1
|
Shi F, Tan W, Huang W, Ye F, Wang M, Wang Y, Zhang X, Yu D. HBV activates hepatic stellate cells through RUNX2/ITGBL1 axis. Virol J 2025; 22:120. [PMID: 40287769 PMCID: PMC12032756 DOI: 10.1186/s12985-025-02749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Chronic hepatitis B (CHB) remains a global health challenge, with liver fibrosis serving as a critical determinant of disease progression. Despite antiviral treatments, liver fibrosis often persists in CHB patients, highlighting the need for additional biomarkers and therapeutic targets. This study investigates the molecular mechanism underlying HBV-induced liver fibrosis, focusing on the role of RUNX2 in regulating integrin beta-like 1 (ITGBL1), a key factor in fibrogenesis. METHODS We examined the relationship between RUNX2 and ITGBL1 in both in vitro hepatocyte models and an in vivo HBV mouse model. Using chromatin immunoprecipitation (ChIP), luciferase reporter assays, and Western blotting, we assessed RUNX2 binding to the ITGBL1 promoter and its impact on gene expression. We also evaluated the effects of RUNX2 inhibition using Vitamin D3 and CADD522 on ITGBL1 expression and hepatic stellate cell activation. RESULTS Our findings reveal that RUNX2 directly binds to the ITGBL1 promoter, enhancing its expression and promoting hepatic stellate cell activation. We show that HBV infection significantly upregulates both RUNX2 and ITGBL1 in liver cells. Inhibition of RUNX2 with Vitamin D3 or CADD522 significantly reduced ITGBL1 levels and blocked hepatic stellate cell activation. These results suggest that the RUNX2/ITGBL1 pathway is critical in the progression of liver fibrosis in HBV-infected patients. CONCLUSIONS RUNX2 promotes liver fibrosis in HBV-infected patients by upregulating ITGBL1 expression. Our findings suggest that targeting RUNX2 could be a potential therapeutic approach to mitigate liver fibrosis in chronic hepatitis B.
Collapse
Affiliation(s)
- Fengchun Shi
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Tan
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Fei Ye
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, China
| | - Mingjie Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201821, China
| | - Yongxiang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontier Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Demin Yu
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Yan W, Xiao GH, Wang LJ, Zhou Y, Yang F, Mou KH. CAFs activated by YAP1 upregulate cancer matrix stiffness to mediate hepatocellular carcinoma progression. J Transl Med 2025; 23:450. [PMID: 40241143 PMCID: PMC12004581 DOI: 10.1186/s12967-025-06325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/27/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND The stiffness of the matrix is closely related to the progression of hepatocellular carcinoma (HCC). Although direct targeting of stromal rigidity in HCC remains a clinical challenge, cancer-associated fibroblasts (CAFs) are considered key contributors to this process. Given the heterogeneity of CAFs, this study explored the relationship between specific CAF subsets and liver cancer matrix stiffness, aiming to identify novel therapeutic targets for HCC patients. METHODS Single-cell sequencing datasets were leveraged to identify cell types within liver cancer and characterize the transcriptomic profiles of CAFs. Prognostic analysis, utilizing the Gene Expression Profiling Interactive Analysis (GEPIA) and The Cancer Genome Atlas (TCGA) liver cancer datasets, assessed the correlation between matrix stiffness-related genes and HCC patient outcomes. Pseudo-time analysis was applied to trace the developmental trajectories of CAFs. By calculating intercellular communication probabilities and analyzing transcription factor activity, the functions and interactions of different CAF subsets were elucidated. Gene Ontology (GO) analysis was used to explore the functional roles of CAFs in distinct Yes-associated protein 1 (YAP1) groups. Finally, cellular experiments and animal experiments were further conducted to validate the hypotheses of this study. RESULTS This study identified CAF subpopulations based on single-cell sequencing data and analyzed transcriptional changes within these subpopulations. Key findings include the identification of collagen type I alpha 1 (COL1A1), collagen type III alpha 1 (COL3A1), and lysyloxidase (LOX) as pivotal node genes during CAF development. Moreover, the expression of matrix stiffness-related genes was inversely correlated with the prognosis of HCC patients. Notably, the YAP1-positive CAF subpopulation emerged as the primary contributor to matrix stiffness in liver cancer. This subpopulation upregulates the expression of matrix stiffness-related genes and promotes tumor progression by activating signaling pathways such as autophagy and GTPase activity regulation. Cellular experiments and animal studies further validated this conclusion. CONCLUSION This single-cell analysis uncovered the functional roles of CAFs in liver cancer. The YAP1-positive CAF subpopulation, in particular, was shown to contribute to matrix stiffness by upregulating the expression of relevant genes and promoting tumor progression through the activation of specific signaling pathways.
