1
|
Irastorza-Azcarate I, Kukalev A, Kempfer R, Thieme CJ, Mastrobuoni G, Markowski J, Loof G, Sparks TM, Brookes E, Natarajan KN, Sauer S, Fisher AG, Nicodemi M, Ren B, Schwarz RF, Kempa S, Pombo A. Extensive folding variability between homologous chromosomes in mammalian cells. Mol Syst Biol 2025:10.1038/s44320-025-00107-3. [PMID: 40329044 DOI: 10.1038/s44320-025-00107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Genetic variation and 3D chromatin structure have major roles in gene regulation. Due to challenges in mapping chromatin conformation with haplotype-specific resolution, the effects of genetic sequence variation on 3D genome structure and gene expression imbalance remain understudied. Here, we applied Genome Architecture Mapping (GAM) to a hybrid mouse embryonic stem cell (mESC) line with high density of single-nucleotide polymorphisms (SNPs). GAM resolved haplotype-specific 3D genome structures with high sensitivity, revealing extensive allelic differences in chromatin compartments, topologically associating domains (TADs), long-range enhancer-promoter contacts, and CTCF loops. Architectural differences often coincide with allele-specific differences in gene expression, and with Polycomb occupancy. We show that histone genes are expressed with allelic imbalance in mESCs, and are involved in haplotype-specific chromatin contacts marked by H3K27me3. Conditional knockouts of Polycomb enzymatic subunits, Ezh2 or Ring1, show that one-third of ASE genes, including histone genes, is regulated through Polycomb repression. Our work reveals highly distinct 3D folding structures between homologous chromosomes, and highlights their intricate connections with allelic gene expression.
Collapse
Affiliation(s)
- Ibai Irastorza-Azcarate
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany.
| | - Alexander Kukalev
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
| | - Rieke Kempfer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Sophia Genetics SA, A-One Park, Rolle, 1180, Switzerland
| | - Christoph J Thieme
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
| | - Guido Mastrobuoni
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Proteomics and Metabolomic Platform, 10115, Berlin, Germany
| | - Julia Markowski
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Evolutionary and Cancer Genomics Group, 10115, Berlin, Germany
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Gesa Loof
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Aix Marseille Univ, CNRS, IBDM (UMR 7288), Turing Centre for Living Systems, Marseille, France
| | - Thomas M Sparks
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
| | - Emily Brookes
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Kedar Nath Natarajan
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stephan Sauer
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- Regeneron Ireland DAC, Dublin 2, D02 HH27, Ireland
| | - Amanda G Fisher
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli "Federico II", and INFN, Napoli, Italy
| | - Bing Ren
- Center for Epigenomics and Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Roland F Schwarz
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Evolutionary and Cancer Genomics Group, 10115, Berlin, Germany
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Cologne, Germany
- BIFOLD-Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Stefan Kempa
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Proteomics and Metabolomic Platform, 10115, Berlin, Germany
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany.
- Humboldt-Universität zu Berlin, Berlin, Germany.
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK.
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Jin H, Ma Y, Xie Y, Wang N, Zhang L, Zeng W. Uncovering Changes in 3D-Chromatin Structure and Dynamic Gene Expression During Spermatogenesis. FASEB J 2025; 39:e70522. [PMID: 40197989 DOI: 10.1096/fj.202402869r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Spermatogonial stem cells (SSCs) have the potential for self-renewal and differentiation, and normal spermatogenesis maintains a stable number of spermatogonial stem cells and spermatozoa. Spermatogenesis is accompanied by changes in the three-dimensional structure of chromatin and gene expression, but the structural differences between the stages and the higher-order chromatin dynamics have not yet been elucidated. Consequently, we conducted a high-throughput analysis of the chromatin structural organization and gene expression by using porcine spermatogonia (SPG), spermatocytes (SPY) and round spermatids (RS). We found that during spermatogenesis, SPY showed a weaker pattern of chromosomal interactions, attenuated compartmentalisation, and a reduction in the number of TADs (topological associating domains), which was restored during the subsequent period of round spermatids. These findings suggest reprogramming of higher-order chromatin structures during porcine spermatogonia differentiation. Our results reveal that chromatin structure changes during porcine spermatogenesis, along with changes in gene expression. In conclusion, our study reveals the interrelationships between higher-order chromatin structure and gene expression in spermatogonia, spermatocytes, and round spermatids, providing new insights into the understanding of spermatogenesis as well as basic theoretical data for male reproductive techniques in biological sciences.
