1
|
Naffaa MM. Neurogenesis dynamics in the olfactory bulb: deciphering circuitry organization, function, and adaptive plasticity. Neural Regen Res 2025; 20:1565-1581. [PMID: 38934393 PMCID: PMC11688548 DOI: 10.4103/nrr.nrr-d-24-00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover, the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
Collapse
Affiliation(s)
- Moawiah M. Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Li YZ, Gao L, Sun XL, Duan L, Jiang M, Wu QF. Neural cell competition sculpting brain from cradle to grave. Natl Sci Rev 2025; 12:nwaf057. [PMID: 40309342 PMCID: PMC12042753 DOI: 10.1093/nsr/nwaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/18/2025] [Accepted: 02/13/2025] [Indexed: 05/02/2025] Open
Abstract
Darwinian selection, operating within the cellular ecosystem of multicellular organisms, drives a pervasive surveillance mechanism of cell-cell competition that shapes tissue architecture and function. While cell competition eliminates suboptimal cells to ensure tissue integrity across various tissues, neuronal competition specifically sculpts neural networks to establish precise circuits for sensory, motor and cognitive functions. However, our understanding of cell competition across diverse neural cell types in both developmental and pathological contexts remains limited. Here, we review recent advances on the phenomenon, and mechanisms and potential functions of neural cell competition (NCC), ranging from neural progenitors, neurons, astrocytes and oligodendrocytes to microglia. Physiological NCC governs cellular survival, proliferation, arborization, organization, function and territorial colonization, whereas dysregulated NCC may cause neurodevelopmental disorders, accelerate aging, exacerbate neurodegenerative diseases and drive brain tumor progression. Future work that leverages cell competition mechanisms may help to improve cognition and curb diseases.
Collapse
Affiliation(s)
- Yu Zheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lisen Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Lian Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lihui Duan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Man Jiang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Children's Hospital, Beijing 100045, China
| |
Collapse
|
3
|
Lai ESK, Uesaka N, Miyazaki T, Hashimoto K, Watanabe M, Kano M. Reduced GABAergic inhibition and impaired synapse elimination by neuroligin-2 deletion from Purkinje cells of the developing cerebellum. Front Neural Circuits 2025; 19:1530141. [PMID: 40160866 PMCID: PMC11949940 DOI: 10.3389/fncir.2025.1530141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Functionally mature neural circuits are shaped during postnatal development by eliminating redundant synapses formed around birth. This process is known as synapse elimination and requires a proper balance of excitation and inhibition. Neuroligin-2 (NL2) is a postsynaptic cell adhesion molecule required for the formation, maintenance, and function of inhibitory synapses. However, how NL2 regulates synapse elimination during postnatal development is largely unknown. Here we report that the deletion of NL2 from Purkinje cells (PCs) in the cerebellum impairs the developmental elimination of redundant climbing fiber (CF) to PC synapses. In global NL2-knockout (KO) mice, GABAergic inhibition to PCs was attenuated and CF synapse elimination was impaired after postnatal day 10 (P10). These phenotypes were restored by the expression of NL2 into PCs of NL2-KO mice. Moreover, microRNA-mediated knockdown of NL2 specifically from PCs during development caused attenuated inhibition and impaired CF synapse elimination. In PCs innervated by "strong" and "weak" CFs, calcium transients elicited by "weak" CFs were enhanced in NL2-deficient PCs, suggesting that excess calcium signaling permits the survival of redundant "weak" CF synapses. We conclude that NL2 is crucial for maintaining inhibitory synaptic function and properly eliminating redundant CF synapses during postnatal development.