Collapse
Affiliation(s)
- Wei Yan
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China
| | - Guo-Hui Xiao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Juan Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China
| | - Yan Zhou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China.
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Kuan-Hou Mou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China.
| |
Collapse
|
3
|
Zhao S, Kong H, Qi D, Qiao Y, Li Y, Cao Z, Wang H, He X, Liu H, Yang H, Gao S, Liu T, Xie J. Epidermal stem cell derived exosomes-induced dedifferentiation of myofibroblasts inhibits scarring via the miR-203a-3p/PIK3CA axis. J Nanobiotechnology 2025; 23:56. [PMID: 39881312 PMCID: PMC11776291 DOI: 10.1186/s12951-025-03157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation. Epidermal stem cell-derived extracellular vesicles (EpiSC-EVs) were isolated via ultracentrifugation and filtration, followed by miRNA sequencing to identify miRNAs targeting key molecules. After in vitro and in vivo treatment with EpiSC-EVs, we assessed antifibrotic effects through scratch assays, collagen contraction assays, Western blotting, and immunofluorescence. Transcriptomic sequencing and rescue experiments were used to investigate the molecular mechanism by which miR-203a-3p in EpiSC-EVs induces myofibroblast dedifferentiation. Our results indicate that PIK3CA is overexpressed in HS tissues and positively correlates with fibrosis. EpiSC-EVs were absorbed by scar-derived fibroblasts, promoting dedifferentiation from myofibroblasts to quiescent fibroblasts. Mechanistically, miR-203a-3p in EpiSC-EVs plays an essential role in inhibiting PIK3CA expression and PI3K/AKT/mTOR pathway hyperactivation, thereby reducing scar formation. In vivo studies confirmed that EpiSC-EVs attenuate excessive scarring through the miR-203a-3p/PIK3CA axis, suggesting EpiSC-EVs as a promising therapeutic approach for HS.
Collapse
Affiliation(s)
- Shixin Zhao
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Haoran Kong
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Dahu Qi
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Yushuang Qiao
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Yu Li
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Zhiming Cao
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Hanwen Wang
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xuefeng He
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Hengdeng Liu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Hao Yang
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Suyue Gao
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Tao Liu
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China.
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China.
| | - Julin Xie
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
4
|
Weng Z, Wang C, Liu B, Yang Y, Zhang Y, Zhang C. Integrated analysis of bioinformatics, mendelian randomization, and experimental validation reveals novel diagnostic and therapeutic targets for osteoarthritis: progesterone as a potential therapeutic agent. J Orthop Surg Res 2025; 20:85. [PMID: 39849508 PMCID: PMC11755849 DOI: 10.1186/s13018-025-05459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA), characterized by progressive degeneration of cartilage and reactive proliferation of subchondral bone, stands as a prevalent condition in orthopedic clinics. However, the precise mechanisms underlying OA pathogenesis remain inadequately explored. METHODS In this study, Random Forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) machine learning techniques were employed to identify hub genes. Based on these hub genes, an Artificial Neural Network (ANN) diagnostic model was constructed. The Drug Signatures Database (DSigDB) was utilized to screen small-molecule drugs targeting these hub genes, and molecular docking analyses and molecular dynamics simulations were employed to explore and validate the binding interactions between proteins and small-molecule drugs. Expression changes of the hub genes under inflammatory conditions were validated through in vitro experiments, including RT-qPCR and Western blotting, and the therapeutic effects of the identified small-molecule drug on chondrocytes under inflammatory conditions were further verified in vitro. Lastly, Mendelian randomization analysis was conducted to examine the causal association between progesterone levels and various OA phenotypes. RESULTS In this study, we identified three hub genes: interleukin 1 receptor-associated kinase 3 (IRAK3), integrin subunit beta-like 1 (ITGBL1), and Ras homolog family member U (RHOU). An Artificial Neural Network (ANN) diagnostic model constructed based on these hub genes demonstrated excellent performance in both training and validation phases. Screening with the Drug Signatures Database (DSigDB) identified progesterone as a small-molecule drug targeting these key proteins. Molecular docking analysis using AutoDock Vina revealed that progesterone exhibited binding energies of ≤ -7 kcal/mol with each of the key proteins, indicating strong binding affinity. Furthermore, molecular dynamics simulations validated the stability and strength of these interactions. RT-qPCR and Western blotting confirmed the downregulation of the hub genes in IL-1β-treated chondrocytes. Western blotting also demonstrated the potential therapeutic effects of progesterone on IL-1β-treated chondrocytes. Finally, Mendelian randomization analysis established a significant association between progesterone levels and multiple OA phenotypes. CONCLUSION In our study, IRAK3, ITGBL1, and RHOU were identified as potential novel diagnostic and therapeutic targets for OA. Progesterone was preliminarily validated as a small-molecule drug with potential effects on OA. Further research is crucial to elucidate the pathogenesis of OA and the specific therapeutic mechanisms involved.