Collapse
Affiliation(s)
- Haoyan Jin
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yuan Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yaru Xie
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Nana Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Lingkai Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Science and Technology, Hanzhong, China
| |
Collapse
|
3
|
Lima AC, Okhovat M, Stendahl AM, Yang R, VanCampen J, Nevonen KA, Herrera J, Li W, Harshman L, Fedorov LM, Vigh-Conrad KA, Ahituv N, Conrad DF, Carbone L. Deletion of an evolutionarily conserved TAD boundary impacts spermatogenesis in mice†. Biol Reprod 2025; 112:767-779. [PMID: 39903672 PMCID: PMC11996757 DOI: 10.1093/biolre/ioaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/21/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025] Open
Abstract
Spermatogenesis is a complex process that can be disrupted by genetic and epigenetic changes, potentially leading to male infertility. Recent research has rapidly increased the number of coding mutations causally linked to impaired spermatogenesis in humans and mice. However, the role of noncoding mutations remains largely unexplored. To evaluate the effects of noncoding mutations on spermatogenesis, we first identified an evolutionarily conserved topologically associated domain boundary near two genes with important roles in mammalian testis function: Dmrtb1 and Lrp8. We then used CRISPR-Cas9 to generate a mouse line where 26 kb of the boundary was removed including a strong and evolutionarily conserved CTCF binding site. ChIP-seq and Hi-C experiments confirmed the removal of the CTCF site and a resulting mild increase in the DNA-DNA interactions across the domain boundary. Mutant mice displayed significant changes in testis gene expression, a higher frequency of histological abnormalities, a drop of 47-52% in efficiency of meiosis, a 15-18% reduction in efficiency of spermatogenesis, and, consistently, a 12-28% decrease in daily sperm production compared to littermate controls. Despite these quantitative changes in testis function, mutant mice show no significant changes in fertility. This suggests that noncoding deletions affecting testis gene regulation may have smaller effects on fertility compared to coding mutations of the same genes. Our results demonstrate that disruption of a topologically associated domain boundary can have a negative impact on sperm production and highlight the importance of considering noncoding mutations in the analysis of patients with male infertility.
Collapse
Affiliation(s)
- Ana C Lima
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Rd, Portland, OR 97239, USA
| | - Alexandra M Stendahl
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Ran Yang
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Jake VanCampen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Rd, Portland, OR 97239, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Rd, Portland, OR 97239, USA
| | - Jarod Herrera
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Rd, Portland, OR 97239, USA
| | - Weiyu Li
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, UCSF Box 0775, 1700 Fourth St Rm 216D, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 9414, USA
| | - Lana Harshman
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, UCSF Box 0775, 1700 Fourth St Rm 216D, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 9414, USA
| | - Lev M Fedorov
- OHSU Transgenic Mouse Models Core Lab, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Katinka A Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, UCSF Box 0775, 1700 Fourth St Rm 216D, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 9414, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, 3222 SW Research Drive, Mail Code: L103, Portland, OR 97239, USA
| | - Lucia Carbone
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Rd, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, 3222 SW Research Drive, Mail Code: L103, Portland, OR 97239, USA
| |
Collapse
|
4
|
Li Z, Zhang M, Zhang Y, Gan Y, Zhu Z, Wang J, Zhou Y, Yu G, Wang L. Integrative analysis of gene expression and chromatin dynamics multi-omics data in mouse models of bleomycin-induced lung fibrosis. Epigenetics Chromatin 2025; 18:11. [PMID: 40069909 PMCID: PMC11900494 DOI: 10.1186/s13072-025-00579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Pulmonary fibrosis is a relentless and ultimately fatal lung disorder. Despite a wealth of research, the intricate molecular pathways that contribute to the onset of PF, especially the aspects related to epigenetic modifications and chromatin dynamics, continue to be elusive and not fully understood. METHODS Utilizing a bleomycin-induced pulmonary fibrosis model, we conducted a comprehensive analysis of the interplay between chromatin structure, chromatin accessibility, gene expression patterns, and cellular heterogeneity. Our chromatin structure analysis included 5 samples (2 control and 3 bleomycin-treated), while accessibility and expression analysis included 6 samples each (3 control and 3 bleomycin-treated). RESULTS We found that chromatin architecture, with its alterations in compartmentalization and accessibility, is positively correlated with genome-wide gene expression changes during fibrosis. The importance of immune system inflammation and extracellular matrix reorganization in fibrosis is underscored by these chromatin alterations. Transcription factors such as PU.1, AP-1, and IRF proteins, which are pivotal in immune regulation, are associated with an increased abundance of their motifs in accessible genomic regions and are correlated with highly expressed genes. CONCLUSIONS We identified 14 genes that demonstrated consistent changes in their expression, accessibility, and compartmentalization, suggesting their potential as promising targets for the development of treatments for lung fibrosis.
Collapse
Affiliation(s)
- Zhongzheng Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China
| | - Mengke Zhang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China
| | - Yujie Zhang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China
| | - Yulong Gan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China
| | - Zhao Zhu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China
| | - Jiawei Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China
| | - Yanlin Zhou
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China.
