- Department of Cell and Regenerative Biology, University of Wisconsin; Madison, WI 53705, USA
| | - Ed Gardner
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
| | - Valeria Runfola
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy
| | - Eric Arezza
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
| | - Lynn A Megeney
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Davide Gabellini
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy
| | - F Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
- Department of Cell and Regenerative Biology, University of Wisconsin; Madison, WI 53705, USA
| |
Collapse
|
4
|
Peraldi R, Kmita M. 40 years of the homeobox: mechanisms of Hox spatial-temporal collinearity in vertebrates. Development 2024; 151:dev202508. [PMID: 39167089 DOI: 10.1242/dev.202508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Animal body plans are established during embryonic development by the Hox genes. This patterning process relies on the differential expression of Hox genes along the head-to-tail axis. Hox spatial collinearity refers to the relationship between the organization of Hox genes in clusters and the differential Hox expression, whereby the relative order of the Hox genes within a cluster mirrors the spatial sequence of expression in the developing embryo. In vertebrates, the cluster organization is also associated with the timing of Hox activation, which harmonizes Hox expression with the progressive emergence of axial tissues. Thereby, in vertebrates, Hox temporal collinearity is intimately linked to Hox spatial collinearity. Understanding the mechanisms contributing to Hox temporal and spatial collinearity is thus key to the comprehension of vertebrate patterning. Here, we provide an overview of the main discoveries pertaining to the mechanisms of Hox spatial-temporal collinearity.
Collapse
Affiliation(s)
- Rodrigue Peraldi
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Marie Kmita
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Department of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
5
|
Kessler S, Minoux M, Joshi O, Ben Zouari Y, Ducret S, Ross F, Vilain N, Salvi A, Wolff J, Kohler H, Stadler MB, Rijli FM. A multiple super-enhancer region establishes inter-TAD interactions and controls Hoxa function in cranial neural crest. Nat Commun 2023; 14:3242. [PMID: 37277355 DOI: 10.1038/s41467-023-38953-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
Enhancer-promoter interactions preferentially occur within boundary-insulated topologically associating domains (TADs), limiting inter-TAD interactions. Enhancer clusters in linear proximity, termed super-enhancers (SEs), ensure high target gene expression levels. Little is known about SE topological regulatory impact during craniofacial development. Here, we identify 2232 genome-wide putative SEs in mouse cranial neural crest cells (CNCCs), 147 of which target genes establishing CNCC positional identity during face formation. In second pharyngeal arch (PA2) CNCCs, a multiple SE-containing region, partitioned into Hoxa Inter-TAD Regulatory Element 1 and 2 (HIRE1 and HIRE2), establishes long-range inter-TAD interactions selectively with Hoxa2, that is required for external and middle ear structures. HIRE2 deletion in a Hoxa2 haploinsufficient background results in microtia. HIRE1 deletion phenocopies the full homeotic Hoxa2 knockout phenotype and induces PA3 and PA4 CNCC abnormalities correlating with Hoxa2 and Hoxa3 transcriptional downregulation. Thus, SEs can overcome TAD insulation and regulate anterior Hoxa gene collinear expression in a CNCC subpopulation-specific manner during craniofacial development.
Collapse
Affiliation(s)
- Sandra Kessler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- INSERM UMR 1121, Université de Strasbourg, Faculté de Chirurgie Dentaire, 8, rue Sainte Elisabeth, 67 000, Strasbourg, France
| | - Onkar Joshi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Yousra Ben Zouari
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Fiona Ross
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nathalie Vilain
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Adwait Salvi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joachim Wolff
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Shirahama Y, Yamamoto K. The E2F6 Transcription Factor is Associated with the Mammalian SUZ12-Containing Polycomb Complex. Kurume Med J 2023; 67:171-183. [PMID: 36464274 DOI: 10.2739/kurumemedj.ms674006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The Polycomb group protein (PcG) SUZ12 forms Polycomb repressive complexes together with histone methyltransferase EZH2. Although the complexes have been demonstrated to be involved in epigenetic maintenance of gene expression in a transcriptional repressive state, it is unclear how they are recruited to the target genes. Here we report that SUZ12 directly interacts with site-specific transcriptional repressor E2F6 and forms a complex together with EZH2. SUZ12 interacts with E2F6 selectively among the E2F family proteins and E2F6- containing SUZ12-EZH2 complex was biochemically purified from HEK293 cells stably expressing Flag-tagged SUZ12. Chromatin immunoprecipitation assays revealed the target genes of the E2F6-SUZ12-EZH2 complex. Contrary to expectation, the promoter regions of these genes are not or only weakly tri-methylated at histone H3-K27, and their expression is down-regulated by depletion of EZH2. Given that the transactivation function of SUZ12-EZH2 has been previously reported, the inhibitory effect on E2F6-mediated transcriptional repression by physical interaction can be considered a candidate mechanism of gene activation by these PcGs.
