1
|
Ekhator ES, Fazzari M, Newman RH. Redox Regulation of cAMP-Dependent Protein Kinase and Its Role in Health and Disease. Life (Basel) 2025; 15:655. [PMID: 40283209 PMCID: PMC12029036 DOI: 10.3390/life15040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Protein kinase A (PKA) is a key regulator of cellular signaling that regulates key physiological processes such as metabolism, cell proliferation, and neuronal function. While its activation by the second messenger 3',5'-cyclic adenosine triphosphate (cAMP) is well characterized, recent research highlights additional regulatory mechanisms, particularly oxidative post-translational modifications, that influence PKA's structure, activity, and substrate specificity. Both the regulatory and catalytic subunits of PKA are susceptible to redox modifications, which have been shown to play important roles in the regulation of key cellular functions, including cardiac contractility, lipid metabolism, and the immune response. Likewise, redox-dependent modulation of PKA signaling has been implicated in numerous diseases, including cardiovascular disorders, diabetes, and neurodegenerative conditions, making it a potential therapeutic target. However, the mechanisms of crosstalk between redox- and PKA-dependent signaling remain poorly understood. This review examines the structural and functional regulation of PKA, with a focus on redox-dependent modifications and their impact on PKA-dependent signaling. A deeper understanding of these mechanisms may provide new strategies for targeting oxidative stress in disease and restoring balanced PKA signaling in cells.
Collapse
Affiliation(s)
- Ese S. Ekhator
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA;
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Robert H. Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA;
| |
Collapse
|
2
|
Bagheri M, Mohamed GA, Mohamed Saleem MA, Ognjenovic NB, Lu H, Kolling FW, Wilkins OM, Das S, LaCroix IS, Nagaraj SH, Muller KE, Gerber SA, Miller TW, Pattabiraman DR. Pharmacological induction of chromatin remodeling drives chemosensitization in triple-negative breast cancer. Cell Rep Med 2024; 5:101504. [PMID: 38593809 PMCID: PMC11031425 DOI: 10.1016/j.xcrm.2024.101504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/11/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Targeted therapies have improved outcomes for certain cancer subtypes, but cytotoxic chemotherapy remains a mainstay for triple-negative breast cancer (TNBC). The epithelial-to-mesenchymal transition (EMT) is a developmental program co-opted by cancer cells that promotes metastasis and chemoresistance. There are no therapeutic strategies specifically targeting mesenchymal-like cancer cells. We report that the US Food and Drug Administration (FDA)-approved chemotherapeutic eribulin induces ZEB1-SWI/SNF-directed chromatin remodeling to reverse EMT that curtails the metastatic propensity of TNBC preclinical models. Eribulin induces mesenchymal-to-epithelial transition (MET) in primary TNBC in patients, but conventional chemotherapy does not. In the treatment-naive setting, but not after acquired resistance to other agents, eribulin sensitizes TNBC cells to subsequent treatment with other chemotherapeutics. These findings provide an epigenetic mechanism of action of eribulin, supporting its use early in the disease process for MET induction to prevent metastatic progression and chemoresistance. These findings warrant prospective clinical evaluation of the chemosensitizing effects of eribulin in the treatment-naive setting.
Collapse
Affiliation(s)
- Meisam Bagheri
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Gadisti Aisha Mohamed
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Nevena B Ognjenovic
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Hanxu Lu
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Fred W Kolling
- Center for Quantitative Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Owen M Wilkins
- Center for Quantitative Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Ian S LaCroix
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Shivashankar H Nagaraj
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kristen E Muller
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Scott A Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Todd W Miller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Diwakar R Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
3
|
Farhat B, Bordeu I, Jagla B, Ibrahim S, Stefanovic S, Blanc H, Loulier K, Simons BD, Beaurepaire E, Livet J, Pucéat M. Understanding the cell fate and behavior of progenitors at the origin of the mouse cardiac mitral valve. Dev Cell 2024; 59:339-350.e4. [PMID: 38198889 DOI: 10.1016/j.devcel.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/08/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart malformations include mitral valve defects, which remain largely unexplained. During embryogenesis, a restricted population of endocardial cells within the atrioventricular canal undergoes an endothelial-to-mesenchymal transition to give rise to mitral valvular cells. However, the identity and fate decisions of these progenitors as well as the behavior and distribution of their derivatives in valve leaflets remain unknown. We used single-cell RNA sequencing (scRNA-seq) of genetically labeled endocardial cells and microdissected mouse embryonic and postnatal mitral valves to characterize the developmental road. We defined the metabolic processes underlying the specification of the progenitors and their contributions to subtypes of valvular cells. Using retrospective multicolor clonal analysis, we describe specific modes of growth and behavior of endocardial cell-derived clones, which build up, in a proper manner, functional valve leaflets. Our data identify how both genetic and metabolic mechanisms specifically drive the fate of a subset of endocardial cells toward their distinct clonal contribution to the formation of the valve.
