1
|
Biswas T, Hassan H, Rohner N. Differentially expressed miRNAs offer new perspective into cave adaptation of Astyanax mexicanus. Ann N Y Acad Sci 2025; 1546:173-181. [PMID: 40082196 PMCID: PMC11998478 DOI: 10.1111/nyas.15300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Astyanax mexicanus, a species with both surface-dwelling and multiple cave-dwelling populations, offers a unique opportunity to study repeated adaptation to dark and resource-scarce environments. While previous work has identified large-scale gene expression changes between morphs under even identical laboratory conditions, the regulatory basis of these expression differences remains largely unexplored. In this study, we focus on microRNAs (miRNAs) as key regulators of gene expression. Our analysis identified 683 mature miRNAs, establishing the first comprehensive catalog of miRNAs for this species. We identified a unique subset of differentially expressed miRNAs common to all studied cave-dwelling populations, potentially orchestrating the nuanced gene expression patterns required for survival in the cave milieu. Furthermore, we performed in silico target prediction of these miRNAs, revealing possible roles in developmental and metabolic pathways pivotal for thriving in nutrient-limited cave conditions. Interestingly, we also observed that Molino, which is the "youngest" of the three cavefish analyzed in this study, exhibited the most abundant number of differentially expressed mature miRNAs among the cave morphs. The comprehensive miRNA catalog generated, along with the insight into their differential expression across different morphs, will guide future investigations into the intricate world of miRNA-mediated evolution of complex traits.
Collapse
Affiliation(s)
| | - Huzaifa Hassan
- Stowers Institute for Medical ResearchKansas CityMissouriUSA
| | - Nicolas Rohner
- Stowers Institute for Medical ResearchKansas CityMissouriUSA
- Institute for Integrative Cell Biology and PhysiologyUniversity of MünsterMünsterGermany
| |
Collapse
|
2
|
Zhang S, Cai L, Wang Y, Liu X. miRNAs targeted transcription factors HaGATAa/b to mediate the post-mating switch in Helicoverpa armigera female reproductive behavior. PEST MANAGEMENT SCIENCE 2025; 81:1037-1047. [PMID: 39473145 DOI: 10.1002/ps.8506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND The process of mating induces significant shifts in female reproductive behavior across various species, with the postmating behavioral switch playing a crucial role in insect reproduction. Previous studies have demonstrated the regulatory role of GATA transcription factors in vitellogenin transcription and egg formation in insects, while miRNAs have been implicated in modulating GATA expression and insect reproductive processes. Nevertheless, the precise regulatory mechanism underlying the interaction between miRNAs and GATA transcription factors in the postmating behavioral switch remains largely unexplored. RESULTS In this study, we identified two key GATA transcription factors, HaGATAa and HaGATAb, as central players in orchestrating the postmating behavior of H. armigera using transcriptomics and RNAi technologies. HaGATAa was found to act upstream of HaGATAb, regulating its expression. Furthermore, we observed a postmating increase in miR-282 levels in females, targeting HaGATAa to regulate egg-laying capacity. Conversely, the decreased expression of miR-2 following mating functioned as a negative feedback regulator, influencing the expression of HaGATAb and thus impacting the postmating behavior of female individuals. CONCLUSION Our results revealed a signal-mediated feedback regulatory mechanism that sustains female postmating behavior in H. armigera. These findings not only establish a strong basis for understanding the postmating behavior mechanisms in female moths, but also offer valuable insights for identifying potential targets for pest control strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Limei Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yilin Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
3
|
Prajapat M, Maria A, Vidigal J. CRISPR-based dissection of miRNA binding sites using isogenic cell lines is hampered by pervasive noise. Nucleic Acids Res 2025; 53:gkae1138. [PMID: 39673524 PMCID: PMC11724307 DOI: 10.1093/nar/gkae1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/26/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
Non-coding regulatory sequences play essential roles in adjusting gene output to cellular needs and are thus critical to animal development and health. Numerous such sequences have been identified in mammalian genomes ranging from transcription factors binding motifs to recognition sites for RNA-binding proteins and non-coding RNAs. The advent of CRISPR has raised the possibility of assigning functionality to individual endogenous regulatory sites by facilitating the generation of isogenic cell lines that differ by a defined set of genetic modifications. Here we investigate the usefulness of this approach to assign function to individual miRNA binding sites. We find that the process of generating isogenic pairs of mammalian cell lines with CRISPR-mediated mutations introduces extensive molecular and phenotypic variability between biological replicates confounding attempts at assigning function to the binding site. Our work highlights an important consideration when employing CRISPR editing to characterize non-coding regulatory sequences in cell lines and calls for the development and adoption of alternative strategies to address this question in the future.
