1
|
Guerra-Castellano A, Aneas M, Tamargo-Azpilicueta J, Márquez I, Olloqui-Sariego JL, Calvente JJ, De la Rosa MA, Díaz-Moreno I. The two yeast cytochrome c isoforms differentially regulate supercomplex assembly and mitochondrial electron flow. Int J Biol Macromol 2025; 313:144143. [PMID: 40373917 DOI: 10.1016/j.ijbiomac.2025.144143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Mitochondria play a crucial role in cellular energy production, signaling and homeostasis. Respiratory supercomplexes represent evolutionary well-conserved, stable associations between membrane complexes and molecules, including proteins and lipids, within the inner mitochondrial membrane. They dynamically respond to metabolic demands and enhance the electron transfer rate, thereby reducing the production of ROS. Recent research has unveiled cytochrome c, a mobile electron carrier between complexes III and IV, as a potential key player in orchestrating the formation of these supra-associations. This study centers on elucidating the role of cytochrome c in modulating the assembly of supercomplexes, using the Saccharomyces cerevisiae yeast as a model system for mitochondrial metabolism. BN-PAGE and mass spectrometry-based proteomic analysis were employed to examine supercomplex organization in yeast strains expressing different cytochrome c isoforms, grown under fermentative and respiratory conditions. Our results demonstrate that both isoforms of cytochrome c contribute to supercomplex assembly, with isoform-2 significantly improving electron transfer and lowering ROS levels. We propose a model in which cytochrome c acts as a scaffold for the recruitment of assembly factors, facilitating the formation of higher order supercomplexes such as III2IV2. This model highlights cytochrome c's role beyond electron transfer, as it regulates supercomplex assembly and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Alejandra Guerra-Castellano
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla - CSIC, Avda. Americo Vespucio 49, 41092 Sevilla, Spain.
| | - Manuel Aneas
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla - CSIC, Avda. Americo Vespucio 49, 41092 Sevilla, Spain
| | - Joaquín Tamargo-Azpilicueta
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla - CSIC, Avda. Americo Vespucio 49, 41092 Sevilla, Spain
| | - Inmaculada Márquez
- Departamento de Química Física, Universidad de Sevilla, Profesor García González 1, 41012 Sevilla, Spain
| | - José Luis Olloqui-Sariego
- Departamento de Química Física, Universidad de Sevilla, Profesor García González 1, 41012 Sevilla, Spain
| | - Juan José Calvente
- Departamento de Química Física, Universidad de Sevilla, Profesor García González 1, 41012 Sevilla, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla - CSIC, Avda. Americo Vespucio 49, 41092 Sevilla, Spain.
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla - CSIC, Avda. Americo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
2
|
Yang X, Huang L, Wang K, Li Y, Zhou M, Pang A, Liu Z, Zheng Y. Elucidating the mechanisms of echinocandin B biosynthesis under fatty acid feeding in Aspergillus nidulans based on genome and transcriptome sequencing. 3 Biotech 2025; 15:158. [PMID: 40352768 PMCID: PMC12064489 DOI: 10.1007/s13205-025-04331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025] Open
Abstract
Echinocandin B (ECB), a non-ribosomal lipopeptide synthesized by ascomycete fungi, serves as a first-line therapeutic agent for invasive fungal infections. While the biosynthetic gene clusters of ECB have been identified in several Aspergillus species, the regulatory mechanisms governing its intracellular biosynthesis remain poorly understood, hindering the development of efficient ECB-producing cell factories. To address this issue, we elucidated the mechanisms underlying echinocandin B (ECB) biosynthesis in Aspergillus nidulans ZJB16068 under fatty acid feeding conditions through genome and transcriptome sequencing. The genome of ZJB16068 was sequenced using Oxford Nanopore Technology, yielding a 32.67 Mbp assembly with 11 scaffolds and a GC content of 50.23%. A total of 10,505 protein-coding genes were annotated, revealing 66 secondary metabolite gene clusters. Comparative transcriptomics between ZJB16068 and the reference strain ZJB0817 identified 2,342 differentially expressed genes (DEGs) under fatty acid supplementation. The KEGG analysis of the top 20 DEGs highlighted predominant metabolic pathways, including translation, energy metabolism, cofactor supply and lipid metabolism. We found that the up-regulation of genes related to the fatty acid metabolic pathway, pantothenic acid and CoA synthesis pathway accelerated the synthesis of acetyl-CoA, and the down-regulation of TCA pathway contributed to the throttling of acetyl-CoA. In addition, the genes involved in oxidative phosphorylation are fully upregulated, providing sufficient ATP for ECB synthesis. These pathways synergistically enhance the synthesis of ECB. These findings highlight the critical role of acetyl-CoA synthesis and energy supply in ECB synthesis and provide potential direction for future metabolic engineering aiming at increasing ECB production. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04331-4.