Collapse
Affiliation(s)
- Batoul Farhat
- INSERM U1251/Aix-Marseille Université, Marseille 13885, France
| | - Ignacio Bordeu
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 9160000, Chile
| | - Bernd Jagla
- Pasteur Institute UtechS CB & Hub de Bioinformatique et Biostatistiques, C3BI, Paris, France
| | - Stéphanie Ibrahim
- C2VN Aix-Marseille Université, INSERM 1263, INRAE 1260, Marseille 13885, France
| | - Sonia Stefanovic
- C2VN Aix-Marseille Université, INSERM 1263, INRAE 1260, Marseille 13885, France
| | - Hugo Blanc
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau 91120, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 A0W, UK
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau 91120, France
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Michel Pucéat
- INSERM U1251/Aix-Marseille Université, Marseille 13885, France.
| |
Collapse
|
4
|
Wang J, Peng J, Chen Y, Nasser MI, Qin H. The role of stromal cells in epithelial-mesenchymal plasticity and its therapeutic potential. Discov Oncol 2024; 15:13. [PMID: 38244071 PMCID: PMC10799841 DOI: 10.1007/s12672-024-00867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a critical tumor invasion and metastasis process. EMT enables tumor cells to migrate, detach from their original location, enter the circulation, circulate within it, and eventually exit from blood arteries to colonize in foreign sites, leading to the development of overt metastases, ultimately resulting in death. EMT is intimately tied to stromal cells around the tumor and is controlled by a range of cytokines secreted by stromal cells. This review summarizes recent research on stromal cell-mediated EMT in tumor invasion and metastasis. We also discuss the effects of various stromal cells on EMT induction and focus on the molecular mechanisms by which several significant stromal cells convert from foes to friends of cancer cells to fuel EMT processes via their secretions in the tumor microenvironment (TME). As a result, a better knowledge of the role of stromal cells in cancer cells' EMT may pave the path to cancer eradication.
Collapse
Affiliation(s)
- Juanjing Wang
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmaceutical Science, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Junmei Peng
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmaceutical Science, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yonglin Chen
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, China
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China.
| | - Hui Qin
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
5
|
Qiao X, Lin J, Shen J, Chen Y, Zheng L, Ren H, Zhao X, Yang H, Li P, Wang Z. FBXO28 suppresses liver cancer invasion and metastasis by promoting PKA-dependent SNAI2 degradation. Oncogene 2023; 42:2878-2891. [PMID: 37596321 PMCID: PMC10516749 DOI: 10.1038/s41388-023-02809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
FBXO28 is a member of F-box proteins that are the substrate receptors of SCF (SKP1, CULLIN1, F-box protein) ubiquitin ligase complexes. Despite the implications of its role in cancer, the function of FBXO28 in epithelial-mesenchymal transition (EMT) process and metastasis for cancer remains largely unknown. Here, we report that FBXO28 is a critical negative regulator of migration, invasion and metastasis in human hepatocellular carcinoma (HCC) in vitro and in vivo. FBXO28 expression is upregulated in human epithelial cancer cell lines relative to mesenchymal counterparts. Mechanistically, by directly binding to SNAI2, FBXO28 functions as an E3 ubiquitin ligase that targets the substrate for degradation via ubiquitin proteasome system. Importantly, we establish a cooperative function for PKA in FBXO28-mediated SNAI2 degradation. In clinical HCC specimens, FBXO28 protein levels positively whereas negatively correlate with PKAα and SNAI2 levels, respectively. Low FBXO28 or PRKACA expression is associated with poor prognosis of HCC patients. Together, these findings elucidate the novel function of FBXO28 as a critical inhibitor of EMT and metastasis in cancer and provide a mechanistic rationale for its candidacy as a new prognostic marker and/or therapeutic target in human aggressive HCC.