Collapse
Affiliation(s)
- Mahendra K Prajapat
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, 37 Convent Dr, Bethesda, MD 20892, USA
| | - Andrea G Maria
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, 37 Convent Dr, Bethesda, MD 20892, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, 37 Convent Dr, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Seitz H. A new perspective on microRNA-guided gene regulation specificity, and its potential generalization to transcription factors and RNA-binding proteins. Nucleic Acids Res 2024; 52:9360-9368. [PMID: 39149906 PMCID: PMC11381331 DOI: 10.1093/nar/gkae694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
Our conception of gene regulation specificity has undergone profound changes over the last 20 years. Previously, regulators were considered to control few genes, recognized with exquisite specificity by a 'lock and key' mechanism. However, recently genome-wide exploration of regulator binding site occupancy (whether on DNA or RNA targets) revealed extensive lists of molecular targets for every studied regulator. Such poor biochemical specificity suggested that each regulator controls many genes, collectively contributing to biological phenotypes. Here, I propose a third model, whereby regulators' biological specificity is only partially due to 'lock and key' biochemistry. Rather, regulators affect many genes at the microscopic scale, but biological consequences for most interactions are attenuated at the mesoscopic scale: only a few regulatory events propagate from microscopic to macroscopic scale; others are made inconsequential by homeostatic mechanisms. This model is well supported by the microRNA literature, and data suggest that it extends to other regulators. It reconciles contradicting observations from biochemistry and comparative genomics on one hand and in vivo genetics on the other hand, but this conceptual unification is obscured by common misconceptions and counter-intuitive modes of graphical display. Profound understanding of gene regulation requires conceptual clarification, and better suited statistical analyses and graphical representation.
Collapse
Affiliation(s)
- Hervé Seitz
- Institut de Génétique Humaine (UMR 9002), CNRS, 141, rue de la Cardonille, 34396 Montpellier, France
| |
Collapse
|
5
|
He J, Kang L. Regulation of insect behavior by non-coding RNAs. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1106-1118. [PMID: 38443665 DOI: 10.1007/s11427-023-2482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/26/2023] [Indexed: 03/07/2024]
Abstract
The adaptation of insects to environments relies on a sophisticated set of behaviors controlled by molecular and physiological processes. Over the past several decades, accumulating studies have unveiled the roles of non-coding RNAs (ncRNAs) in regulating insect behaviors. ncRNAs assume particularly pivotal roles in the behavioral plasticity of insects by rapidly responding to environmental stimuli. ncRNAs also contribute to the maintenance of homeostasis of insects by fine-tuning the expression of target genes. However, a comprehensive review of ncRNAs' roles in regulating insect behaviors has yet to be conducted. Here, we present the recent progress in our understanding of how ncRNAs regulate various insect behaviors, including flight and movement, social behavior, reproduction, learning and memory, and feeding. We refine the intricate mechanisms by which ncRNAs modulate the function of neural, motor, reproductive, and other physiological systems, as well as gene expression in insects like fruit flies, social insects, locusts, and mosquitos. Furthermore, we discuss potential avenues for future studies in ncRNA-mediated insect behaviors.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
6
|
Wang Z, Wang Y, Zhou T, Chen S, Morris D, Magalhães RDM, Li M, Wang S, Wang H, Xie Y, McSwiggin H, Oliver D, Yuan S, Zheng H, Mohammed J, Lai EC, McCarrey JR, Yan W. The rapidly evolving X-linked MIR-506 family fine-tunes spermatogenesis to enhance sperm competition. eLife 2024; 13:RP90203. [PMID: 38639482 PMCID: PMC11031087 DOI: 10.7554/elife.90203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.