Collapse
Affiliation(s)
- Esther Suk King Lai
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan
| |
Collapse
|
4
|
Imai T. Activity-dependent synaptic competition and dendrite pruning in developing mitral cells. Front Neural Circuits 2025; 19:1541926. [PMID: 40034992 PMCID: PMC11873734 DOI: 10.3389/fncir.2025.1541926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 03/05/2025] Open
Abstract
During the early postnatal period, neurons in sensory circuits dynamically remodel their connectivity to acquire discrete receptive fields. Neuronal activity is thought to play a central role in circuit remodeling during this period: Neuronal activity stabilizes some synaptic connections while eliminating others. Synaptic competition plays a central role in the binary choice between stabilization and elimination. While activity-dependent "punishment signals" propagating from winner to loser synapses have been hypothesized to drive synapse elimination, their exact nature has remained elusive. In this review, I summarize recent studies in mouse mitral cells that explain how only one dendrite is stabilized while others are eliminated, based on early postnatal spontaneous activity in the olfactory bulb. I discuss how the hypothetical punishment signals act on loser but not winner dendrites to establish only one primary dendrite per mitral cell, the anatomical basis for the odorant receptor-specific parallel information processing in the olfactory bulb.
Collapse
Affiliation(s)
- Takeshi Imai
- Department of Developmental Neurophysiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Sudarsanam S, Guzman-Clavel L, Dar N, Ziak J, Shahid N, Jin XO, Kolodkin AL. Mef2c Controls Postnatal Callosal Axon Targeting by Regulating Sensitivity to Ephrin Repulsion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634300. [PMID: 39896513 PMCID: PMC11785193 DOI: 10.1101/2025.01.22.634300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cortical connectivity is contingent on ordered emergence of neuron subtypes followed by the formation of subtype-specific axon projections. Intracortical circuits, including long-range callosal projections, are crucial for information processing, but mechanisms of intracortical axon targeting are still unclear. We find that the transcription factor Myocyte enhancer factor 2-c (Mef2c) directs the development of somatosensory cortical (S1) layer 4 and 5 pyramidal neurons during embryogenesis. During early postnatal development, Mef2c expression shifts to layer 2/3 callosal projection neurons (L2/3 CPNs), and we find a novel function for Mef2c in targeting homotopic contralateral cortical regions by S1-L2/3 CPNs. We demonstrate, using functional manipulation of EphA-EphrinA signaling in Mef2c-mutant CPNs, that Mef2c downregulates EphA6 to desensitize S1-L2/3 CPN axons to EphrinA5-repulsion at their contralateral targets. Our work uncovers dual roles for Mef2c in cortical development: regulation of laminar subtype specification during embryogenesis, and axon targeting in postnatal callosal neurons.
Collapse
Affiliation(s)
- Sriram Sudarsanam
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally
| | - Luis Guzman-Clavel
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally
| | - Nyle Dar
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jakub Ziak
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Naseer Shahid
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinyu O. Jin
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Senior author
- Lead contact
| |
Collapse
|
6
|
Sánchez-Guardado L, Razavi P, Wang B, Callejas-Marín A, Lois C. Projection neurons are necessary for the maintenance of the mouse olfactory circuit. eLife 2024; 13:RP90296. [PMID: 39671236 PMCID: PMC11643621 DOI: 10.7554/elife.90296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
The assembly and maintenance of neural circuits is crucial for proper brain function. Although the assembly of brain circuits has been extensively studied, much less is understood about the mechanisms controlling their maintenance as animals mature. In the olfactory system, the axons of olfactory sensory neurons (OSNs) expressing the same odor receptor converge into discrete synaptic structures of the olfactory bulb (OB) called glomeruli, forming a stereotypic odor map. The OB projection neurons, called mitral and tufted cells (M/Ts), have a single dendrite that branches into a single glomerulus, where they make synapses with OSNs. We used a genetic method to progressively eliminate the vast majority of M/T cells in early postnatal mice, and observed that the assembly of the OB bulb circuits proceeded normally. However, as the animals became adults the apical dendrite of remaining M/Ts grew multiple branches that innervated several glomeruli, and OSNs expressing single odor receptors projected their axons into multiple glomeruli, disrupting the olfactory sensory map. Moreover, ablating the M/Ts in adult animals also resulted in similar structural changes in the projections of remaining M/Ts and axons from OSNs. Interestingly, the ability of these mice to detect odors was relatively preserved despite only having 1-5% of projection neurons transmitting odorant information to the brain, and having highly disrupted circuits in the OB. These results indicate that a reduced number of projection neurons does not affect the normal assembly of the olfactory circuit, but induces structural instability of the olfactory circuitry of adult animals.