Collapse
Affiliation(s)
- Yuko Shirahama
- Department of Medical Biochemistry, Kurume University School of Medicine
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine
| |
Collapse
|
7
|
Ma W, Fang H, Pease N, Filippova GN, Disteche CM, Berletch JB. Sex-biased and parental allele-specific gene regulation by KDM6A. Biol Sex Differ 2022; 13:40. [PMID: 35871105 PMCID: PMC9308343 DOI: 10.1186/s13293-022-00452-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/09/2022] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
KDM6A is a demethylase encoded by a gene with female-biased expression due to escape from X inactivation. Its main role is to facilitate gene expression through removal of the repressive H3K27me3 mark, with evidence of some additional histone demethylase-independent functions. KDM6A mutations have been implicated in congenital disorders such as Kabuki Syndrome, as well as in sex differences in cancer.
Methods
Kdm6a was knocked out using CRISPR/Cas9 gene editing in F1 male and female mouse embryonic stem cells (ES) derived from reciprocal crosses between C57BL6 x Mus castaneus. Diploid and allelic RNA-seq analyses were done to compare gene expression between wild-type and Kdm6a knockout (KO) clones. The effects of Kdm6a KO on sex-biased gene expression were investigated by comparing gene expression between male and female ES cells. Changes in H3K27me3 enrichment and chromatin accessibility at promoter regions of genes with expression changes were characterized by ChIP-seq and ATAC-seq followed by diploid and allelic analyses.
Results
We report that Kdm6a KO in male and female embryonic stem (ES) cells derived from F1 hybrid mice cause extensive gene dysregulation, disruption of sex biases, and specific parental allele effects. Among the dysregulated genes are candidate genes that may explain abnormal developmental features of Kabuki syndrome caused by KDM6A mutations in human. Strikingly, Kdm6a knockouts result in a decrease in sex-biased expression and in preferential downregulation of the maternal alleles of a number of genes. Most promoters of dysregulated genes show concordant epigenetic changes including gain of H3K27me3 and loss of chromatin accessibility, but there was less concordance when considering allelic changes.
Conclusions
Our study reveals new sex-related roles of KDM6A in the regulation of developmental genes, the maintenance of sex-biased gene expression, and the differential expression of parental alleles.
Collapse
|
8
|
Fenelon KD, Thomas E, Samani M, Zhu M, Tao H, Sun Y, McNeill H, Hopyan S. Transgenic force sensors and software to measure force transmission across the mammalian nuclear envelope in vivo. Biol Open 2022; 11:bio059656. [PMID: 36350289 PMCID: PMC9672859 DOI: 10.1242/bio.059656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 01/28/2025] Open
Abstract
Nuclear mechanotransduction is a growing field with exciting implications for the regulation of gene expression and cellular function. Mechanical signals may be transduced to the nuclear interior biochemically or physically through connections between the cell surface and chromatin. To define mechanical stresses upon the nucleus in physiological settings, we generated transgenic mouse strains that harbour FRET-based tension sensors or control constructs in the outer and inner aspects of the nuclear envelope. We knocked-in a published esprin-2G sensor to measure tensions across the LINC complex and generated a new sensor that links the inner nuclear membrane to chromatin. To mitigate challenges inherent to fluorescence lifetime analysis in vivo, we developed software (FLIMvivo) that markedly improves the fitting of fluorescence decay curves. In the mouse embryo, the sensors responded to cytoskeletal relaxation and stretch applied by micro-aspiration. They reported organ-specific differences and a spatiotemporal tension gradient along the proximodistal axis of the limb bud, raising the possibility that mechanical mechanisms coregulate pattern formation. These mouse strains and software are potentially valuable tools for testing and refining mechanotransduction hypotheses in vivo.