Collapse
Affiliation(s)
- Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Sheng Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Dayton Morris
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | | | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Shawn Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Hetan Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Hayden McSwiggin
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Jaaved Mohammed
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San AntonioSan AntonioUnited States
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
- Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
7
|
Janati-Idrissi S, de Abreu MR, Guyomar C, de Mello F, Nguyen T, Mechkouri N, Gay S, Montfort J, Gonzalez A, Abbasi M, Bugeon J, Thermes V, Seitz H, Bobe J. Looking for a needle in a haystack: de novo phenotypic target identification reveals Hippo pathway-mediated miR-202 regulation of egg production. Nucleic Acids Res 2024; 52:738-754. [PMID: 38059397 PMCID: PMC10810276 DOI: 10.1093/nar/gkad1154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
Understanding microRNA (miRNA) functions has been hampered by major difficulties in identifying their biological target(s). Currently, the main limitation is the lack of a suitable strategy to identify biologically relevant targets among a high number of putative targets. Here we provide a proof of concept of successful de novo (i.e. without prior knowledge of its identity) miRNA phenotypic target (i.e. target whose de-repression contributes to the phenotypic outcomes) identification from RNA-seq data. Using the medaka mir-202 knock-out (KO) model in which inactivation leads to a major organism-level reproductive phenotype, including reduced egg production, we introduced novel criteria including limited fold-change in KO and low interindividual variability in gene expression to reduce the list of 2853 putative targets to a short list of 5. We selected tead3b, a member of the evolutionarily-conserved Hippo pathway, known to regulate ovarian functions, due to its remarkably strong and evolutionarily conserved binding affinity for miR-202-5p. Deleting the miR-202-5p binding site in the 3' UTR of tead3b, but not of other Hippo pathway members sav1 and vgll4b, triggered a reduced egg production phenotype. This is one of the few successful examples of de novo functional assignment of a miRNA phenotypic target in vivo in vertebrates.
Collapse
Affiliation(s)
| | | | - Cervin Guyomar
- Sigenae, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | | | | - Nazim Mechkouri
- Institut de Génétique Humaine, UMR 9002 CNRS and University of Montpellier, Montpellier, France
| | | | | | - Anne Alicia Gonzalez
- MGX-Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | - Hervé Seitz
- Institut de Génétique Humaine, UMR 9002 CNRS and University of Montpellier, Montpellier, France
| | | |
Collapse
|
8
|
Wang Z, Wang Y, Zhou T, Chen S, Morris D, Magalhães RDM, Li M, Wang S, Wang H, Xie Y, McSwiggin H, Oliver D, Yuan S, Zheng H, Mohammed J, Lai EC, McCarrey JR, Yan W. The Rapidly Evolving X-linked miR-506 Family Finetunes Spermatogenesis to Enhance Sperm Competition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544876. [PMID: 37398484 PMCID: PMC10312769 DOI: 10.1101/2023.06.14.544876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Despite rapid evolution across eutherian mammals, the X-linked miR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (Slitrk2 and Fmr1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked miR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernable defects, but simultaneous ablation of five clusters containing nineteen members of the miR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked miR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the miR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.
Collapse
Affiliation(s)
- Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Sheng Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Dayton Morris
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shawn Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Hetan Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Hayden McSwiggin
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Jaaved Mohammed
- Department of Developmental Biology, Memorial Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Eric C. Lai
- Department of Developmental Biology, Memorial Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - John R. McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet 2023; 24:816-833. [PMID: 37380761 PMCID: PMC11087887 DOI: 10.1038/s41576-023-00611-y] [Citation(s) in RCA: 326] [Impact Index Per Article: 163.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/30/2023]
Abstract
Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.
