1
|
Zhang LM, Zhang DX, Song RX, Lv JM, Wang LY, Wu ZY, Miao HT, Zhou YB, Zhang W, Xin Y, Li Y. IL-18BP Alleviates Anxiety-Like Behavior Induced by Traumatic Stress via Inhibition of the IL-18R-NLRP3 Signaling Pathway in a Mouse Model of Hemorrhagic Shock and Resuscitation. Mol Neurobiol 2022; 60:382-394. [PMID: 36269543 DOI: 10.1007/s12035-022-03085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022]
Abstract
Psychological distress and posttraumatic stress, including anxiety, severely influence life quality. Previously, we reported that interleukin-18 (IL-18) was involved in pyroptosis-induced emotional changes in a rodent model of hemorrhagic shock and resuscitation (HSR). Here, we aimed to continue our investigation on the role of IL-18 binding protein (IL-18BP), which exhibits excellent anti-inflammatory effects as an IL-18 negative regulator. Mice were administered with an intraperitoneal injection of IL-18BP after HSR exposure and anxiety-like behavior was examined using the open-field test and elevated plus maze test. Moreover, the following variables post-HSR were measured: (1) the activation of astrocytes; (2) pyroptosis-associated factors including cleaved caspase-1, GSDMD, IL-18; (3) the roles of IL-18 receptor (IL-18R)-NOD-like receptor pyrin domain-containing-3 (NLRP3) signal with the application of the NLRP3 specific agonist or astrocyte-specific NLRP3 knockout mice. IL-18BP administration remarkably alleviated HSR-induced anxiety-like behavior, astrocytic activation, and increases in pyroptosis-associated factors, while NLRP3 agonist nigericin partially reversed IL-18BP-induced neuroprotective effects. Astrocyte-specific NLRP3 knockout mice exhibited relatively less anxiety-like behavior. Similarly, IL-18BP exhibited an anti-pyroptosis effect in astrocytes in an in vitro model of low oxygen-glucose deprivation. These findings offer unique perspectives on HSR-induced posttraumatic stress and indicate that inhibition of IL-18R-NLRP3 signal via IL-18BP can attenuate astrocytic activation and pyroptosis, broadening the therapeutic landscape for patients with psychological distress and posttraumatic stress.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China.
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Jin-Meng Lv
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Lu-Ying Wang
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Zhi-You Wu
- Department of Neurosurgery, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Hui-Tao Miao
- Department of Neurosurgery, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Yan-Bo Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Xin
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| |
Collapse
|
2
|
Song Z, Gong Q, Guo J. Pyroptosis: Mechanisms and Links with Fibrosis. Cells 2021; 10:cells10123509. [PMID: 34944017 PMCID: PMC8700428 DOI: 10.3390/cells10123509] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is responsible for approximately 45% of deaths in the industrialized world and has been a major global healthcare burden. Excessive fibrosis is the primary cause of organ failure. However, there are currently no approved drugs available for the prevention or treatment of fibrosis-related diseases. It has become evident that fibrosis is characterized by inflammation. In a large number of studies of various organs in mice and humans, pyroptosis has been found to play a significant role in fibrosis. Pyroptosis is a form of programmed cell death mediated by the N-terminal fragment of cysteinyl aspartate-specific proteinase (caspase)-1-cleaved gasdermin D (GSDMD, producing GSDMD-N) that gives rise to inflammation via the release of some proinflammatory cytokines, including IL-1β, IL-18 and HMGB1. These cytokines can initiate the activation of fibroblasts. Inflammasomes, an important factor upstream of GSDMD, can activate caspase-1 to trigger the maturation of IL-1β and IL-18. Moreover, the inhibition of inflammasomes, proinflammatory cytokines and GSDMD can prevent the progression of fibrosis. This review summarizes the growing evidence indicating that pyroptosis triggers fibrosis, and highlights potential novel targets for antifibrotic therapies.
Collapse
Affiliation(s)
- Zihao Song
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, China;
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, China;
- Correspondence: (Q.G.); (J.G.)
| | - Jiawei Guo
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Correspondence: (Q.G.); (J.G.)
| |
Collapse
|
3
|
Miao P, Ruiqing T, Yanrong L, Zhuwen S, Huan Y, Qiong W, Yongnian L, Chao S. Pyroptosis: A possible link between obesity-related inflammation and inflammatory diseases. J Cell Physiol 2021; 237:1245-1265. [PMID: 34751453 DOI: 10.1002/jcp.30627] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
The main manifestation of obesity is persistent low-level inflammation and insulin resistance, which is an important factor inducing or promoting other obesity-related diseases. As a proinflammatory programmed cell death, pyroptosis plays an important role, especially in the activation and regulation of the NLRP3 inflammasome pathway. Pyroptosis is associated with the pathogenesis of many chronic inflammatory diseases and is characterized by the formation of micropores in the plasma membrane and the release of a large number of proinflammatory cytokines. This article mainly introduces the main pathways and key molecules of pyroptosis and focuses on the phenomenon of pyroptosis in obesity. It is suggested that the regulation of pyroptosis-related targets may become a new potential therapy for the prevention and treatment of systemic inflammatory response caused by obesity, and we summarize the potential molecular substances that may be beneficial to obesity-related inflammatory diseases through target pyroptosis.
Collapse
Affiliation(s)
- Pan Miao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tai Ruiqing
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liu Yanrong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Sun Zhuwen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Huan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wu Qiong
- Medical College; Qinghai Health Development and Research Center, Qinghai University, Xining, Qinghai, China
| | - Liu Yongnian
- Medical College; Qinghai Health Development and Research Center, Qinghai University, Xining, Qinghai, China
| | - Sun Chao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|