Collapse
Affiliation(s)
- Kelli D. Fenelon
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Evan Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mohammad Samani
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Min Zhu
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Helen McNeill
- Department of Developmental Biology, Washington University, St. Louis, MO 63110, USA
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Orthopaedic Surgery, Hospital for Sick Children and University of Toronto, ON M5G 1X8, Canada
| |
Collapse
|
9
|
Sanati M, Binabaj MM, Ahmadi SS, Aminyavari S, Javid H, Mollazadeh H, Bibak B, Mohtashami E, Jamialahmadi T, Afshari AR, Sahebkar A. Recent advances in glioblastoma multiforme therapy: A focus on autophagy regulation. Biomed Pharmacother 2022; 155:113740. [PMID: 36166963 DOI: 10.1016/j.biopha.2022.113740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
Despite conventional treatment options including chemoradiation, patients with the most aggressive primary brain tumor, glioblastoma multiforme (GBM), experience an average survival time of less than 15 months. Regarding the malignant nature of GBM, extensive research and discovery of novel treatments are urgently required to improve the patients' prognosis. Autophagy, a crucial physiological pathway for the degradation and recycling of cell components, is one of the exciting targets of GBM studies. Interventions aimed at autophagy activation or inhibition have been explored as potential GBM therapeutics. This review, which delves into therapeutic techniques to block or activate autophagy in preclinical and clinical research, aims to expand our understanding of available therapies battling GBM.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Sajad Ahmadi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Guo Y, Wang GG. Modulation of the high-order chromatin structure by Polycomb complexes. Front Cell Dev Biol 2022; 10:1021658. [PMID: 36274840 PMCID: PMC9579376 DOI: 10.3389/fcell.2022.1021658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The multi-subunit Polycomb Repressive Complex (PRC) 1 and 2 act, either independently or synergistically, to maintain and enforce a repressive state of the target chromatin, thereby regulating the processes of cell lineage specification and organismal development. In recent years, deep sequencing-based and imaging-based technologies, especially those tailored for mapping three-dimensional (3D) chromatin organization and structure, have allowed a better understanding of the PRC complex-mediated long-range chromatin contacts and DNA looping. In this review, we review current advances as for how Polycomb complexes function to modulate and help define the high-order chromatin structure and topology, highlighting the multi-faceted roles of Polycomb proteins in gene and genome regulation.
Collapse
Affiliation(s)
- Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Yiran Guo, ; Gang Greg Wang,
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Yiran Guo, ; Gang Greg Wang,
| |
Collapse
|
11
|
Liu X, Liu X. PRC2, Chromatin Regulation, and Human Disease: Insights From Molecular Structure and Function. Front Oncol 2022; 12:894585. [PMID: 35800061 PMCID: PMC9255955 DOI: 10.3389/fonc.2022.894585] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a multisubunit histone-modifying enzyme complex that mediates methylation of histone H3 lysine 27 (H3K27). Trimethylated H3K27 (H3K27me3) is an epigenetic hallmark of gene silencing. PRC2 plays a crucial role in a plethora of fundamental biological processes, and PRC2 dysregulation has been repeatedly implicated in cancers and developmental disorders. Here, we review the current knowledge on mechanisms of cellular regulation of PRC2 function, particularly regarding H3K27 methylation and chromatin targeting. PRC2-related disease mechanisms are also discussed. The mode of action of PRC2 in gene regulation is summarized, which includes competition between H3K27 methylation and acetylation, crosstalk with transcription machinery, and formation of high-order chromatin structure. Recent progress in the structural biology of PRC2 is highlighted from the aspects of complex assembly, enzyme catalysis, and chromatin recruitment, which together provide valuable insights into PRC2 function in close-to-atomic detail. Future studies on the molecular function and structure of PRC2 in the context of native chromatin and in the presence of other regulators like RNAs will continue to deepen our understanding of the stability and plasticity of developmental transcriptional programs broadly impacted by PRC2.