Collapse
Affiliation(s)
- Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Gayan Senavirathne
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
10
|
Lee S, Aubee JI, Lai EC. Regulation of alternative splicing and polyadenylation in neurons. Life Sci Alliance 2023; 6:e202302000. [PMID: 37793776 PMCID: PMC10551640 DOI: 10.26508/lsa.202302000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Cell-type-specific gene expression is a fundamental feature of multicellular organisms and is achieved by combinations of regulatory strategies. Although cell-restricted transcription is perhaps the most widely studied mechanism, co-transcriptional and post-transcriptional processes are also central to the spatiotemporal control of gene functions. One general category of expression control involves the generation of multiple transcript isoforms from an individual gene, whose balance and cell specificity are frequently tightly regulated via diverse strategies. The nervous system makes particularly extensive use of cell-specific isoforms, specializing the neural function of genes that are expressed more broadly. Here, we review regulatory strategies and RNA-binding proteins that direct neural-specific isoform processing. These include various classes of alternative splicing and alternative polyadenylation events, both of which broadly diversify the neural transcriptome. Importantly, global alterations of splicing and alternative polyadenylation are characteristic of many neural pathologies, and recent genetic studies demonstrate how misregulation of individual neural isoforms can directly cause mutant phenotypes.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Joseph I Aubee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
11
|
Zhang Z, Bae B, Cuddleston WH, Miura P. Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing. Nat Commun 2023; 14:5506. [PMID: 37679364 PMCID: PMC10484994 DOI: 10.1038/s41467-023-41207-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Nervous system development is associated with extensive regulation of alternative splicing (AS) and alternative polyadenylation (APA). AS and APA have been extensively studied in isolation, but little is known about how these processes are coordinated. Here, the coordination of cassette exon (CE) splicing and APA in Drosophila was investigated using a targeted long-read sequencing approach we call Pull-a-Long-Seq (PL-Seq). This cost-effective method uses cDNA pulldown and Nanopore sequencing combined with an analysis pipeline to quantify inclusion of alternative exons in connection with alternative 3' ends. Using PL-Seq, we identified genes that exhibit significant differences in CE splicing depending on connectivity to short versus long 3'UTRs. Genomic long 3'UTR deletion was found to alter upstream CE splicing in short 3'UTR isoforms and ELAV loss differentially affected CE splicing depending on connectivity to alternative 3'UTRs. This work highlights the importance of considering connectivity to alternative 3'UTRs when monitoring AS events.
Collapse
Affiliation(s)
- Zhiping Zhang
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Bongmin Bae
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | | | - Pedro Miura
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
- Institute for System Genomics, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
12
|
Kong L, Zhu X, Zhang L, Chen S. Differentiation value of miR-26b for major depressive disorder, schizophrenia, generalized anxiety disorder. Indian J Psychiatry 2023; 65:715-719. [PMID: 37645356 PMCID: PMC10461581 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_385_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/13/2023] [Accepted: 06/22/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction First episode and drug naive schizophrenia (SZ) patients comorbid with major depressive episode and generalized anxiety disorder (GAD) comorbid with major depressive disorder (MDD) are common in clinical practice, overlapping symptomatology during first presentation of MDD, SZ and GAD challenged the diagnostic process. Materials and Methods This study aimed to investigate the differentiation value of peripheral microRNA-26b expression in 52 patients of MDD, SZ, and GAD, respectively, and 52 controls. Quantitative real-time reverse transcription polymerase chain reaction was used to further verify aberrant miRNAs of previous identified in MDD and investigate expression level of these peripheral miRNAs in SZ and GAD. Results The expression levels of miR-26b and miR-4743 were significantly upregulated and of miR-4498, miR-4485, and miR-1972 had no significant difference. There were no significant differences of expression levels of miR-26b, miR-4498, miR-4485, and miR-1972 except miR-4743 between SZ patients and control group and of miR-26b, miR-1972, miR-4498, and miR-4485 between GAD group and the controls. The receiver operating characteristic (ROC) curve of miR-26b in MDD patients showed that its sensitivity and specificity for diagnosis were 0.540 and 0.830, respectively, with the area under curve (AUC) being 0.728; the ROC of miR-26b for SZ and MDD differentiation showed that its sensitivity and specificity were 0.580 and 0.710, respectively, with AUC being 0.631; the ROC of miR-26b for GAD and MDD differentiation suggested that sensitivity and specificity were 0.560 and 0.750, respectively, with AUC being 0.637. Conclusion MiR-26b might have potential value of differentiation biomarker for MDD, SZ, and GAD.