Collapse
Affiliation(s)
- Ziyu Weng
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chenzhong Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bo Liu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yi Yang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yueqi Zhang
- Department of Traumatic Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China.
| | - Chi Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Lin G, Cao N, Wu J, Zheng M, Yang Z. The transcription factor TCF4 regulates the miR-494-3p/THBS1 axis in the fibrosis of pathologic scars. Arch Dermatol Res 2025; 317:214. [PMID: 39786568 DOI: 10.1007/s00403-024-03692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The fibrosis of pathologic scar (PS) is formed by the excessive deposition of extracellular matrix, resulting in an abnormal scar. Recent clinical tests have indicated that the regulation of PS fibroblast cells (PSF cells) proliferation can serve as an intervention measure for PS. Our work aimed to elucidate the specific mechanism of action of TCF4 on the progression of PS fibrosis. METHODS Our study used qRT-PCR and Western blot to search for the expression of key proteins in PS clinical samples and cells. Transwell, CCK-8, and wound scratch assays were employed to analyze the proliferation and migration of PSF cells. CHIP, dual-luciferase reporter experiments, and bio-informatics analysis were used to analyze the interactions between molecules. RESULTS The analysis of PS clinical samples confirmed a positive correlation between TCF4 and miR-494-3p. This regulatory mechanism was related to the progression of PS. We verified that the overexpression of miR-494-3p or the knockdown of THBS1 both suppressed the proliferation and migration of PSF cells. Furthermore, we also confirmed the binding relationships between TCF4, miR-494-3p, and THBS1. Simultaneously, we verified the existence of the TCF4/miR-494-3p/THBS1 regulatory network in PS. This regulatory process affects the development of PS fibrosis. CONCLUSION Our study results indicate that TCF4, miR-494-3p, and THBS1 are abnormally expressed in PS. TCF4 increases the proliferation and migration ability of PSF cells through the miR-494-3p/THBS1 signaling pathway, which promotes the fibrosis of PS.
Collapse
Affiliation(s)
- Guangmin Lin
- Department of Plastic and Cosmetic Surgery, Zhangzhou Hospital Affiliated of Fujian Medical University, Zhangzhou Municipal Hospital of Fujian Province, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou City, 363000, Fujian Province, China.
| | - Ning Cao
- Department of Plastic and Cosmetic Surgery, Zhangzhou Hospital Affiliated of Fujian Medical University, Zhangzhou Municipal Hospital of Fujian Province, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou City, 363000, Fujian Province, China
| | - Jinhong Wu
- Department of Plastic and Cosmetic Surgery, Zhangzhou Hospital Affiliated of Fujian Medical University, Zhangzhou Municipal Hospital of Fujian Province, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou City, 363000, Fujian Province, China
| | - Meilian Zheng
- Department of Plastic and Cosmetic Surgery, Zhangzhou Hospital Affiliated of Fujian Medical University, Zhangzhou Municipal Hospital of Fujian Province, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou City, 363000, Fujian Province, China
| | - Zhaobin Yang
- Medical Intensive Care Unit, Zhangzhou Hospital Affiliated of Fujian Medical University, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou City, Fujian Province, China
| |
Collapse
|
6
|
Kim SE, Noda R, Liu YC, Nakajima Y, Kameoka S, Motooka D, Mizuno S, Takahashi S, Takaya K, Murase T, Ikematsu K, Tratsiakova K, Motoyama T, Nakashima M, Kishi K, Martin P, Seno S, Okuzaki D, Mori R. Novel integrated multiomics analysis reveals a key role for integrin beta-like 1 in wound scarring. EMBO Rep 2025; 26:122-152. [PMID: 39558136 PMCID: PMC11724056 DOI: 10.1038/s44319-024-00322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
Exacerbation of scarring can originate from a minority fibroblast population that has undergone inflammatory-mediated genetic changes within the wound microenvironment. The fundamental relationship between molecular and spatial organization of the repair process at the single-cell level remains unclear. We have developed a novel, high-resolution spatial multiomics method that integrates spatial transcriptomics with scRNA-Seq; we identified new characteristic features of cell-cell communication and signaling during the repair process. Data from PU.1-/- mice, which lack an inflammatory response, combined with scRNA-Seq and Visium transcriptomics, led to the identification of nine genes potentially involved in inflammation-related scarring, including integrin beta-like 1 (Itgbl1). Transgenic mouse experiments confirmed that Itgbl1-expressing fibroblasts are required for granulation tissue formation and drive fibrogenesis during skin repair. Additionally, we detected a minority population of Acta2high-expressing myofibroblasts with apparent involvement in scarring, in conjunction with Itgbl1 expression. IL1β signaling inhibited Itgbl1 expression in TGFβ1-treated primary fibroblasts from humans and mice. Our novel methodology reveal molecular mechanisms underlying fibroblast-inflammatory cell interactions that initiate wound scarring.