Collapse
Affiliation(s)
- Xinran Qiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyu Lin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiajia Shen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyun Zheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hangjiang Ren
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hang Yang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Pengyu Li
- Qilu Hospital of Shan Dong University, Jinan, Shandong Province, China
| | - Zhen Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. NATURE CANCER 2023; 4:1063-1082. [PMID: 37537300 PMCID: PMC7615147 DOI: 10.1038/s43018-023-00595-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/01/2023] [Indexed: 08/05/2023]
Abstract
Cell plasticity represents the ability of cells to be reprogrammed and to change their fate and identity, enabling homeostasis restoration and tissue regeneration following damage. Cell plasticity also contributes to pathological conditions, such as cancer, enabling cells to acquire new phenotypic and functional features by transiting across distinct cell states that contribute to tumor initiation, progression, metastasis and resistance to therapy. Here, we review the intrinsic and extrinsic mechanisms driving cell plasticity that promote tumor growth and proliferation as well as metastasis and drug tolerance. Finally, we discuss how cell plasticity could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Andrea Pérez-González
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kevin Bévant
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, ULB, Bruxelles, Belgium.
| |
Collapse
|
7
|
Voutsadakis IA. EMT Features in Claudin-Low versus Claudin-Non-Suppressed Breast Cancers and the Role of Epigenetic Modifications. Curr Issues Mol Biol 2023; 45:6040-6054. [PMID: 37504297 PMCID: PMC10378159 DOI: 10.3390/cimb45070381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Breast cancers are heterogeneous and are classified according to the expression of ER, PR and HER2 receptors to distinct groups with prognostic and therapeutic implications. Within the triple-negative group, with no expression of these three receptors, molecular heterogeneity exists but is currently not exploited in the clinic. The claudin-low phenotype is present in a subset of triple-negative breast cancers and constitutes together with basal-like cancers the most extensive groups within triple-negative breast cancers. Suppression of epithelial cell adhesion molecules in claudin-low cancers is also a hallmark of Epithelial Mesenchymal Transition (EMT). METHODS The groups of claudin-low and claudin-non-suppressed breast cancers from the extensive publicly available genomic cohorts of the METABRIC study were examined to delineate and compare their molecular landscape. Genetic and epigenetic alterations of key factors involved in EMT and potentially associated with the pathogenesis of the claudin-low phenotype were analyzed in the two groups. RESULTS Claudin-low cancers displayed up-regulation of several core transcription factors of EMT at the mRNA level, compared with claudin-non-suppressed breast cancers. Global promoter DNA methylation was increased in both groups of triple-negative cancers and in claudin-low ER-positive cancers compared with the rest of ER-positive cancers. Histone modifier enzymes, including methyltransferases, demethylases, acetyltransferases and deacetylases displayed amplifications more frequently in claudin-non-suppressed triple-negative cancers than in claudin-low counterparts and the expression of some of these enzymes differed significantly between the two groups. CONCLUSION Claudin-low and claudin-non-suppressed triple-negative breast cancers differ in their landscape of EMT core regulators and epigenetic regulators. These differences may be explored as targets for therapeutic interventions specific to the two groups of triple-negative breast cancers.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, 750 Great Northern Road, Sault Ste Marie, ON P6B 0A8, Canada
- Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
8
|
Bagheri M, Aisha Mohamed G, Mohamed Saleem MA, Ognjenovic NB, Lu H, Kolling FW, Wilkins OM, Das S, La Croix IS, Nagaraj SH, Muller KE, Gerber SA, Miller TW, Pattabiraman DR. Pharmacological Induction of mesenchymal-epithelial transition chemosensitizes breast cancer cells and prevents metastatic progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537586. [PMID: 37131809 PMCID: PMC10153261 DOI: 10.1101/2023.04.19.537586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a developmental program co-opted by tumor cells that aids the initiation of the metastatic cascade. Tumor cells that undergo EMT are relatively chemoresistant, and there are currently no therapeutic avenues specifically targeting cells that have acquired mesenchymal traits. We show that treatment of mesenchymal-like triple-negative breast cancer (TNBC) cells with the microtubule-destabilizing chemotherapeutic eribulin, which is FDA-approved for the treatment of advanced breast cancer, leads to a mesenchymal-epithelial transition (MET). This MET is accompanied by loss of metastatic propensity and sensitization to subsequent treatment with other FDA-approved chemotherapeutics. We uncover a novel epigenetic mechanism of action that supports eribulin pretreatment as a path to MET induction that curtails metastatic progression and the evolution of therapy resistance.