Collapse
|
12
|
Bolt CC, Lopez-Delisle L, Hintermann A, Mascrez B, Rauseo A, Andrey G, Duboule D. Context-dependent enhancer function revealed by targeted inter-TAD relocation. Nat Commun 2022; 13:3488. [PMID: 35715427 PMCID: PMC9205857 DOI: 10.1038/s41467-022-31241-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/09/2022] [Indexed: 11/08/2022] Open
Abstract
The expression of some genes depends on large, adjacent regions of the genome that contain multiple enhancers. These regulatory landscapes frequently align with Topologically Associating Domains (TADs), where they integrate the function of multiple similar enhancers to produce a global, TAD-specific regulation. We asked if an individual enhancer could overcome the influence of one of these landscapes, to drive gene transcription. To test this, we transferred an enhancer from its native location, into a nearby TAD with a related yet different functional specificity. We used the biphasic regulation of Hoxd genes during limb development as a paradigm. These genes are first activated in proximal limb cells by enhancers located in one TAD, which is then silenced when the neighboring TAD activates its enhancers in distal limb cells. We transferred a distal limb enhancer into the proximal limb TAD and found that its new context suppresses its normal distal specificity, even though it is bound by HOX13 transcription factors, which are responsible for the distal activity. This activity can be rescued only when a large portion of the surrounding environment is removed. These results indicate that, at least in some cases, the functioning of enhancer elements is subordinated to the host chromatin context, which can exert a dominant control over its activity.
Collapse
Affiliation(s)
- Christopher Chase Bolt
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland.
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Aurélie Hintermann
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Antonella Rauseo
- Department of Medical Genetics, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, 1211, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Guillaume Andrey
- Department of Medical Genetics, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, 1211, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Denis Duboule
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland.
- Collège de France, 11 Place Marcelin Berthelot, 75231, Paris, France.
| |
Collapse
|
13
|
Sawai A, Pfennig S, Bulajić M, Miller A, Khodadadi-Jamayran A, Mazzoni EO, Dasen JS. PRC1 sustains the integrity of neural fate in the absence of PRC2 function. eLife 2022; 11:e72769. [PMID: 34994686 PMCID: PMC8765755 DOI: 10.7554/elife.72769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.
Collapse
Affiliation(s)
- Ayana Sawai
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Sarah Pfennig
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Milica Bulajić
- Department of Biology, New York UniversityNew YorkUnited States
| | - Alexander Miller
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories, Office of Science and Research, NYU School of MedcineNew YorkUnited States
| | | | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| |
Collapse
|
14
|
Lucas T, Hafer TL, Zhang HG, Molotkova N, Kohwi M. Discrete cis-acting element regulates developmentally timed gene-lamina relocation and neural progenitor competence in vivo. Dev Cell 2021; 56:2649-2663.e6. [PMID: 34529940 PMCID: PMC8629127 DOI: 10.1016/j.devcel.2021.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/24/2021] [Accepted: 08/20/2021] [Indexed: 01/21/2023]
Abstract
The nuclear lamina is typically associated with transcriptional silencing, and peripheral relocation of genes highly correlates with repression. However, the DNA sequences and proteins regulating gene-lamina interactions are largely unknown. Exploiting the developmentally timed hunchback gene movement to the lamina in Drosophila neuroblasts, we identified a 250 bp intronic element (IE) both necessary and sufficient for relocation. The IE can target a reporter transgene to the lamina and silence it. Endogenously, however, hunchback is already repressed prior to relocation. Instead, IE-mediated relocation confers a heritably silenced gene state refractory to activation in descendent neurons, which terminates neuroblast competence to specify early-born identity. Surprisingly, we found that the Polycomb group chromatin factors bind the IE and are required for lamina relocation, revealing a nuclear architectural role distinct from their well-known function in transcriptional repression. Together, our results uncover in vivo mechanisms underlying neuroblast competence and lamina association in heritable gene silencing. In Drosophila neuroblasts, relocation of the hunchback gene locus to the nuclear lamina confers heritable silencing in daughter neurons. Lucas et al. identify a genomic element necessary and sufficient for hunchback gene movement in vivo. Polycomb proteins target this element for lamina relocation, thereby regulating competence, but not hunchback expression.