Collapse
Affiliation(s)
- Lingming Kong
- Center of Mental Disorder Prevention and Treatment, No. 904 Hospital, Changzhou, China
| | - Xiaoli Zhu
- Center of Mental Disorder Prevention and Treatment, No. 904 Hospital, Changzhou, China
| | - Liyi Zhang
- Center of Mental Disorder Prevention and Treatment, No. 904 Hospital, Changzhou, China
| | - Shengdong Chen
- Department of Neurological, No. 904 Hospital, Changzhou, China
| |
Collapse
|
13
|
Delbare SYN, Jain AM, Clark AG, Wolfner MF. Transcriptional programs are activated and microRNAs are repressed within minutes after mating in the Drosophila melanogaster female reproductive tract. BMC Genomics 2023; 24:356. [PMID: 37370014 PMCID: PMC10294459 DOI: 10.1186/s12864-023-09397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The female reproductive tract is exposed directly to the male's ejaculate, making it a hotspot for mating-induced responses. In Drosophila melanogaster, changes in the reproductive tract are essential to optimize fertility. Many changes occur within minutes after mating, but such early timepoints are absent from published RNA-seq studies. We measured transcript abundances using RNA-seq and microRNA-seq of reproductive tracts of unmated and mated females collected at 10-15 min post-mating. We further investigated whether early transcriptome changes in the female reproductive tract are influenced by inhibiting BMPs in secondary cells, a condition that depletes exosomes from the male's ejaculate. RESULTS We identified 327 differentially expressed genes. These were mostly upregulated post-mating and have roles in tissue morphogenesis, wound healing, and metabolism. Differentially abundant microRNAs were mostly downregulated post-mating. We identified 130 predicted targets of these microRNAs among the differentially expressed genes. We saw no detectable effect of BMP inhibition in secondary cells on transcript levels in the female reproductive tract. CONCLUSIONS Our results indicate that mating induces early changes in the female reproductive tract primarily through upregulation of target genes, rather than repression. The upregulation of certain target genes might be mediated by the mating-induced downregulation of microRNAs. Male-derived exosomes and other BMP-dependent products were not uniquely essential for this process. Differentially expressed genes and microRNAs provide candidates that can be further examined for their participation in the earliest alterations of the reproductive tract microenvironment.
Collapse
Affiliation(s)
- Sofie Y N Delbare
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA.
| | - Asha M Jain
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Mariana F Wolfner
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
14
|
Zhu D, Feng T, Mo N, Han R, Lu W, Cui Z. Eriocheir sinensis feminization-1c ( Fem-1c) and Its Predicted miRNAs Involved in Sexual Development and Regulation. Animals (Basel) 2023; 13:1813. [PMID: 37889731 PMCID: PMC10251896 DOI: 10.3390/ani13111813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 10/29/2023] Open
Abstract
Feminization-1c (Fem-1c) is important for sex differentiation in the model organism Caenorhabditis elegans. In our previous study, the basic molecular characteristics of the Fem-1c gene (EsFem-1c) in Eriocheir sinensis (Henri Milne Edwards, 1854) were cloned to determine the relationship with sex differentiation. In this study, the genomic sequence of EsFem-1c contained five exons and four introns, with an exceptionally long 3'UTR sequence. The qRT-PCR results of EsFem-1c demonstrated lower tissue expression in the androgenic gland of the intersex crab than the normal male crab, implying that EsFem-1c plays a role in crab AG development. RNA interference experiments and morphological observations of juvenile and mature crabs indicated that EsFem-1c influences sexual development in E. sinensis. A dual-luciferase reporter assay disclosed that tcf-miR-315-5p effectively inhibits the translation of the EsFem-1c gene, influencing male development. An intriguing finding was that miRNA tcf-miR-307 could increase EsFem-1c expression by binding to the alternative splicing region with a length of 248 bp (ASR-248) in the 3'UTR sequence. The present research contributes to a better understanding of the molecular regulation mechanism of EsFem-1c and provides a resource for future studies of the miRNA-mediated regulation of sexual development and regulation in E. sinensis.
Collapse
Affiliation(s)
- Dandan Zhu
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
| | - Tianyi Feng
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
| | - Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
| | - Rui Han
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
| | - Wentao Lu
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- DECAPODA Biology Science and Technology Co., Ltd. (Lianyungang), Lianyungang 222000, China
| |
Collapse
|
15
|
Zhang Z, Bae B, Cuddleston WH, Miura P. Coordination of Alternative Splicing and Alternative Polyadenylation revealed by Targeted Long-Read Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533999. [PMID: 36993601 PMCID: PMC10055423 DOI: 10.1101/2023.03.23.533999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Nervous system development is associated with extensive regulation of alternative splicing (AS) and alternative polyadenylation (APA). AS and APA have been extensively studied in isolation, but little is known about how these processes are coordinated. Here, the coordination of cassette exon (CE) splicing and APA in Drosophila was investigated using a targeted long-read sequencing approach we call Pull-a-Long-Seq (PL-Seq). This cost-effective method uses cDNA pulldown and Nanopore sequencing combined with an analysis pipeline to resolve the connectivity of alternative exons to alternative 3' ends. Using PL-Seq, we identified genes that exhibit significant differences in CE splicing depending on connectivity to short versus long 3'UTRs. Genomic long 3'UTR deletion was found to alter upstream CE splicing in short 3'UTR isoforms and ELAV loss differentially affected CE splicing depending on connectivity to alternative 3'UTRs. This work highlights the importance of considering connectivity to alternative 3'UTRs when monitoring AS events.