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China.
| |
Collapse
|
5
|
Biot M, Toth A, Brun C, Guichard L, de Massy B, Grey C. Principles of chromosome organization for meiotic recombination. Mol Cell 2024; 84:1826-1841.e5. [PMID: 38657614 DOI: 10.1016/j.molcel.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/01/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
In meiotic cells, chromosomes are organized as chromatin loop arrays anchored to a protein axis. This organization is essential to regulate meiotic recombination, from DNA double-strand break (DSB) formation to their repair. In mammals, it is unknown how chromatin loops are organized along the genome and how proteins participating in DSB formation are tethered to the chromosome axes. Here, we identify three categories of axis-associated genomic sites: PRDM9 binding sites, where DSBs form; binding sites of the insulator protein CTCF; and H3K4me3-enriched sites. We demonstrate that PRDM9 promotes the recruitment of MEI4 and IHO1, two proteins essential for DSB formation. In turn, IHO1 anchors DSB sites to the axis components HORMAD1 and SYCP3. We discovered that IHO1, HORMAD1, and SYCP3 are associated at the DSB ends during DSB repair. Our results highlight how interactions of proteins with specific genomic elements shape the meiotic chromosome organization for recombination.
Collapse
Affiliation(s)
- Mathilde Biot
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Attila Toth
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Dresden, Germany
| | - Christine Brun
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Leon Guichard
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Bernard de Massy
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
| | - Corinne Grey
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
6
|
Irastorza-Azcarate I, Kukalev A, Kempfer R, Thieme CJ, Mastrobuoni G, Markowski J, Loof G, Sparks TM, Brookes E, Natarajan KN, Sauer S, Fisher AG, Nicodemi M, Ren B, Schwarz RF, Kempa S, Pombo A. Extensive folding variability between homologous chromosomes in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.591087. [PMID: 38766012 PMCID: PMC11100664 DOI: 10.1101/2024.05.08.591087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Genetic variation and 3D chromatin structure have major roles in gene regulation. Due to challenges in mapping chromatin conformation with haplotype-specific resolution, the effects of genetic sequence variation on 3D genome structure and gene expression imbalance remain understudied. Here, we applied Genome Architecture Mapping (GAM) to a hybrid mouse embryonic stem cell (mESC) line with high density of single nucleotide polymorphisms (SNPs). GAM resolved haplotype-specific 3D genome structures with high sensitivity, revealing extensive allelic differences in chromatin compartments, topologically associating domains (TADs), long-range enhancer-promoter contacts, and CTCF loops. Architectural differences often coincide with allele-specific differences in gene expression, mediated by Polycomb repression. We show that histone genes are expressed with allelic imbalance in mESCs, are involved in haplotype-specific chromatin contact marked by H3K27me3, and are targets of Polycomb repression through conditional knockouts of Ezh2 or Ring1b. Our work reveals highly distinct 3D folding structures between homologous chromosomes, and highlights their intricate connections with allelic gene expression.
Collapse
|
7
|
Cheng G, Pratto F, Brick K, Li X, Alleva B, Huang M, Lam G, Camerini-Otero RD. High resolution maps of chromatin reorganization through mouse meiosis reveal novel features of the 3D meiotic structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586627. [PMID: 38903112 PMCID: PMC11188084 DOI: 10.1101/2024.03.25.586627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
When germ cells transition from the mitotic cycle into meiotic prophase I (MPI), chromosomes condense into an array of chromatin loops that are required to promote homolog pairing and genetic recombination. To identify the changes in chromosomal conformation, we isolated nuclei on a trajectory from spermatogonia to the end of MPI. At each stage along this trajectory, we built genomic interaction maps with the highest temporal and spatial resolution to date. The changes in chromatin folding coincided with a concurrent decline in mitotic cohesion and a rise in meiotic cohesin complexes. We found that the stereotypical large-scale A and B compartmentalization was lost during meiotic prophase I alongside the loss of topological associating domains (TADs). Still, local subcompartments were detected and maintained throughout meiosis. The enhanced Micro-C resolution revealed that, despite the loss of TADs, higher frequency contact sites between two loci were detectable during meiotic prophase I coinciding with CTCF bound sites. The pattern of interactions around these CTCF sites with their neighboring loci showed that CTCF sites were often anchoring the meiotic loops. Additionally, the localization of CTCF to the meiotic axes indicated that these anchors were at the base of loops. Strikingly, even in the face of the dramatic reconfiguration of interphase chromatin into a condensed loop-array, the interactions between regulatory elements remained well preserved. This establishes a potential mechanism for how the meiotic chromatin maintains active transcription within a highly structured genome. In summary, the high temporal and spatial resolution of these data revealed previously unappreciated aspects of mammalian meiotic chromatin organization.
Collapse
Affiliation(s)
- Gang Cheng
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Florencia Pratto
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Brick
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Xin Li
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Alleva
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Mini Huang
- Present address: Sun Yat-Sen University, School of Medicine, Shen Zhen, China
| | - Gabriel Lam
- Present address: RNA Regulation Section, NIA, National Institutes of Health, Baltimore, MD, USA
| | | |
Collapse
|