Collapse
Affiliation(s)
- Tanguy Lucas
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY 10027, USA
| | - Terry L Hafer
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY 10027, USA
| | - Harrison G Zhang
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY 10027, USA
| | - Natalia Molotkova
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY 10027, USA
| | - Minoree Kohwi
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
15
|
Golovina E, Fadason T, Lints TJ, Walker C, Vickers MH, O’Sullivan JM. Understanding the impact of SNPs associated with autism spectrum disorder on biological pathways in the human fetal and adult cortex. Sci Rep 2021; 11:15867. [PMID: 34354167 PMCID: PMC8342620 DOI: 10.1038/s41598-021-95447-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by significant and complex genetic etiology. GWAS studies have identified genetic variants associated with ASD, but the functional impacts of these variants remain unknown. Here, we integrated four distinct levels of biological information (GWAS, eQTL, spatial genome organization and protein-protein interactions) to identify potential regulatory impacts of ASD-associated SNPs (p < 5 × 10-8) on biological pathways within fetal and adult cortical tissues. We found 80 and 58 SNPs that mark regulatory regions (i.e. expression quantitative trait loci or eQTLs) in the fetal and adult cortex, respectively. These eQTLs were also linked to other psychiatric disorders (e.g. schizophrenia, ADHD, bipolar disorder). Functional annotation of ASD-associated eQTLs revealed that they are involved in diverse regulatory processes. In particular, we found significant enrichment of eQTLs within regions repressed by Polycomb proteins in the fetal cortex compared to the adult cortex. Furthermore, we constructed fetal and adult cortex-specific protein-protein interaction networks and identified that ASD-associated regulatory SNPs impact on immune pathways, fatty acid metabolism, ribosome biogenesis, aminoacyl-tRNA biosynthesis and spliceosome in the fetal cortex. By contrast, in the adult cortex they largely affect immune pathways. Overall, our findings highlight potential regulatory mechanisms and pathways important for the etiology of ASD in early brain development and adulthood. This approach, in combination with clinical studies on ASD, will contribute to individualized mechanistic understanding of ASD development.
Collapse
Affiliation(s)
- E. Golovina
- grid.9654.e0000 0004 0372 3343Liggins Institute, University of Auckland, Auckland, New Zealand
| | - T. Fadason
- grid.9654.e0000 0004 0372 3343Liggins Institute, University of Auckland, Auckland, New Zealand ,grid.9654.e0000 0004 0372 3343Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - T. J. Lints
- grid.9654.e0000 0004 0372 3343School of Medical Science, University of Auckland, Auckland, New Zealand
| | - C. Walker
- grid.9654.e0000 0004 0372 3343School of Population Health, University of Auckland, Auckland, New Zealand
| | - M. H. Vickers
- grid.9654.e0000 0004 0372 3343Liggins Institute, University of Auckland, Auckland, New Zealand ,grid.9654.e0000 0004 0372 3343Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - J. M. O’Sullivan
- grid.9654.e0000 0004 0372 3343Liggins Institute, University of Auckland, Auckland, New Zealand ,grid.9654.e0000 0004 0372 3343Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand ,grid.9654.e0000 0004 0372 3343Brain Research New Zealand, University of Auckland, Auckland, New Zealand ,grid.5491.90000 0004 1936 9297MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK ,grid.415306.50000 0000 9983 6924Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
16
|
Crispatzu G, Rehimi R, Pachano T, Bleckwehl T, Cruz-Molina S, Xiao C, Mahabir E, Bazzi H, Rada-Iglesias A. The chromatin, topological and regulatory properties of pluripotency-associated poised enhancers are conserved in vivo. Nat Commun 2021; 12:4344. [PMID: 34272393 PMCID: PMC8285398 DOI: 10.1038/s41467-021-24641-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Poised enhancers (PEs) represent a genetically distinct set of distal regulatory elements that control the expression of major developmental genes. Before becoming activated in differentiating cells, PEs are already bookmarked in pluripotent cells with unique chromatin and topological features that could contribute to their privileged regulatory properties. However, since PEs were originally characterized in embryonic stem cells (ESC), it is currently unknown whether PEs are functionally conserved in vivo. Here, we show that the chromatin and 3D structural features of PEs are conserved among mouse pluripotent cells both in vitro and in vivo. We also uncovered that the interactions between PEs and their target genes are globally controlled by the combined action of Polycomb, Trithorax and architectural proteins. Moreover, distal regulatory sequences located close to developmental genes and displaying the typical genetic (i.e. CpG islands) and chromatin (i.e. high accessibility and H3K27me3 levels) features of PEs are commonly found across vertebrates. These putative PEs show high sequence conservation within specific vertebrate clades, with only a few being evolutionary conserved across all vertebrates. Lastly, by genetically disrupting PEs in mouse and chicken embryos, we demonstrate that these regulatory elements play essential roles during the induction of major developmental genes in vivo.
Collapse
Affiliation(s)
- Giuliano Crispatzu
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Department of Internal Medicine II, University Hospital Cologne, Cologne, Germany.
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany.
| | - Rizwan Rehimi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tomas Pachano
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tore Bleckwehl
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sara Cruz-Molina
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Cally Xiao
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany
- Department of Dermatology and Venereology, University Hospital Cologne, Cologne, Germany
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Esther Mahabir
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hisham Bazzi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany
- Department of Dermatology and Venereology, University Hospital Cologne, Cologne, Germany
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany.