Collapse
Affiliation(s)
- Luis Sánchez-Guardado
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Department of Cell Biology, School of Science, University of ExtremaduraBadajozSpain
| | - Peyman Razavi
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Bo Wang
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Antuca Callejas-Marín
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Department of Cell Biology, School of Science, University of ExtremaduraBadajozSpain
| | - Carlos Lois
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
7
|
Sun H, Tian H, Hu Y, Cui Y, Chen X, Xu M, Wang X, Zhou T. Bio-Plausible Multimodal Learning with Emerging Neuromorphic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406242. [PMID: 39258724 PMCID: PMC11615814 DOI: 10.1002/advs.202406242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Indexed: 09/12/2024]
Abstract
Multimodal machine learning, as a prospective advancement in artificial intelligence, endeavors to emulate the brain's multimodal learning abilities with the objective to enhance interactions with humans. However, this approach requires simultaneous processing of diverse types of data, leading to increased model complexity, longer training times, and higher energy consumption. Multimodal neuromorphic devices have the capability to preprocess spatio-temporal information from various physical signals into unified electrical signals with high information density, thereby enabling more biologically plausible multimodal learning with low complexity and high energy-efficiency. Here, this work conducts a comparison between the expression of multimodal machine learning and multimodal neuromorphic computing, followed by an overview of the key characteristics associated with multimodal neuromorphic devices. The bio-plausible operational principles and the multimodal learning abilities of emerging devices are examined, which are classified into heterogeneous and homogeneous multimodal neuromorphic devices. Subsequently, this work provides a detailed description of the multimodal learning capabilities demonstrated by neuromorphic circuits and their respective applications. Finally, this work highlights the limitations and challenges of multimodal neuromorphic computing in order to hopefully provide insight into potential future research directions.
Collapse
Affiliation(s)
- Haonan Sun
- School of Automation EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731China
- State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Haoxiang Tian
- State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Yihao Hu
- School of Automation EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731China
- State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Yi Cui
- State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xinrui Chen
- State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Minyi Xu
- State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xianfu Wang
- State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Tao Zhou
- School of Automation EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731China
- State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| |
Collapse
|
8
|
Li H, Covington JA, Tian F, Wu Z, Liu Y, Hu L. Development and analysis of an artificial olfactory bulb. Talanta 2024; 279:126551. [PMID: 39018948 DOI: 10.1016/j.talanta.2024.126551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
This article presents the development of an artificial olfactory bulb (OB) using an electronic nose with thermally modulated metal-oxide sensors. Inspired by animal OBs, our approach employs thermal modulation to replicate the spatial encoding patterns of glomeruli clusters and subclusters. This new approach enhances the classification capabilities of traditional electronic noses and offers new insights for biomimetic olfaction. Molecular receptive range (MRR) analysis confirms that our artificial OB effectively mimics the glomerular distribution of animal OBs. Additionally, the incorporation of a short axon cell (SAC) network, inspired by the animal olfactory system, significantly improves lifetime sparseness and qualitative ability of the artificial OB through extensive lateral inhibition, providing a theoretical framework for enhanced olfactory performance.
Collapse
Affiliation(s)
- Hantao Li
- School of Microelectronic and Communication Engineering, Chongqing University, 400044, Chongqing, China
| | | | - Fengchun Tian
- School of Microelectronic and Communication Engineering, Chongqing University, 400044, Chongqing, China; Chongqing Key Laboratory of Bio-perception and Intelligent Information Processing, 400044, Chongqing, China.