Collapse
Affiliation(s)
- Zhiping Zhang
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Bongmin Bae
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | | | - Pedro Miura
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| |
Collapse
|
16
|
Lee S, Chen YC, Gillen AE, Taliaferro JM, Deplancke B, Li H, Lai EC. Diverse cell-specific patterns of alternative polyadenylation in Drosophila. Nat Commun 2022; 13:5372. [PMID: 36100597 PMCID: PMC9470587 DOI: 10.1038/s41467-022-32305-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
Most genes in higher eukaryotes express isoforms with distinct 3' untranslated regions (3' UTRs), generated by alternative polyadenylation (APA). Since 3' UTRs are predominant locations of post-transcriptional regulation, APA can render such programs conditional, and can also alter protein sequences via alternative last exon (ALE) isoforms. We previously used 3'-sequencing from diverse Drosophila samples to define multiple tissue-specific APA landscapes. Here, we exploit comprehensive single nucleus RNA-sequencing data (Fly Cell Atlas) to elucidate cell-type expression of 3' UTRs across >250 adult Drosophila cell types. We reveal the cellular bases of multiple tissue-specific APA/ALE programs, such as 3' UTR lengthening in differentiated neurons and 3' UTR shortening in spermatocytes and spermatids. We trace dynamic 3' UTR patterns across cell lineages, including in the male germline, and discover new APA patterns in the intestinal stem cell lineage. Finally, we correlate expression of RNA binding proteins (RBPs), miRNAs and global levels of cleavage and polyadenylation (CPA) factors in several cell types that exhibit characteristic APA landscapes, yielding candidate regulators of transcriptome complexity. These analyses provide a comprehensive foundation for future investigations of mechanisms and biological impacts of alternative 3' isoforms across the major cell types of this widely-studied model organism.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA
| | - Yen-Chung Chen
- Department of Biology, New York University, New York, NY, 10013, USA
| | | | - Austin E Gillen
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.,RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Matthew Taliaferro
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering & Global Health Institute, School of Life Sciences, EPFL, CH-1015, Lausanne, Switzerland
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA.
| |
Collapse
|
17
|
Wei L, Lai EC. Regulation of the Alternative Neural Transcriptome by ELAV/Hu RNA Binding Proteins. Front Genet 2022; 13:848626. [PMID: 35281806 PMCID: PMC8904962 DOI: 10.3389/fgene.2022.848626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
The process of alternative polyadenylation (APA) generates multiple 3' UTR isoforms for a given locus, which can alter regulatory capacity and on occasion change coding potential. APA was initially characterized for a few genes, but in the past decade, has been found to be the rule for metazoan genes. While numerous differences in APA profiles have been catalogued across genetic conditions, perturbations, and diseases, our knowledge of APA mechanisms and biology is far from complete. In this review, we highlight recent findings regarding the role of the conserved ELAV/Hu family of RNA binding proteins (RBPs) in generating the broad landscape of lengthened 3' UTRs that is characteristic of neurons. We relate this to their established roles in alternative splicing, and summarize ongoing directions that will further elucidate the molecular strategies for neural APA, the in vivo functions of ELAV/Hu RBPs, and the phenotypic consequences of these regulatory paradigms in neurons.