Collapse
Affiliation(s)
- Meisam Bagheri
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Gadisti Aisha Mohamed
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | | | - Nevena B. Ognjenovic
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Hanxu Lu
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Fred W. Kolling
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Owen M. Wilkins
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover NH 03755 USA
| | | | - Ian S. La Croix
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Shivashankar H. Nagaraj
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane QLD 4102, Australia
| | - Kristen E. Muller
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Scott A. Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Todd W. Miller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Diwakar R. Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
- Lead contact
| |
Collapse
|
9
|
Mohamed GA, Mahmood S, Ognjenovic NB, Lee MK, Wilkins OM, Christensen BC, Muller KE, Pattabiraman DR. Lineage plasticity enables low-ER luminal tumors to evolve and gain basal-like traits. Breast Cancer Res 2023; 25:23. [PMID: 36859337 PMCID: PMC9979432 DOI: 10.1186/s13058-023-01621-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Stratifying breast cancer into specific molecular or histologic subtypes aids in therapeutic decision-making and predicting outcomes; however, these subtypes may not be as distinct as previously thought. Patients with luminal-like, estrogen receptor (ER)-expressing tumors have better prognosis than patients with more aggressive, triple-negative or basal-like tumors. There is, however, a subset of luminal-like tumors that express lower levels of ER, which exhibit more basal-like features. We have found that breast tumors expressing lower levels of ER, traditionally considered to be luminal-like, represent a distinct subset of breast cancer characterized by the emergence of basal-like features. Lineage tracing of low-ER tumors in the MMTV-PyMT mouse mammary tumor model revealed that basal marker-expressing cells arose from normal luminal epithelial cells, suggesting that luminal-to-basal plasticity is responsible for the evolution and emergence of basal-like characteristics. This plasticity allows tumor cells to gain a new lumino-basal phenotype, thus leading to intratumoral lumino-basal heterogeneity. Single-cell RNA sequencing revealed SOX10 as a potential driver for this plasticity, which is known among breast tumors to be almost exclusively expressed in triple-negative breast cancer (TNBC) and was also found to be highly expressed in low-ER tumors. These findings suggest that basal-like tumors may result from the evolutionary progression of luminal tumors with low ER expression.
Collapse
Affiliation(s)
- Gadisti Aisha Mohamed
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Sundis Mahmood
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Nevena B Ognjenovic
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Owen M Wilkins
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Brock C Christensen
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Kristen E Muller
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA.
| | - Diwakar R Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA.
| |
Collapse
|
10
|
Cui J, Zhang C, Lee JE, Bartholdy BA, Yang D, Liu Y, Erler P, Galbo PM, Hodge DQ, Huangfu D, Zheng D, Ge K, Guo W. MLL3 loss drives metastasis by promoting a hybrid epithelial-mesenchymal transition state. Nat Cell Biol 2023; 25:145-158. [PMID: 36604594 PMCID: PMC10003829 DOI: 10.1038/s41556-022-01045-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/09/2022] [Indexed: 01/07/2023]
Abstract
Phenotypic plasticity associated with the hybrid epithelial-mesenchymal transition (EMT) is crucial to metastatic seeding and outgrowth. However, the mechanisms governing the hybrid EMT state remain poorly defined. Here we showed that deletion of the epigenetic regulator MLL3, a tumour suppressor frequently altered in human cancer, promoted the acquisition of hybrid EMT in breast cancer cells. Distinct from other EMT regulators that mediate only unidirectional changes, MLL3 loss enhanced responses to stimuli inducing EMT and mesenchymal-epithelial transition in epithelial and mesenchymal cells, respectively. Consequently, MLL3 loss greatly increased metastasis by enhancing metastatic colonization. Mechanistically, MLL3 loss led to increased IFNγ signalling, which contributed to the induction of hybrid EMT cells and enhanced metastatic capacity. Furthermore, BET inhibition effectively suppressed the growth of MLL3-mutant primary tumours and metastases. These results uncovered MLL3 mutation as a key driver of hybrid EMT and metastasis in breast cancer that could be targeted therapeutically.