| | - Zhiyuan Wu
- School of Microelectronic and Communication Engineering, Chongqing University, 400044, Chongqing, China; School of Engineering, University of Warwick, CV47AL, Coventry, UK
| | - Yue Liu
- School of Microelectronic and Communication Engineering, Chongqing University, 400044, Chongqing, China
| | - Li Hu
- School of Microelectronic and Communication Engineering, Chongqing University, 400044, Chongqing, China
| |
Collapse
|
9
|
Dasgupta S, Meirovitch Y, Zheng X, Bush I, Lichtman JW, Navlakha S. A neural algorithm for computing bipartite matchings. Proc Natl Acad Sci U S A 2024; 121:e2321032121. [PMID: 39226341 PMCID: PMC11406297 DOI: 10.1073/pnas.2321032121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/05/2024] [Indexed: 09/05/2024] Open
Abstract
Finding optimal bipartite matchings-e.g., matching medical students to hospitals for residency, items to buyers in an auction, or papers to reviewers for peer review-is a fundamental combinatorial optimization problem. We found a distributed algorithm for computing matchings by studying the development of the neuromuscular circuit. The neuromuscular circuit can be viewed as a bipartite graph formed between motor neurons and muscle fibers. In newborn animals, neurons and fibers are densely connected, but after development, each fiber is typically matched (i.e., connected) to exactly one neuron. We cast this synaptic pruning process as a distributed matching (or assignment) algorithm, where motor neurons "compete" with each other to "win" muscle fibers. We show that this algorithm is simple to implement, theoretically sound, and effective in practice when evaluated on real-world bipartite matching problems. Thus, insights from the development of neural circuits can inform the design of algorithms for fundamental computational problems.
Collapse
Affiliation(s)
- Sanjoy Dasgupta
- Computer Science and Engineering Department, University of California San Diego, La Jolla, CA92037
| | - Yaron Meirovitch
- Department of Molecular and Cell Biology and Center for Brain Science, Harvard University, Cambridge, MA02138
| | - Xingyu Zheng
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Inle Bush
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Jeff W. Lichtman
- Department of Molecular and Cell Biology and Center for Brain Science, Harvard University, Cambridge, MA02138
| | - Saket Navlakha
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| |
Collapse
|
10
|
Xu C, Li Z, Lyu C, Hu Y, McLaughlin CN, Wong KKL, Xie Q, Luginbuhl DJ, Li H, Udeshi ND, Svinkina T, Mani DR, Han S, Li T, Li Y, Guajardo R, Ting AY, Carr SA, Li J, Luo L. Molecular and cellular mechanisms of teneurin signaling in synaptic partner matching. Cell 2024; 187:5081-5101.e19. [PMID: 38996528 PMCID: PMC11833509 DOI: 10.1016/j.cell.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.
Collapse
Affiliation(s)
- Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yixin Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Kin Lam Wong
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tanya Svinkina
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yang Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Guajardo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Forrer S, Delavari F, Sandini C, Rafi H, Preti MG, Van De Ville D, Eliez S. Longitudinal Analysis of Brain Function-Structure Dependencies in 22q11.2 Deletion Syndrome and Psychotic Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:882-895. [PMID: 38849032 DOI: 10.1016/j.bpsc.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Compared with conventional unimodal analysis, understanding how brain function and structure relate to one another opens a new biologically relevant assessment of neural mechanisms. However, how function-structure dependencies (FSDs) evolve throughout typical and abnormal neurodevelopment remains elusive. The 22q11.2 deletion syndrome (22q11.2DS) offers an important opportunity to study the development of FSDs and their specific association with the pathophysiology of psychosis. METHODS Previously, we used graph signal processing to combine brain activity and structural connectivity measures in adults, quantifying FSD. Here, we combined FSD with longitudinal multivariate partial least squares correlation to evaluate FSD alterations across groups and among patients with and without mild to moderate positive psychotic symptoms. We assessed 391 longitudinally repeated resting-state functional and diffusion-weighted magnetic resonance images from 194 healthy control participants and 197 deletion carriers (ages 7-34 years, data collected over a span of 12 years). RESULTS Compared with control participants, patients with 22q11.2DS showed a persistent developmental offset from childhood, with regions of hyper- and hypocoupling across the brain. Additionally, a second deviating developmental pattern showed an exacerbation during adolescence, presenting hypocoupling in the frontal and cingulate cortices and hypercoupling in temporal regions for patients with 22q11.2DS. Interestingly, the observed aggravation during adolescence was strongly driven by the group with positive psychotic symptoms. CONCLUSIONS These results confirm a central role of altered FSD maturation in the emergence of psychotic symptoms in 22q11.2DS during adolescence. The FSD deviations precede the onset of psychotic episodes and thus offer a potential early indication for behavioral interventions in individuals at risk.