Collapse
Affiliation(s)
- Lu Wei
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Eric C. Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States
| |
Collapse
|
18
|
Joshi R, Sipani R, Bakshi A. Roles of Drosophila Hox Genes in the Assembly of Neuromuscular Networks and Behavior. Front Cell Dev Biol 2022; 9:786993. [PMID: 35071230 PMCID: PMC8777297 DOI: 10.3389/fcell.2021.786993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes have been known for specifying the anterior-posterior axis (AP) in bilaterian body plans. Studies in vertebrates have shown their importance in developing region-specific neural circuitry and diversifying motor neuron pools. In Drosophila, they are instrumental for segment-specific neurogenesis and myogenesis early in development. Their robust expression in differentiated neurons implied their role in assembling region-specific neuromuscular networks. In the last decade, studies in Drosophila have unequivocally established that Hox genes go beyond their conventional functions of generating cellular diversity along the AP axis of the developing central nervous system. These roles range from establishing and maintaining the neuromuscular networks to controlling their function by regulating the motor neuron morphology and neurophysiology, thereby directly impacting the behavior. Here we summarize the limited knowledge on the role of Drosophila Hox genes in the assembly of region-specific neuromuscular networks and their effect on associated behavior.
Collapse
Affiliation(s)
- Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Asif Bakshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
19
|
Repression of the Hox gene abd-A by ELAV-mediated Transcriptional Interference. PLoS Genet 2021; 17:e1009843. [PMID: 34780465 PMCID: PMC8629391 DOI: 10.1371/journal.pgen.1009843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Intergenic transcription is a common feature of eukaryotic genomes and performs important and diverse cellular functions. Here, we investigate the iab-8 ncRNA from the Drosophila Bithorax Complex and show that this RNA is able to repress the transcription of genes located at its 3’ end by a sequence-independent, transcriptional interference mechanism. Although this RNA is expressed in the early epidermis and CNS, we find that its repressive activity is limited to the CNS, where, in wild-type embryos, it acts on the Hox gene, abd-A, located immediately downstream of it. The CNS specificity is achieved through a 3’ extension of the transcript, mediated by the neuronal-specific, RNA-binding protein, ELAV. Loss of ELAV activity eliminates the 3’ extension and results in the ectopic activation of abd-A. Thus, a tissue-specific change in the length of a ncRNA is used to generate a precise pattern of gene expression in a higher eukaryote. Although all of the cells making up complex organisms contain the same genetic material, they are nevertheless able to create the diverse tissues of the body. They do this by changing the genes they express. Thus, understanding how genes are controlled in a tissue-specific fashion is one of the primary interests of molecular genetics. Within the bithorax homeotic complex of the fruit fly Drosophila melanogaster, we, and others, previously showed that a >92 kb-long non-coding RNA, called the iab-8 ncRNA, downregulates many important developmental genes, including its genomic downstream neighbor, the homeotic gene abd-A. This downregulation is important as its loss is linked to female sterility. Interestingly, we find that the iab-8 ncRNA regulates abd-A through a mechanism called transcriptional interference, where one gene downregulates a target gene by transcribing over it. In the case of iab-8, this process is limited to the posterior central nervous system, where the iab-8 ncRNA is specifically extended into the abd-A gene by the action of the neuronal-specific RNA binding protein, ELAV. Overall, our work highlights a largely unexplored mechanism by which tissue-specific gene regulation is achieved.
Collapse
|
20
|
Guo S, Lin S. mRNA alternative polyadenylation (APA) in regulation of gene expression and diseases. Genes Dis 2021; 10:165-174. [PMID: 37013028 PMCID: PMC10066270 DOI: 10.1016/j.gendis.2021.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
The mRNA polyadenylation plays essential function in regulation of mRNA metabolism. Mis-regulations of mRNA polyadenylation are frequently linked with aberrant gene expression and disease progression. Under the action of polyadenylate polymerase, poly(A) tail is synthesized after the polyadenylation signal (PAS) sites on the mRNAs. Alternative polyadenylation (APA) often occurs in mRNAs with multiple poly(A) sites, producing different 3' ends for transcript variants, and therefore plays important functions in gene expression regulation. In this review, we first summarize the classical process of mRNA 3'-terminal formation and discuss the length control mechanisms of poly(A) in nucleus and cytoplasm. Then we review the research progress on alternative polyadenylation regulation and the APA site selection mechanism. Finally, we summarize the functional roles of APA in the regulation of gene expression and diseases including cancers.