Collapse
Affiliation(s)
- Jihong Cui
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chi Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ji-Eun Lee
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Yu Liu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piril Erler
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Phillip M Galbo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dayle Q Hodge
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Brown MS, Abdollahi B, Wilkins OM, Lu H, Chakraborty P, Ognjenovic NB, Muller KE, Jolly MK, Christensen BC, Hassanpour S, Pattabiraman DR. Phenotypic heterogeneity driven by plasticity of the intermediate EMT state governs disease progression and metastasis in breast cancer. SCIENCE ADVANCES 2022; 8:eabj8002. [PMID: 35921406 PMCID: PMC9348802 DOI: 10.1126/sciadv.abj8002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/16/2022] [Indexed: 05/04/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is frequently co-opted by cancer cells to enhance migratory and invasive cell traits. It is a key contributor to heterogeneity, chemoresistance, and metastasis in many carcinoma types, where the intermediate EMT state plays a critical tumor-initiating role. We isolate multiple distinct single-cell clones from the SUM149PT human breast cell line spanning the EMT spectrum having diverse migratory, tumor-initiating, and metastatic qualities, including three unique intermediates. Using a multiomics approach, we identify CBFβ as a key regulator of metastatic ability in the intermediate state. To quantify epithelial-mesenchymal heterogeneity within tumors, we develop an advanced multiplexed immunostaining approach using SUM149-derived orthotopic tumors and find that the EMT state and epithelial-mesenchymal heterogeneity are predictive of overall survival in a cohort of stage III breast cancer. Our model reveals previously unidentified insights into the complex EMT spectrum and its regulatory networks, as well as the contributions of epithelial-mesenchymal plasticity (EMP) in tumor heterogeneity in breast cancer.
Collapse
Affiliation(s)
- Meredith S. Brown
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Behnaz Abdollahi
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Owen M. Wilkins
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756, USA
| | - Hanxu Lu
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Nevena B. Ognjenovic
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Kristen E. Muller
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Brock C. Christensen
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Saeed Hassanpour
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756, USA
| | - Diwakar R. Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756, USA
| |
Collapse
|
12
|
Puri P, Grimmett G, Faraj R, Gibson L, Gilbreath E, Yoder BK. Elevated Protein Kinase A Activity in Stomach Mesenchyme Disrupts Mesenchymal-epithelial Crosstalk and Induces Preneoplasia. Cell Mol Gastroenterol Hepatol 2022; 14:643-668.e1. [PMID: 35690337 PMCID: PMC9421585 DOI: 10.1016/j.jcmgh.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Mesenchymal-epithelial crosstalk (MEC) in the stomach is executed by pathways such as bone morphogenetic protein (BMP) and extracellular signal-regulated kinase (ERK). Mis-regulation of MEC disrupts gastric homeostasis and causes tumorigenesis. Protein Kinase A (PKA) crosstalks with BMP and ERK signaling; however, PKA function(s) in stomach development and homeostasis remains undefined. METHODS We generated a novel Six2-Cre+/-PKAcαRfl/wt (CA-PKA) mouse in which expression of constitutive-active PKAcαR was induced in gastric mesenchyme progenitors. Lineage tracing determined spatiotemporal activity of Six2-Cre in the stomach. For phenotyping CA-PKA mice histological, co-immunofluorescence, immunoblotting, mRNA sequencing, and bioinformatics analyses were performed. RESULTS Lineage tracing showed that Six2-Cre activity in the stomach is restricted to the mesenchymal compartment. CA-PKA mice showed disruption of gastric homeostasis characterized by aberrant mucosal development and epithelial hyperproliferation; ultimately developing multiple features of gastric corpus preneoplasia including decreased parietal cells, mucous cell hyperplasia, spasmolytic peptide expressing metaplasia with intestinal characteristics, and dysplastic and invasive cystic glands. Furthermore, mutant corpus showed marked chronic inflammation characterized by infiltration of lymphocytes and myeloid-derived suppressor cells along with the upregulation of innate and adaptive immune system components. Striking upregulation of inflammatory mediators and STAT3 activation was observed. Mechanistically, we determined there is an activation of ERK1/2 and downregulation of BMP/SMAD signaling characterized by marked upregulation of BMP inhibitor gremlin 1. CONCLUSIONS We report a novel role of PKA signaling in gastric MEC execution and show that PKA activation in the gastric mesenchyme drives preneoplasia by creating a proinflammatory and proproliferative microenvironment associated with the downregulation of BMP/SMAD signaling and activation of ERK1/2.