Collapse
Affiliation(s)
- Sang-Eun Kim
- Department of Pathology, School of Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Ryota Noda
- Department of Pathology, School of Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yu-Chen Liu
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukari Nakajima
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shoichiro Kameoka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kento Takaya
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takehiko Murase
- Department of Forensic Pathology and Science, School of Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, Kita, Kagawa, 761-0793, Japan
| | - Kazuya Ikematsu
- Department of Forensic Pathology and Science, School of Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Katsiaryna Tratsiakova
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Takahiro Motoyama
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Paul Martin
- Department of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Ryoichi Mori
- Department of Pathology, School of Medicine, Nagasaki University, Nagasaki, 852-8523, Japan.
- Department of Tissue Repair and Regenerative Medical Science, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan.
- Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan.
| |
Collapse
|
7
|
Wang S, Yuan X, Yang Z, Zhang X, Xu Z, Yang L, Yang X, Zhou W, Liu W. Matrix stiffness-dependent PD-L2 deficiency improves SMYD3/xCT-mediated ferroptosis and the efficacy of anti-PD-1 in HCC. J Adv Res 2024:S2090-1232(24)00363-1. [PMID: 39159723 DOI: 10.1016/j.jare.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/24/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Heterogeneous tissue stiffening promotes tumor progression and resistance, and predicts a poor clinical outcome in patients with hepatocellular carcinoma (HCC). Ferroptosis, a congenital tumor suppressive mechanism, mediates the anticancer activity of various tumor suppressors, including immune checkpoint inhibitors, and its induction is currently considered a promising treatment strategy. However, the role of extracellular matrix (ECM) stiffness in regulating ferroptosis and ferroptosis-targeted resistance in HCC remains unclear. OBJECTIVES This research aimed to explore how extracellular matrix stiffness affects ferroptosis and its treatment efficacy in HCC. METHODS Ferroptosis analysis was confirmed via cell activity, intracellular ferrous irons, and mitochondrial pathology assays. Baseline PD-L2, SMYD3, and SLC7A11 (xCT) were evaluated in 67 sorafenib-treated patients with HCC (46 for non-responder and 21 for responder) from public data. The combined efficacy of shPD-L2, sorafenib, and anti-PD-1 antibody in HCC was investigated in vivo. RESULTS Here, we revealed that matrix stiffness-induced PD-L2 functions as a suppressor of xCT-mediated ferroptosis to promote cancer growth and sorafenib resistance in patients with HCC. Mechanically, matrix stiffening induced the expression of PD-L2 by activating SMYD3/H3K4me3, which acts as an RNA binding protein to enhance the mRNA stability of FTL and elevate its protein level. Knockdown of PD-L2 significantly promoted xCT-mediated ferroptosis induced by RSL3 or sorafenib on stiff substrate via FTL, whereas its overexpression abolished these upward trends. Notably, PD-L2 deletion in combination with sorafenib and anti-PD-1 antibody significantly sensitized HCC cells and blunted cancer growth in vivo. Additionally, we found the ferroptosis- and immune checkpoint-related prognostic genes that combined PD-L2, SLC7A11 and SYMD3 well predict the clinical efficacy of sorafenib in patients with HCC. CONCLUSION These findings expand our understanding of the mechanics-dependent PD-L2 role in ferroptosis, cancer progression and resistance, providing a basis for the clinical translation of PD-L2 as a therapeutic target or diagnostic biomarker.
