1
|
Qush A, Yassine HM, Zeidan A, Kamareddine L. Diet-induced mechanical stress promotes immune and metabolic alterations in the Drosophila melanogaster digestive tract. J Invertebr Pathol 2025; 211:108348. [PMID: 40320046 DOI: 10.1016/j.jip.2025.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
A fundamental query in immunology is how cells recognize danger in the tissue milieu. For many years, standpoints were mainly centered around damaged cells or structures of invading pathogens, like lipopolysaccharide, being the initiators of danger signals to activate immunity. Today, rising evidence presents "biophysical signals" as potential regulators of immune cell functions too. This emerging notion of the ability of tissue mechanotransduction to tune the immunological system appears to likewise exist in other body system, among which is the metabolic system, where startling connection between mechanotransduction and enzymesknown to regulate metabolism have been also reported. Being continuously subjected to mechanical forces, and owing to its multifaceted role in not only absorbing and digesting nutrients, but also in supporting important immunological defense strategies as well as metabolic responses, attention has been lately given to organs making up the gastrointestinal (GI) tract, predominantly the intestine, with growing interest in unravelling the impact of mechanotransduction on the intestinal environment is on the rise. As such, we investigated in this study the impact of mechanical stress introduced by ingesting diet containing the indigestible fiber methylcellulose (MC) on gut immune and metabolic activities using the Drosophila melanogaster model organism. Our findings reveal that feeding on MC-containing diet causes consequential alterations in the fly gut environment manifested by enlargement of the midgut diameter, remodeling of the microbiota community, activation of immune responses, differential regulation of the tachykinin (Tk) peptide hormone expression and modulation of lipometabolism. Particularly, we show that feeding on MC-containing diet promotes a marked increase in the relative abundance of Leuconostocaceae/Leuconostoc, microbiota-dependent Reactive Oxygen Species (ROS) production, IMD pathway activation, and IMD-dependent elevation in Tk expression. We also demonstrate that maintaining flies on MC-containing diet for several days leads to a reduction in body weight and in systemic glucose and triacylglycerol levels and modulates lipid droplets accumulation and storage in the gut and fat body. Taken together, these findings provide novel insight into the effect of diet induced-mechanical forces on the intestinal physiology and pathology.
Collapse
Affiliation(s)
- Abeer Qush
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Layla Kamareddine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Bener MB, Slepchenko BM, Inaba M. Detection of dedifferentiated stem cells in Drosophila testis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641800. [PMID: 40093072 PMCID: PMC11908254 DOI: 10.1101/2025.03.06.641800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Tissue homeostasis relies on the stable maintenance of the stem cell pool throughout an organism's lifespan. Dedifferentiation, a process in which partially or terminally differentiated cells revert to a stem cell state, has been observed in a wide range of stem cell systems, and it has been implicated in the mechanisms for stem cell maintenance. Dedifferentiated stem cells are morphologically indistinguishable from original stem cells, making them challenging to identify. Therefore, whether dedifferentiated stem cells have any distinguishable characteristics compared with original stem cells is poorly understood. The Drosophila testis provides a well-established model to study dedifferentiation. While our previous live imaging analyses have identified dedifferentiation events constantly occurring at steady state, existing genetic marking methods fail to detect most of the dedifferentiated stem cells and thus significantly underestimate the frequency of dedifferentiation events. Here, we established a genetic tool with improved sensitivity and used live imaging and mathematical modeling to evaluate the system. Our findings indicate that the specificity of lineage-specific promoters is critical for successfully identifying dedifferentiated stem cells.
Collapse
Affiliation(s)
- Muhammed Burak Bener
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06030
| | - Boris M. Slepchenko
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06030
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06030
| |
Collapse
|
3
|
Franchet A, Haller S, Yamba M, Barbier V, Thomaz-Vieira A, Leclerc V, Becker S, Lee KZ, Orlov I, Spehner D, Daeffler L, Ferrandon D. Nora virus proliferates in dividing intestinal stem cells and sensitizes flies to intestinal infection and oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635658. [PMID: 39975242 PMCID: PMC11838516 DOI: 10.1101/2025.01.30.635658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The digestive tract represents the most complex interface of an organism with its biotope. Food may be contaminated by pathogens and toxicants while an abundant and complex microbiota strives in the gut lumen. The organism must defend itself against potentially noxious biotic or abiotic stresses while preserving its microbiota, provided it plays a beneficial role. The presence of intestinal viruses adds another layer of complexity. Starting from a differential sensitivity of two lines from the same Drosophila wild-type strain to ingested Pseudomonas aeruginosa, we report here that the presence of Nora virus in the gut epithelium promotes the sensitivity to this bacterial pathogen as well as to an ingested oxidizing xenobiotic. The genotype, age, nature of the ingested food and to a limited extent the microbiota are relevant parameters that influence the effects of Nora virus on host fitness. Mechanistically, we detect the initial presence of viral proteins essentially in progenitor cells. Upon stress such as infection, exposure to xenobiotics, aging or feeding on a rich-food diet, the virus is then detected in enterocytes, which correlates with a disruption of the intestinal barrier function in aged flies. Finally, we show that the virus proliferates only when ISCs are induced to divide and that blocking either enterocyte apoptosis or JAK/STAT-driven ISC division leads to a drastically reduced Nora virus titer. In conclusion, it is important to check that experimental strains are devoid of intestinal viruses when monitoring survival/life span of fly lines or when investigating the homeostasis of the intestinal epithelium as these viruses can constitute significant confounding factors.