Collapse
Affiliation(s)
- Pawan Puri
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama,Correspondence Address correspondence to: Pawan Puri, DVM, PhD, Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, A310 Patterson Hall, Tuskegee, AL 36088; tel. (334) 724-4486; fax: (334) 727-8177.
| | - Garfield Grimmett
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama
| | - Rawah Faraj
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama
| | - Laurielle Gibson
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama
| | - Ebony Gilbreath
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama, Birmingham, Alabama
| |
Collapse
|
13
|
Lee MK, Brown MS, Wilkins OM, Pattabiraman DR, Christensen BC. Distinct cytosine modification profiles define epithelial-to-mesenchymal cell-state transitions. Epigenomics 2022; 14:519-535. [PMID: 35382559 PMCID: PMC9118069 DOI: 10.2217/epi-2022-0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Epithelial-to-mesenchymal transition (EMT) is an early step in the invasion-metastasis cascade, involving progression through intermediate cell states. Due to challenges with isolating intermediate cell states, genome-wide cytosine modifications that define transition are not completely understood. Methods: The authors measured multiple DNA cytosine modification marks and chromatin accessibility across clonal populations residing in specific EMT states. Results: Clones exhibiting more intermediate EMT phenotypes demonstrated increased 5-hydroxymethylcytosine and decreased 5-methylcytosine. Open chromatin regions containing increased 5-hydroxymethylcytosine CpG loci were enriched in EMT transcription factor motifs and were associated with Rho GTPases. Conclusion: The results indicate the importance of both distinct and shared epigenetic profiles associated with EMT processes that may be targeted to prevent EMT progression.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Meredith S Brown
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Owen M Wilkins
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Diwakar R Pattabiraman
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Community & Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
14
|
Brown MS, Muller KE, Pattabiraman DR. Quantifying the Epithelial-to-Mesenchymal Transition (EMT) from Bench to Bedside. Cancers (Basel) 2022; 14:1138. [PMID: 35267444 PMCID: PMC8909103 DOI: 10.3390/cancers14051138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) and its reversal, the mesenchymal-to-epithelial transition (MET) are critical components of the metastatic cascade in breast cancer and many other solid tumor types. Recent work has uncovered the presence of a variety of states encompassed within the EMT spectrum, each of which may play unique roles or work collectively to impact tumor progression. However, defining EMT status is not routinely carried out to determine patient prognosis or dictate therapeutic decision-making in the clinic. Identifying and quantifying the presence of various EMT states within a tumor is a critical first step to scoring patient tumors to aid in determining prognosis. Here, we review the major strides taken towards translating our understanding of EMT biology from bench to bedside. We review previously used approaches including basic immunofluorescence staining, flow cytometry, single-cell sequencing, and multiplexed tumor mapping. Future studies will benefit from the consideration of multiple methods and combinations of markers in designing a diagnostic tool for detecting and measuring EMT in patient tumors.