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN, Santander, Spain.
| |
Collapse
|
17
|
Heimbruch KE, Fisher JB, Stelloh CT, Phillips E, Reimer MH, Wargolet AJ, Meyer AE, Pulakanti K, Viny AD, Loppnow JJ, Levine RL, Pulikkan JA, Zhu N, Rao S. DOT1L inhibitors block abnormal self-renewal induced by cohesin loss. Sci Rep 2021; 11:7288. [PMID: 33790356 PMCID: PMC8012605 DOI: 10.1038/s41598-021-86646-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/18/2021] [Indexed: 01/25/2023] Open
Abstract
Acute myeloid leukemia (AML) is a high-risk malignancy characterized by a diverse spectrum of somatic genetic alterations. The mechanisms by which these mutations contribute to leukemia development and how this informs the use of targeted therapies is critical to improving outcomes for patients. Importantly, how to target loss-of-function mutations has been a critical challenge in precision medicine. Heterozygous inactivating mutations in cohesin complex genes contribute to AML in adults by increasing the self-renewal capacity of hematopoietic stem and progenitor cells (HSPCs) by altering PRC2 targeting to induce HOXA9 expression, a key self-renewal transcription factor. Here we sought to delineate the epigenetic mechanism underpinning the enhanced self-renewal conferred by cohesin-haploinsufficiency. First, given the substantial difference in the mutational spectrum between pediatric and adult AML patients, we first sought to identify if HOXA9 was also elevated in children. Next, using primary HSPCs as a model we demonstrate that abnormal self-renewal due to cohesin loss is blocked by DOT1L inhibition. In cohesin-depleted cells, DOT1L inhibition is associated with H3K79me2 depletion and a concomitant increase in H3K27me3. Importantly, we find that there are cohesin-dependent gene expression changes that promote a leukemic profile, including HoxA overexpression, that are preferentially reversed by DOT1L inhibition. Our data further characterize how cohesin mutations contribute to AML development, identifying DOT1L as a potential therapeutic target for adult and pediatric AML patients harboring cohesin mutations.
Collapse
Affiliation(s)
- Katelyn E Heimbruch
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph B Fisher
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Cary T Stelloh
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Emily Phillips
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Michael H Reimer
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Adam J Wargolet
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Alison E Meyer
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Kirthi Pulakanti
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, and Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica J Loppnow
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Anto Pulikkan
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Nan Zhu
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
18
|
Epigenetic reprogramming during prostate cancer progression: A perspective from development. Semin Cancer Biol 2021; 83:136-151. [PMID: 33545340 DOI: 10.1016/j.semcancer.2021.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Conrad Waddington's theory of epigenetic landscape epitomize the process of cell fate and cellular decision-making during development. Wherein the epigenetic code maintains patterns of gene expression in pluripotent and differentiated cellular states during embryonic development and differentiation. Over the years disruption or reprogramming of the epigenetic landscape has been extensively studied in the course of cancer progression. Cellular dedifferentiation being a key hallmark of cancer allow us to take cues from the biological processes involved during development. Here, we discuss the role of epigenetic landscape and its modifiers in cell-fate determination, differentiation and prostate cancer progression. Lately, the emergence of RNA-modifications has also furthered our understanding of epigenetics in cancer. The overview of the epigenetic code regulating androgen signalling, and progression to aggressive neuroendocrine stage of PCa reinforces its gene regulatory functions during the development of prostate gland as well as cancer progression. Additionally, we also highlight the clinical implications of cancer cell epigenome, and discuss the recent advancements in the therapeutic strategies targeting the advanced stage disease.