Collapse
Affiliation(s)
- Silas Forrer
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Corrado Sandini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Halima Rafi
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Developmental Clinical Psychology Research Unit, University of Geneva Faculty of Psychology and Educational Sciences, Geneva, Switzerland
| | - Maria Giulia Preti
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
12
|
Zhou Z, Yang X, Mao A, Xu H, Lin C, Yang M, Hu W, Shao J, Xu P, Li Y, Li W, Lin R, Zhang R, Xie Q, Xu Z, Meng W. Deficiency of CAMSAP2 impairs olfaction and the morphogenesis of mitral cells. EMBO Rep 2024; 25:2861-2877. [PMID: 38839944 PMCID: PMC11239855 DOI: 10.1038/s44319-024-00166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
In developing olfactory bulb (OB), mitral cells (MCs) remodel their dendrites to establish the precise olfactory circuit, and these circuits are critical for individuals to sense odors and elicit behaviors for survival. However, how microtubules (MTs) participate in the process of dendritic remodeling remains elusive. Here, we reveal that calmodulin-regulated spectrin-associated proteins (CAMSAPs), a family of proteins that bind to the minus-end of the noncentrosomal MTs, play a crucial part in the development of MC dendrites. We observed that Camsap2 knockout (KO) males are infertile while the reproductive tract is normal. Further study showed that the infertility was due to the severe defects of mating behavior in male mice. Besides, mice with loss-of-function displayed defects in the sense of smell. Furthermore, we found that the deficiency of CAMSAP2 impairs the classical morphology of MCs, and the CAMSAP2-dependent dendritic remodeling process is responsible for this defect. Thus, our findings demonstrate that CAMSAP2 plays a vital role in regulating the development of MCs.
Collapse
Affiliation(s)
- Zhengrong Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
- Neuroscience Center, Department of Basic Medical Sciences, Shantou University Medical College, 515041, Shantou, Guangdong, China.
| | - Xiaojuan Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Aihua Mao
- Biology Department, College of Sciences, Shantou University, 515063, Shantou, China
| | - Honglin Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Chunnuan Lin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mengge Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Weichang Hu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinhui Shao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Peipei Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuejia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenguang Li
- Animal Laboratory Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ruifan Lin
- Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qi Xie
- Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
13
|
Nakagawa N, Iwasato T. Activity-dependent dendrite patterning in the postnatal barrel cortex. Front Neural Circuits 2024; 18:1409993. [PMID: 38827189 PMCID: PMC11140076 DOI: 10.3389/fncir.2024.1409993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
For neural circuit construction in the brain, coarse neuronal connections are assembled prenatally following genetic programs, being reorganized postnatally by activity-dependent mechanisms to implement area-specific computational functions. Activity-dependent dendrite patterning is a critical component of neural circuit reorganization, whereby individual neurons rearrange and optimize their presynaptic partners. In the rodent primary somatosensory cortex (barrel cortex), driven by thalamocortical inputs, layer 4 (L4) excitatory neurons extensively remodel their basal dendrites at neonatal stages to ensure specific responses of barrels to the corresponding individual whiskers. This feature of barrel cortex L4 neurons makes them an excellent model, significantly contributing to unveiling the activity-dependent nature of dendrite patterning and circuit reorganization. In this review, we summarize recent advances in our understanding of the activity-dependent mechanisms underlying dendrite patterning. Our focus lays on the mechanisms revealed by in vivo time-lapse imaging, and the role of activity-dependent Golgi apparatus polarity regulation in dendrite patterning. We also discuss the type of neuronal activity that could contribute to dendrite patterning and hence connectivity.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Japan