Collapse
Affiliation(s)
- Meredith S. Brown
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Kristen E. Muller
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA;
| | - Diwakar R. Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| |
Collapse
|
15
|
Chen X, Lin Y, Jin X, Zhang W, Guo W, Chen L, Chen M, Li Y, Fu F, Wang C. Integrative proteomic and phosphoproteomic profiling of invasive micropapillary breast carcinoma. J Proteomics 2022; 257:104511. [DOI: 10.1016/j.jprot.2022.104511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
16
|
Heitink L, Whittle JR, Vaillant F, Capaldo BD, Dekkers JF, Dawson CA, Milevskiy MJG, Surgenor E, Tsai M, Chen H, Christie M, Chen Y, Smyth GK, Herold MJ, Strasser A, Lindeman GJ, Visvader JE. In vivo genome-editing screen identifies tumor suppressor genes that cooperate with Trp53 loss during mammary tumorigenesis. Mol Oncol 2022; 16:1119-1131. [PMID: 35000262 PMCID: PMC8895454 DOI: 10.1002/1878-0261.13179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/07/2021] [Accepted: 01/07/2022] [Indexed: 11/20/2022] Open
Abstract
Breast cancer is a heterogeneous disease that comprises multiple histological and molecular subtypes. To gain insight into mutations that drive breast tumorigenesis, we describe a pipeline for the identification and validation of tumor suppressor genes. Based on an in vivo genome‐wide CRISPR/Cas9 screen in Trp53+/– heterozygous mice, we identified tumor suppressor genes that included the scaffold protein Axin1, the protein kinase A regulatory subunit gene Prkar1a, as well as the proof‐of‐concept genes Pten, Nf1, and Trp53 itself. Ex vivo editing of primary mammary epithelial organoids was performed to further interrogate the roles of Axin1 and Prkar1a. Increased proliferation and profound changes in mammary organoid morphology were observed for Axin1/Trp53 and Prkar1a/Trp53 double mutants compared to Pten/Trp53 double mutants. Furthermore, direct in vivo genome editing via intraductal injection of lentiviruses engineered to express dual short‐guide RNAs revealed that mutagenesis of Trp53 and either Prkar1a, Axin1, or Pten markedly accelerated tumor development compared to Trp53‐only mutants. This proof‐of‐principle study highlights the application of in vivo CRISPR/Cas9 editing for uncovering cooperativity between defects in tumor suppressor genes that elicit mammary tumorigenesis.
Collapse
Affiliation(s)
- Luuk Heitink
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
| | - James R. Whittle
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
- Department of Medical OncologyPeter MacCallum Cancer CentreMelbourneAustralia
| | - François Vaillant
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
| | - Bianca D. Capaldo
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
| | - Johanna F. Dekkers
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Caleb A. Dawson
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
- Immunology DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Michael J. G. Milevskiy
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
| | - Elliot Surgenor
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Minhsuang Tsai
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Huei‐Rong Chen
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Michael Christie
- Personalised Oncology DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of PathologyThe Royal Melbourne HospitalParkvilleAustralia
| | - Yunshun Chen
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Gordon K. Smyth
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- School of Mathematics and StatisticsThe University of MelbourneParkvilleAustralia
| | - Marco J. Herold
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
- Blood Cells and Blood Cancer DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Andreas Strasser
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
- Blood Cells and Blood Cancer DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Geoffrey J. Lindeman
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
- Department of Medical OncologyPeter MacCallum Cancer CentreMelbourneAustralia
| | - Jane E. Visvader
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
| |
Collapse
|
17
|
Brown MS, Abdollahi B, Hassanpour S, Pattabiraman DR. Quantifying epithelial-mesenchymal heterogeneity and EMT scoring in tumor samples via tyramide signal amplification (TSA). Methods Cell Biol 2022; 171:149-161. [PMID: 35953198 DOI: 10.1016/bs.mcb.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumor heterogeneity presents an ongoing challenge to disease progression and treatment in many solid tumor types. Understanding the roots of intra-tumoral heterogeneity and how it may relate to the high incidence of metastasis is critical in overcoming disease relapse and chemoresistance. The epithelial-to-mesenchymal transition is a dynamic cellular program that is co-opted by cancer cells to enhance, among others, migratory and invasive cell traits. It is a key contributor to heterogeneity, chemo-resistance, and metastasis in many carcinoma-types, with the intermediate or hybrid EMT state playing a critical role due to its increased tumor-initiating potential. A critical component in utilizing this knowledge in patient treatment is to first detect and score the impact of EMT in a patient sample. Here, we provide a detailed protocol to detect EMT states and quantify the resulting epithelial-mesenchymal heterogeneity within tumors using a novel multiplexed immunostaining approach and analysis method. This protocol and concept can easily be adapted using custom panels of markers to explore other sources of tumoral heterogeneity in addition to EMT.