Collapse
Affiliation(s)
- Shunxi Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education& 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xiaoxue Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education& 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zetao Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education& 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xuan Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education& 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zhiling Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education& 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education& 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xian Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education& 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China; Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education& 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
8
|
Huang H, Liu W, Lin J, Shu F, Xia Z, Zheng Y. Graphene Quantum Dots Reduce Hypertrophic Scar by Inducing Myofibroblasts To Be a Quiescent State. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37530-37544. [PMID: 38989714 DOI: 10.1021/acsami.4c05731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Contrary to the initial belief that myofibroblasts are terminally differentiated cells, myofibroblasts have now been widely recognized as an activation state that is reversible. Therefore, strategies targeting myofibroblast to be a quiescent state may be an effective way for antihypertrophic scar therapy. Graphene quantum dots (GQDs), a novel zero-dimensional and carbon-based nanomaterial, have recently garnered significant interest in nanobiomedicine, owing to their excellent biocompatibility, tunable photoluminescence, and superior physiological stability. Although multiple nanoparticles have been used to alleviate hypertrophic scars, a GQD-based therapy has not been reported. Our in vivo studies showed that GQDs exhibited significant antiscar efficacy, with scar appearance improvement, collagen reduction and rearrangement, and inhibition of myofibroblast overproliferation. Further in vitro experiments revealed that GQDs inhibited α-SMA expression, collagen synthesis, and cell proliferation and migration, inducing myofibroblasts to become quiescent fibroblasts. Mechanistic studies have demonstrated that the effect of GQDs on myofibroblast proliferation blocked cell cycle progression by disrupting the cyclin-CDK-E2F axis. This study suggests that GQDs, which promote myofibroblast-to-fibroblast transition, could be a novel antiscar nanomedicine for the treatment of hypertrophic scars and other types of pathological fibrosis.
Collapse
Affiliation(s)
- Hongchao Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Wenzhang Liu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Jiezhi Lin
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Futing Shu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, People's Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
9
|
Ju X, Wang K, Wang C, Zeng C, Wang Y, Yu J. Regulation of myofibroblast dedifferentiation in pulmonary fibrosis. Respir Res 2024; 25:284. [PMID: 39026235 PMCID: PMC11264880 DOI: 10.1186/s12931-024-02898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Idiopathic pulmonary fibrosis is a lethal, progressive, and irreversible condition that has become a significant focus of medical research due to its increasing incidence. This rising trend presents substantial challenges for patients, healthcare providers, and researchers. Despite the escalating burden of pulmonary fibrosis, the available therapeutic options remain limited. Currently, the United States Food and Drug Administration has approved two drugs for the treatment of pulmonary fibrosis-nintedanib and pirfenidone. However, their therapeutic effectiveness is limited, and they cannot reverse the fibrosis process. Additionally, these drugs are associated with significant side effects. Myofibroblasts play a central role in the pathophysiology of pulmonary fibrosis, significantly contributing to its progression. Consequently, strategies aimed at inhibiting myofibroblast differentiation or promoting their dedifferentiation hold promise as effective treatments. This review examines the regulation of myofibroblast dedifferentiation, exploring various signaling pathways, regulatory targets, and potential pharmaceutical interventions that could provide new directions for therapeutic development.
Collapse
Affiliation(s)
- Xuetao Ju
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Kai Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Congjian Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Chenxi Zeng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
10
|
Bonadio JD, Bashiri G, Halligan P, Kegel M, Ahmed F, Wang K. Delivery technologies for therapeutic targeting of fibronectin in autoimmunity and fibrosis applications. Adv Drug Deliv Rev 2024; 209:115303. [PMID: 38588958 PMCID: PMC11111362 DOI: 10.1016/j.addr.2024.115303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibronectin (FN) is a critical component of the extracellular matrix (ECM) contributing to various physiological processes, including tissue repair and immune response regulation. FN regulates various cellular functions such as adhesion, proliferation, migration, differentiation, and cytokine release. Alterations in FN expression, deposition, and molecular structure can profoundly impact its interaction with other ECM proteins, growth factors, cells, and associated signaling pathways, thus influencing the progress of diseases such as fibrosis and autoimmune disorders. Therefore, developing therapeutics that directly target FN or its interaction with cells and other ECM components can be an intriguing approach to address autoimmune and fibrosis pathogenesis.
Collapse
Affiliation(s)
- Jacob D Bonadio
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Patrick Halligan
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Michael Kegel
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Fatima Ahmed
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA, United States.
| |
Collapse
|