Collapse
|
19
|
Zhang X, Jeong M, Huang X, Wang XQ, Wang X, Zhou W, Shamim MS, Gore H, Himadewi P, Liu Y, Bochkov ID, Reyes J, Doty M, Huang YH, Jung H, Heikamp E, Aiden AP, Li W, Su J, Aiden EL, Goodell MA. Large DNA Methylation Nadirs Anchor Chromatin Loops Maintaining Hematopoietic Stem Cell Identity. Mol Cell 2020; 78:506-521.e6. [PMID: 32386543 DOI: 10.1016/j.molcel.2020.04.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/06/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
Higher-order chromatin structure and DNA methylation are implicated in multiple developmental processes, but their relationship to cell state is unknown. Here, we find that large (>7.3 kb) DNA methylation nadirs (termed "grand canyons") can form long loops connecting anchor loci that may be dozens of megabases (Mb) apart, as well as inter-chromosomal links. The interacting loci cover a total of ∼3.5 Mb of the human genome. The strongest interactions are associated with repressive marks made by the Polycomb complex and are diminished upon EZH2 inhibitor treatment. The data are suggestive of the formation of these loops by interactions between repressive elements in the loci, forming a genomic subcompartment, rather than by cohesion/CTCF-mediated extrusion. Interestingly, unlike previously characterized subcompartments, these interactions are present only in particular cell types, such as stem and progenitor cells. Our work reveals that H3K27me3-marked large DNA methylation grand canyons represent a set of very-long-range loops associated with cellular identity.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Mira Jeong
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Xingfan Huang
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Center for Theoretical Biological Physics & Department of Computer Science, Rice University, Houston, TX, USA
| | - Xue Qing Wang
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Xinyu Wang
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Wanding Zhou
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Muhammad S Shamim
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Medical Student Training Program, Baylor College of Medicine, Houston, TX, USA; Center for Theoretical Biological Physics & Department of Computer Science, Rice University, Houston, TX, USA
| | - Haley Gore
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Pamela Himadewi
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Yushuai Liu
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Ivan D Bochkov
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jaime Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Madison Doty
- Molecular Genetic Technology Program, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yung-Hsin Huang
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Developmental Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Haiyoung Jung
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea, USA
| | - Emily Heikamp
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Aviva Presser Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Developmental Biology Program, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Wei Li
- Department of Bioinformatics, Biological Chemistry, University of California, Irvine CA, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jianzhong Su
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Center for Theoretical Biological Physics & Department of Computer Science, Rice University, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China.
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Gentile C, Kmita M. Polycomb Repressive Complexes in Hox Gene Regulation: Silencing and Beyond: The Functional Dynamics of Polycomb Repressive Complexes in Hox Gene Regulation. Bioessays 2020; 42:e1900249. [PMID: 32743818 DOI: 10.1002/bies.201900249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/17/2020] [Indexed: 11/10/2022]
Abstract
The coordinated expression of the Hox gene family encoding transcription factors is critical for proper embryonic development and patterning. Major efforts have thus been dedicated to understanding mechanisms controlling Hox expression. In addition to the temporal and spatial sequential activation of Hox genes, proper embryonic development requires that Hox genes get differentially silenced in a cell-type specific manner as development proceeds. Factors contributing to Hox silencing include the polycomb repressive complexes (PRCs), which control gene expression through epigenetic modifications. This review focuses on PRC-dependent regulation of the Hox genes and is aimed at integrating the growing complexity of PRC functional properties in the context of Hox regulation. In particular, mechanisms underlying PRC binding dynamics as well as a series of studies that have revealed the impact of PRC on the 3D organization of the genome is discussed, which has a significant role on Hox regulation during development.
Collapse
Affiliation(s)
- Claudia Gentile
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada.,Department of Experimental Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada.,Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Marie Kmita
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada.,Department of Experimental Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada.,Département de Médecine, Université de Montréal, Montréal, Quebec, H3C 3J7, Canada
| |
Collapse
|
21
|
Pachano T, Crispatzu G, Rada-Iglesias A. Polycomb proteins as organizers of 3D genome architecture in embryonic stem cells. Brief Funct Genomics 2020; 18:358-366. [PMID: 31673701 DOI: 10.1093/bfgp/elz022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
Polycomb group proteins (PcGs) control the epigenetic and transcriptional state of developmental genes and regulatory elements during mammalian embryogenesis. Moreover, PcGs can also contribute to 3D genome organization, adding an additional layer of complexity to their regulatory functions. Understanding the mechanistic basis and the dynamics of PcG-dependent chromatin structures will help us untangle the full complexity of PcG function during development. Since most studies concerning the 3D organization of PcG-bound chromatin in mammals have been performed in embryonic stem cells (ESCs), here we will focus on this cell type characterized by its unique self-renewal and pluripotency properties. More specifically, we will highlight recent findings and discuss open questions regarding how PcG-dependent changes in 3D chromatin architecture control gene expression, cellular identity and differentiation potential in ESCs. We believe that this can serve to illustrate the diverse regulatory mechanisms by which PcG proteins control the proper execution of gene expression programs during mammalian embryogenesis.