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
14
|
Goodkey K, Wischmeijer A, Perrin L, Watson AES, Qureshi L, Cordelli DM, Toni F, Gnazzo M, Benedicenti F, Elmaleh-Bergès M, Low KJ, Voronova A. Olfactory bulb anomalies in KBG syndrome mouse model and patients. BMC Med 2024; 22:158. [PMID: 38616269 PMCID: PMC11017579 DOI: 10.1186/s12916-024-03363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
ANKRD11 (ankyrin repeat domain 11) is a chromatin regulator and the only gene associated with KBG syndrome, a rare neurodevelopmental disorder. We have previously shown that Ankrd11 regulates murine embryonic cortical neurogenesis. Here, we show a novel olfactory bulb phenotype in a KBG syndrome mouse model and two diagnosed patients. Conditional knockout of Ankrd11 in murine embryonic neural stem cells leads to aberrant postnatal olfactory bulb development and reduced size due to reduction of the olfactory bulb granule cell layer. We further show that the rostral migratory stream has incomplete migration of neuroblasts, reduced cell proliferation as well as aberrant differentiation of neurons. This leads to reduced neuroblasts and neurons in the olfactory bulb granule cell layer. In vitro, Ankrd11-deficient neural stem cells from the postnatal subventricular zone display reduced migration, proliferation, and neurogenesis. Finally, we describe two clinically and molecularly confirmed KBG syndrome patients with anosmia and olfactory bulb and groove hypo-dysgenesis/agenesis. Our report provides evidence that Ankrd11 is a novel regulator of olfactory bulb development and neuroblast migration. Moreover, our study highlights a novel clinical sign of KBG syndrome linked to ANKRD11 perturbations in mice and humans.
Collapse
Affiliation(s)
- Kara Goodkey
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy, Edmonton, AB, T6G 1C9, Canada
| | - Anita Wischmeijer
- Clinical Genetics Service and Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | | | - Adrianne E S Watson
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy, Edmonton, AB, T6G 1C9, Canada
| | - Leenah Qureshi
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Duccio Maria Cordelli
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, UOC Neuropsichiatria Dell'età Pediatrica, Bologna, Italy
| | - Francesco Toni
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Programma Di Neuroradiologia Con Tecniche Ad Elevata Complessità (PNTEC), Bologna, Italy
| | - Maria Gnazzo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Francesco Benedicenti
- Clinical Genetics Service and Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | | | - Karen J Low
- Department of Academic Child Health, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Clinical Genetics Service, St. Michaels Hospital, Bristol, UK
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
- Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy, Edmonton, AB, T6G 1C9, Canada.
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
15
|
WATANABE T, KANO M. Molecular and cellular mechanisms of developmental synapse elimination in the cerebellum: Involvement of autism spectrum disorder-related genes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:508-523. [PMID: 39522973 PMCID: PMC11635086 DOI: 10.2183/pjab.100.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024]
Abstract
Neural circuits are initially created with excessive synapse formation until around birth and undergo massive reorganization until they mature. During postnatal development, necessary synapses strengthen and remain, whereas unnecessary ones are weakened and eventually eliminated. These events, collectively called "synapse elimination" or "synapse pruning", are thought to be fundamental for creating functionally mature neural circuits in adult animals. In the cerebellum of neonatal rodents, Purkinje cells (PCs) receive synaptic inputs from multiple climbing fibers (CFs). Then, inputs from a single CF are strengthened and those from the other CFs are eliminated, and most PCs become innervated by single CFs by the end of the third postnatal week. These events are regarded as a representative model of synapse elimination. This review examines the molecular and cellular mechanisms of CF synapse elimination in the developing cerebellum and argues how autism spectrum disorder (ASD)-related genes are involved in CF synapse development. We introduce recent studies to update our knowledge, incorporate new data into the known scheme, and discuss the remaining issues and future directions.