Collapse
Affiliation(s)
- Meredith S Brown
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Behnaz Abdollahi
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Saeed Hassanpour
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Diwakar R Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States.
| |
Collapse
|
18
|
Modulating cell differentiation in cancer models. Biochem Soc Trans 2021; 49:1803-1816. [PMID: 34436513 DOI: 10.1042/bst20210230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Cancer has been traditionally viewed as a disease characterised by excessive and uncontrolled proliferation, leading to the development of cytotoxic therapies against highly proliferating malignant cells. However, tumours frequently relapse due to the presence of slow-cycling cancer stem cells eluding chemo and radiotherapy. Since these malignant stem cells are largely undifferentiated, inducing their lineage commitment has been proposed as a potential intervention strategy to deplete tumours from their most resistant components. Pro-differentiation approaches have thus far yielded clinical success in the reversion of acute promyelocytic leukaemia (APL), and new developments are fast widening their therapeutic applicability to solid carcinomas. Recent advances in cancer differentiation discussed here highlight the potential and outstanding challenges of differentiation-based approaches.
Collapse
|
19
|
Sena IFG, Rocha BGS, Picoli CC, Santos GSP, Costa AC, Gonçalves BOP, Garcia APV, Soltani-Asl M, Coimbra-Campos LMC, Silva WN, Costa PAC, Pinto MCX, Amorim JH, Azevedo VAC, Resende RR, Heller D, Cassali GD, Mintz A, Birbrair A. C(3)1-TAg in C57BL/6 J background as a model to study mammary tumor development. Histochem Cell Biol 2021; 156:165-182. [PMID: 34003355 DOI: 10.1007/s00418-021-01995-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2021] [Indexed: 02/06/2023]
Abstract
Diagnosis and prognosis of breast cancer is based on disease staging identified through histopathological and molecular biology techniques. Animal models are used to gain mechanistic insights into the development of breast cancer. C(3)1-TAg is a genetically engineered mouse model that develops mammary cancer. However, carcinogenesis caused by this transgene was characterized in the Friend Virus B (FVB) background. As most genetic studies are done in mice with C57BL/6 J background, we aimed to define the histological alterations in C3(1)-TAg C57BL/6 J animals. Our results showed that C3(1)-TAg animals with C57BL/6 J background develop solid-basaloid adenoid cystic carcinomas with increased fibrosis, decreased area of adipocytes, and a high proliferative index, which are triple-negative for progesterone, estrogen, and human epidermal growth factor receptor 2 (HER2) receptors. Our results also revealed that tumor development is slower in the C57BL/6 J background when compared with the FVB strain, providing a better model to study the different stages in breast cancer progression.
Collapse
Affiliation(s)
- Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bryan O P Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula V Garcia
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maryam Soltani-Asl
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Laboratory of Neuropharmacology and Neurochemistry, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of West Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Debora Heller
- Hospital Israelita Albert Einstein, São Paulo, Brazil.,Cruzeiro Do Sul University, São Paulo, Brazil
| | - Geovanni D Cassali
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Lambert AW, Weinberg RA. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer 2021; 21:325-338. [PMID: 33547455 DOI: 10.1038/s41568-021-00332-6] [Citation(s) in RCA: 325] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Epithelial stem cells serve critical physiological functions in the generation, maintenance and repair of diverse tissues through their ability to self-renew and spawn more specialized, differentiated cell types. In an analogous fashion, cancer stem cells have been proposed to fuel the growth, progression and recurrence of many carcinomas. Activation of an epithelial-mesenchymal transition (EMT), a latent cell-biological programme involved in development and wound healing, has been linked to the formation of both normal and neoplastic stem cells, but the mechanistic basis underlying this connection remains unclear. In this Perspective, we outline the instances where aspects of an EMT have been implicated in normal and neoplastic epithelial stem cells and consider the involvement of this programme during tissue regeneration and repair. We also discuss emerging concepts and evidence related to the heterogeneous and plastic cell states generated by EMT programmes and how these bear on our understanding of cancer stem cell biology and cancer metastasis. A more comprehensive accounting of the still-elusive links between EMT programmes and the stem cell state will surely advance our understanding of both normal stem cell biology and cancer pathogenesis.
Collapse
Affiliation(s)
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- MIT Ludwig Center for Molecular Oncology, Cambridge, MA, USA.
| |
Collapse
|