Collapse
Affiliation(s)
- Adrien Franchet
- UPR 9022 CNRS, IBMC, University of Strasbourg, France
- Present address: The Francis Crick Institute, London, UK
| | | | - Miriam Yamba
- UPR 9022 CNRS, IBMC, University of Strasbourg, France
| | | | - Angelica Thomaz-Vieira
- UPR 9022 CNRS, IBMC, University of Strasbourg, France
- Present address: Institute of Translational Medicine and Liver Disease, Inserm U1110, Strasbourg, France
| | | | - Stefanie Becker
- Institute for Parasitology and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kwang-Zin Lee
- UPR 9022 CNRS, IBMC, University of Strasbourg, France
- Present address: Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, Giessen, Germany
| | - Igor Orlov
- UMR 7104 CNRS, U964 INSERM, IGBMC, University of Strasbourg, France
| | - Danièle Spehner
- UMR 7104 CNRS, U964 INSERM, IGBMC, University of Strasbourg, France
| | - Laurent Daeffler
- UPR 9022 CNRS, IBMC, University of Strasbourg, France
- Present address: UMR 7178 CNRS, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| | | |
Collapse
|
4
|
Jiang D, Li P, Lu Y, Tao J, Hao X, Wang X, Wu W, Xu J, Zhang H, Li X, Chen Y, Jin Y, Zhang L. A feedback loop between Paxillin and Yorkie sustains Drosophila intestinal homeostasis and regeneration. Nat Commun 2025; 16:570. [PMID: 39794306 PMCID: PMC11724037 DOI: 10.1038/s41467-024-55255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
Balanced self-renewal and differentiation of stem cells are crucial for maintaining tissue homeostasis, but the underlying mechanisms of this process remain poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Pax, which is orthologous to mammalian PXN, coordinates the proliferation and differentiation of ISCs during both normal homeostasis and injury-induced midgut regeneration in Drosophila. Loss of Pax promotes ISC proliferation while suppressing its differentiation into absorptive enterocytes (ECs). Mechanistically, our findings demonstrate that Pax is a conserved target gene of the Hippo signaling pathway in both Drosophila and mammals. Subsequent investigations have revealed Pax interacts with Yki and enhances its cytoplasmic localization, thereby establishing a feedback regulatory mechanism that attenuates Yki activity and ultimately inhibits ISCs proliferation. Additionally, Pax induces the differentiation of ISCs into ECs by activating Notch expression, thus facilitating the differentiation process. Overall, our study highlights Pax as a pivotal component of the Hippo and Notch pathways in regulating midgut homeostasis, shedding light on this growth-related pathway in tissue maintenance and intestinal function.
Collapse
Affiliation(s)
- Dan Jiang
- The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Pengyue Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi Lu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiaxin Tao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xue Hao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaodong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Wu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinjin Xu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Haoen Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yixing Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunyun Jin
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China.
| | - Lei Zhang
- The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China.
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China.
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
5
|
Trubin S, Patel DB, Tian A. Regulation of the Intestinal Stem Cell Pool and Proliferation in Drosophila. Cells 2024; 13:1856. [PMID: 39594605 PMCID: PMC11592481 DOI: 10.3390/cells13221856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Understanding the regulation of somatic stem cells, both during homeostasis and in response to environmental challenges like injury, infection, chemical exposure, and nutritional changes, is critical because their dysregulation can result in tissue degeneration or tumorigenesis. The use of models such as the Drosophila and mammalian adult intestines offers valuable insights into tissue homeostasis and regeneration, advancing our knowledge of stem cell biology and cancer development. This review highlights significant findings from recent studies, unveiling the molecular mechanisms that govern self-renewal, proliferation, differentiation, and regeneration of intestinal stem cells (ISCs). These insights not only enhance our understanding of normal tissue maintenance but also provide critical perspectives on how ISC dysfunction can lead to pathological conditions such as colorectal cancer (CRC).
Collapse
Affiliation(s)
- Simona Trubin
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Dhruv B. Patel
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Aiguo Tian
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Guo X, Wang C, Zhang Y, Wei R, Xi R. Cell-fate conversion of intestinal cells in adult Drosophila midgut by depleting a single transcription factor. Nat Commun 2024; 15:2656. [PMID: 38531872 DOI: 10.1038/s41467-024-46956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
The manipulation of cell identity by reprograming holds immense potential in regenerative medicine, but is often limited by the inefficient acquisition of fully functional cells. This problem can potentially be resolved by better understanding the reprogramming process using in vivo genetic models, which are currently scarce. Here we report that both enterocytes (ECs) and enteroendocrine cells (EEs) in adult Drosophila midgut show a surprising degree of cell plasticity. Depleting the transcription factor Tramtrack in the differentiated ECs can initiate Prospero-mediated cell transdifferentiation, leading to EE-like cells. On the other hand, depletion of Prospero in the differentiated EEs can lead to the loss of EE-specific transcription programs and the gain of intestinal progenitor cell identity, allowing cell cycle re-entry or differentiation into ECs. We find that intestinal progenitor cells, ECs, and EEs have a similar chromatin accessibility profile, supporting the concept that cell plasticity is enabled by pre-existing chromatin accessibility with switchable transcription programs. Further genetic analysis with this system reveals that the NuRD chromatin remodeling complex, cell lineage confliction, and age act as barriers to EC-to-EE transdifferentiation. The establishment of this genetically tractable in vivo model should facilitate mechanistic investigation of cell plasticity at the molecular and genetic level.
Collapse
Affiliation(s)
- Xingting Guo
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Chenhui Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yongchao Zhang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Ruxue Wei
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|