Collapse
Affiliation(s)
- Tomas Pachano
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Giuliano Crispatzu
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.,Department II of Internal Medicine, University Hospital Cologne, Germany
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.,Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany.,Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria, Spain
| |
Collapse
|
22
|
Abstract
Regulatory landscapes have been defined in vertebrates as large DNA segments containing diverse enhancer sequences that produce coherent gene transcription. These genomic platforms integrate multiple cellular signals and hence can trigger pleiotropic expression of developmental genes. Identifying and evaluating how these chromatin regions operate may be difficult as the underlying regulatory mechanisms can be as unique as the genes they control. In this brief article and accompanying poster, we discuss some of the ways in which regulatory landscapes operate, illustrating these mechanisms using genes important for vertebrate development as examples. We also highlight some of the techniques available to researchers for analysing regulatory landscapes.
Collapse
Affiliation(s)
- Christopher Chase Bolt
- Swiss Institute for Cancer Research (ISREC), School of Life Sciences, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Denis Duboule
- Swiss Institute for Cancer Research (ISREC), School of Life Sciences, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland
- Collège de France, 75005 Paris, France
| |
Collapse
|
23
|
Shuai Y, Ma Z, Liu W, Yu T, Yan C, Jiang H, Tian S, Xu T, Shu Y. TEAD4 modulated LncRNA MNX1-AS1 contributes to gastric cancer progression partly through suppressing BTG2 and activating BCL2. Mol Cancer 2020; 19:6. [PMID: 31924214 PMCID: PMC6953272 DOI: 10.1186/s12943-019-1104-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/12/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the third leading cause of cancer-related mortality globally. Long noncoding RNAs (lncRNAs) are dysregulated in obvious malignancies including GC and exploring the regulatory mechanisms underlying their expression is an attractive research area. However, these molecular mechanisms require further clarification, especially upstream mechanisms. METHODS LncRNA MNX1-AS1 expression in GC tissue samples was investigated via microarray analysis and further determined in a cohort of GC tissues via quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. Cell proliferation and flow cytometry assays were performed to confirm the roles of MNX1-AS1 in GC proliferation, cell cycle regulation, and apoptosis. The influence of MNX1-AS1 on GC cell migration and invasion was explored with Transwell assays. A xenograft tumour model was established to verify the effects of MNX1-AS1 on in vivo tumourigenesis. The TEAD4-involved upstream regulatory mechanism of MNX1-AS1 was explored through ChIP and luciferase reporter assays. The mechanistic model of MNX1-AS1 in regulating gene expression was further detected by subcellular fractionation, FISH, RIP, ChIP and luciferase reporter assays. RESULTS It was found that MNX1-AS1 displayed obvious upregulation in GC tissue samples and cell lines, and ectopic expression of MNX1-AS1 predicted poor clinical outcomes for patients with GC. Overexpressed MNX1-AS1 expression promoted proliferation, migration and invasion of GC cells markedly, whereas decreased MNX1-AS1 expression elicited the opposite effects. Consistent with the in vitro results, MNX1-AS1 depletion effectively inhibited the growth of xenograft tumour in vivo. Mechanistically, TEAD4 directly bound the promoter region of MNX1-AS1 and stimulated the transcription of MNX1-AS1. Furthermore, MNX1-AS1 can sponge miR-6785-5p to upregulate the expression of BCL2 in GC cells. Meanwhile, MNX1-AS1 suppressed the transcription of BTG2 by recruiting polycomb repressive complex 2 to BTG2 promoter regions. CONCLUSIONS Our findings demonstrate that MNX1-AS1 may be able to serve as a prognostic indicator in GC patients and that TEAD4-activatd MNX1-AS1 can promote GC progression through EZH2/BTG2 and miR-6785-5p/BCL2 axes, implicating it as a novel and potent target for the treatment of GC.
Collapse
Affiliation(s)
- You Shuai
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Weitao Liu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Tao Yu
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changsheng Yan
- Department of Gastroenterology, Institute for Microbial Ecology, School of Medicine, Xiamen University, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Hua Jiang
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Shengwang Tian
- Department of Oncology, JinTan People's Hospital, Jintan, 213200, China
| | - Tongpeng Xu
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yongqian Shu
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
24
|
Dynamic and self-regulatory interactions among gene regulatory networks control vertebrate limb bud morphogenesis. Curr Top Dev Biol 2020; 139:61-88. [DOI: 10.1016/bs.ctdb.2020.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|