Collapse
Affiliation(s)
- Siyao Guo
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
- Corresponding author. Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
21
|
Castro Alvarez JJ, Revel M, Cléard F, Pauli D, Karch F, Maeda RK. Repression of the Hox gene abd-A by ELAV-mediated Transcriptional Interference.. [DOI: 10.1101/2021.09.29.462302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
ABSTRACTIntergenic transcription is a common feature of eukaryotic genomes and performs important and diverse cellular functions. Here, we investigate the iab-8 ncRNA from the Drosophila Bithorax Complex and show that this RNA is able to repress the transcription of genes located at its 3’ end by a sequence-independent, transcriptional interference mechanism. Although this RNA is expressed in the early epidermis and CNS, we find that its repressive activity is limited to the CNS, where in wild-type embryos, it acts on the Hox gene, abd-A located immediately downstream of it. The CNS specificity is achieved through a 3’ extension of the transcript, mediated by the neuronal-specific, RNA-binding protein, ELAV. Loss of ELAV activity eliminates the 3’ extension and results in the ectopic activation of abd-A. Thus, a tissue-specific change in the length of a ncRNA is used to generate a precise pattern of gene expression in a higher eukaryote.
Collapse
|
22
|
Garaulet DL, Moro A, Lai EC. A double-negative gene regulatory circuit underlies the virgin behavioral state. Cell Rep 2021; 36:109335. [PMID: 34233178 PMCID: PMC8344067 DOI: 10.1016/j.celrep.2021.109335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/27/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Virgin females of many species conduct distinctive behaviors, compared with post-mated and/or pregnant individuals. In Drosophila, this post-mating switch is initiated by seminal factors, implying that the default female state is virgin. However, we recently showed that loss of miR-iab-4/8-mediated repression of the transcription factor Homothorax (Hth) within the abdominal ventral nerve cord (VNC) causes virgins to execute mated behaviors. Here, we use genomic analysis of mir-iab-4/8 deletion and hth-microRNA (miRNA) binding site mutants (hth[BSmut]) to elucidate doublesex (dsx) as a critical downstream factor. Dsx and Hth proteins are highly complementary in CNS, and Dsx is downregulated in miRNA/hth[BSmut] mutants. Moreover, virgin behavior is highly dose sensitive to developmental dsx function. Strikingly, depletion of Dsx from very restricted abdominal neurons (SAG-1 cells) abrogates female virgin conducts, in favor of mated behaviors. Thus, a double-negative regulatory pathway in the VNC (miR-iab-4/8 ⫞ Hth ⫞ Dsx) specifies the virgin behavioral state. Garaulet et al. use transcriptomic analysis to reveal new downstream elements in a post-transcriptional cascade, via miR-iab-4/8 and Homothorax, that affects patterning of the CNS. This genetic circuit regulates the accumulation of a secondary target (Doublesex), whose level in specific neurons determines the behavior of adult virgin flies.
Collapse
Affiliation(s)
- Daniel L Garaulet
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| | - Albertomaria Moro
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
23
|
Wei L, Lee S, Majumdar S, Zhang B, Sanfilippo P, Joseph B, Miura P, Soller M, Lai EC. Overlapping Activities of ELAV/Hu Family RNA Binding Proteins Specify the Extended Neuronal 3' UTR Landscape in Drosophila. Mol Cell 2020; 80:140-155.e6. [PMID: 33007254 DOI: 10.1016/j.molcel.2020.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
The tissue-specific deployment of highly extended neural 3' UTR isoforms, generated by alternative polyadenylation (APA), is a broad and conserved feature of metazoan genomes. However, the factors and mechanisms that control neural APA isoforms are not well understood. Here, we show that three ELAV/Hu RNA binding proteins (Elav, Rbp9, and Fne) have similar capacities to induce a lengthened 3' UTR landscape in an ectopic setting. These factors promote accumulation of chromatin-associated, 3' UTR-extended, nascent transcripts, through inhibition of proximal polyadenylation site (PAS) usage. Notably, Elav represses an unannotated splice isoform of fne, switching the normally cytoplasmic Fne toward the nucleus in elav mutants. We use genomic profiling to reveal strong and broad loss of neural APA in elav/fne double mutant CNS, the first genetic background to largely abrogate this distinct APA signature. Overall, we demonstrate how regulatory interplay and functionally overlapping activities of neural ELAV/Hu RBPs drives the neural APA landscape.
Collapse
Affiliation(s)
- Lu Wei
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Seungjae Lee
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Sonali Majumdar
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Binglong Zhang
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Piero Sanfilippo
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Brian Joseph
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pedro Miura
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA; Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Eric C Lai
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|