Collapse
Affiliation(s)
- Takaki WATANABE
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan
| | - Masanobu KANO
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan
| |
Collapse
|
16
|
Gonda S, Riedel C, Reiner A, Köhler I, Wahle P. Axons of cortical basket cells originating from dendrites develop higher local complexity than axons emerging from basket cell somata. Development 2023; 150:dev202305. [PMID: 37902086 PMCID: PMC10690106 DOI: 10.1242/dev.202305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Neuronal differentiation is regulated by neuronal activity. Here, we analyzed dendritic and axonal growth of Basket cells (BCs) and non-Basket cells (non-BCs) using sparse transfection of channelrhodopsin-YFP and repetitive optogenetic stimulation in slice cultures of rat visual cortex. Neocortical interneurons often display axon-carrying dendrites (AcDs). We found that the AcDs of BCs and non-BCs were, on average, the most complex dendrites. Further, the AcD configuration had an influence on BC axonal development. Axons originating from an AcD formed denser arborizations with more terminal endings within the dendritic field of the parent cell. Intriguingly, this occurred already in unstimulated BCs, and complexity was not increased further by optogenetic stimulation. However, optogenetic stimulation exerted a growth-promoting effect on axons emerging from BC somata. The axons of non-BCs neither responded to the AcD configuration nor to the optogenetic stimulation. The results suggest that the formation of locally dense BC plexuses is regulated by spontaneous activity. Moreover, in the AcD configuration, the AcD and the axon it carries mutually support each other's growth.
Collapse
Affiliation(s)
- Steffen Gonda
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Christian Riedel
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Andreas Reiner
- Cellular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ina Köhler
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
17
|
Niiyama T, Fujimoto S, Imai T. Microglia Are Dispensable for Developmental Dendrite Pruning of Mitral Cells in Mice. eNeuro 2023; 10:ENEURO.0323-23.2023. [PMID: 37890992 PMCID: PMC10644373 DOI: 10.1523/eneuro.0323-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
During early development, neurons in the brain often form excess synaptic connections. Later, they strengthen some connections while eliminating others to build functional neuronal circuits. In the olfactory bulb, a mitral cell initially extends multiple dendrites to multiple glomeruli but eventually forms a single primary dendrite through the activity-dependent dendrite pruning process. Recent studies have reported that microglia facilitate synapse pruning during the circuit remodeling in some systems. It has remained unclear whether microglia are involved in the activity-dependent dendrite pruning in the developing brains. Here, we examined whether microglia are required for the developmental dendrite pruning of mitral cells in mice. To deplete microglia in the fetal brain, we treated mice with a colony-stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622, from pregnancy. Microglia were reduced by >90% in mice treated with PLX5622. However, dendrite pruning of mitral cells was not significantly affected. Moreover, we found no significant differences in the number, density, and size of excitatory synapses formed in mitral cell dendrites. We also found no evidence for the role of microglia in the activity-dependent dendrite remodeling of layer 4 (L4) neurons in the barrel cortex. In contrast, the density of excitatory synapses (dendritic spines) in granule cells in the olfactory bulb was significantly increased in mice treated with PLX5622 at postnatal day (P) 6, suggesting a role for the regulation of dendritic spines. Our results indicate that microglia do not play a critical role in activity-dependent dendrite pruning at the neurite level during early postnatal development in mice.
Collapse
Affiliation(s)
- Tetsushi Niiyama
- Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | - Satoshi Fujimoto
- Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | - Takeshi Imai
- Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| |
Collapse
|
18
|
Nakagawa N, Iwasato T. Golgi polarity shift instructs dendritic refinement in the neonatal cortex by mediating NMDA receptor signaling. Cell Rep 2023; 42:112843. [PMID: 37516101 DOI: 10.1016/j.celrep.2023.112843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023] Open
Abstract
Dendritic refinement is a critical component of activity-dependent neuronal circuit maturation, through which individual neurons establish specific connectivity with their target axons. Here, we demonstrate that the developmental shift of Golgi polarity is a key process in dendritic refinement. During neonatal development, the Golgi apparatus in layer 4 spiny stellate (SS) neurons in the mouse barrel cortex lose their original apical positioning and acquire laterally polarized distributions. This lateral Golgi polarity, which is oriented toward the barrel center, peaks on postnatal days 5-7 (P5-P7) and disappears by P15, which aligns with the developmental time course of SS neuron dendritic refinement. Genetic ablation of N-methyl-D-aspartate (NMDA) receptors, key players in dendritic refinement, disturbs the lateral Golgi polarity. Golgi polarity manipulation disrupts the asymmetric dendritic projection pattern and the primary-whisker-specific response of SS neurons. Our results elucidate activity-dependent Golgi dynamics and their critical role in developmental neuronal circuit refinement.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|