Collapse
Affiliation(s)
- Xiaozhang Yang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Zhejiang Tiantai Pharmaceutical Co., Ltd., No.588, Fengze Road, Tiantai County, Taizhou City, 317200 Zhejiang People’s Republic of China
| | - Lianggang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Kai Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Yurong Li
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Min Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Aiping Pang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| |
Collapse
|
3
|
Deng Z, Wang J, Bennett JA, Shao W, An Z, He Y, Tian F, Wu Z. Biochar mediated differential regulation of oxidative stress and energy supply in Bacillus subtilis and Rhizoctonia solani. BIORESOURCE TECHNOLOGY 2025; 426:132317. [PMID: 40054752 DOI: 10.1016/j.biortech.2025.132317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/07/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
Biochar (BC) significantly influences microbial metabolism, but its contrasting effects on different microorganisms remain unclear. This research explores the distinct regulatory mechanisms of BC on B. subtilis and R. solani. BC, consisting of micro-BC and nano-BC, generates reactive oxygen species (ROS), causing oxidative stress. Nano-BC can penetrate cells, leading to damage. In B. subtilis, BC initially inhibits growth, triggering endospore formation to expel nano-BC. B. subtilis secreted extracellular polymeric substances (EPS), which aggregated nano-BC, enhanced cell adhesion, and reduced intracellular ROS (from 2.0 to 1.5-fold), promoting growth later with BC's nutrient support. Conversely, R. solani cannot block nano-BC entry, activating mitophagy and suppressing genes like ATP1,2 involved in oxidative phosphorylation and tricarboxylic acid cycle. This results in ATP deficiency, collapses antioxidant system, raises ROS (from 3.9 to 4.5-fold), decreases cell survival, and leads to cell death. These findings highlight BC's selective microbial regulation and its potential for safe agricultural and environmental use.
Collapse
Affiliation(s)
- Zihe Deng
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China; School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi 832003, PR China
| | - Jianwen Wang
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi 832003, PR China
| | - Jonathan A Bennett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon S7N5A8, Canada
| | - Wenjun Shao
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Ziyuan An
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Yanhui He
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Fei Tian
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China; School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi 832003, PR China.
| |
Collapse
|
4
|
Xiao Q, Shi J, Wang L, Zhao G, Zhang Y. Coupling genome-wide continuous perturbation with biosensor screening reveals the potential targets in yeast isopentanol synthesis network. Synth Syst Biotechnol 2025; 10:452-462. [PMID: 39917769 PMCID: PMC11799893 DOI: 10.1016/j.synbio.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 02/09/2025] Open
Abstract
The increasing consumption of fossil fuels is contributing to global resource depletion and environmental pollution. Branched-chain higher alcohols, such as isopentanol and isobutanol, have attracted significant attention as next-generation biofuels. Biofuel production through microbial fermentation offers a green, sustainable, and renewable alternative to chemical synthesis. While enhanced production of isopentanol has been achieved in a variety of chassis, the fermentation yield has not yet reached levels suitable for industrial-scale production. In this study, we employed a continuous perturbation tool to construct a genome-scale perturbation library, combined with an isopentanol biosensor to screen for high-yielding mutants. We identified five high-yielding mutants, each exhibiting an increased glucose conversion rate and isopentanol titer. The F2 strain, in particular, achieved an isopentanol titer of 1.57 ± 0.014 g/L and a yield of 14.04 ± 0.251 mg/g glucose (10% glucose), surpassing the highest values reported to date in engineered Saccharomyces cerevisiae. Systematic transcriptome analysis of the isopentanol synthesis, glycolysis, glycerol metabolism, and ethanol synthesis pathways revealed that MPC, OAC1, BAT2, GUT2, PDC6, and ALD4 are linked to efficient isopentanol production. Further analysis of differentially expressed genes (DEGs) identified 17 and 12 co-expressed DEGs (co-DEGs) in all mutants and the two second-round mutants, respectively. In addition, we validated the knockout or overexpression of key co-DEGs. Our results confirmed the critical roles of HOM3 and DIP5 in isopentanol production, along with genes associated with the aerobic respiratory chain (SDH3, CYT1, COX7, ROX1, and ATG41) and cofactor balance (BNA2 and NDE1). Additionally, functional analysis of the co-DEGs revealed that MAL33 is associated with the synthesis of branched-chain higher alcohols, expanding the intracellular metabolic network and offering new possibilities for green, cost-effective biofuel production.
Collapse
Affiliation(s)
- Qi Xiao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jingjing Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Lixian Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Guoping Zhao
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
5
|
Gałęska E, Kowalczyk A, Wrzecińska M, García MC, Czerniawska-Piątkowska E, Gwoździewicz S, Witkiewicz W, Dobrzański Z. The Importance of Mitochondrial Processes in the Maturation and Acquisition of Competences of Oocytes and Embryo Culture. Int J Mol Sci 2025; 26:4098. [PMID: 40362337 PMCID: PMC12071309 DOI: 10.3390/ijms26094098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Mitochondria, as multifunctional and partially independent structures, play a crucial role in determining essential life processes. Recently, their significance in reproductive biology has gained increasing attention. This review aims to comprehensively analyse the role of mitochondrial processes in oocyte maturation and embryo culture. A comprehensive literature review was conducted to highlight the importance of mitochondrial activity in the early stages of life formation. Proper mitochondrial function provides energy, maintains genomic stability, and ensures optimal conditions for fertilisation and embryo progression. Understanding these processes is essential to optimise culture conditions and identify new mitochondrial biomarkers that improve reproductive success and improve assisted reproductive technologies (ARTs). Enhancing mitochondrial function in female reproductive cells is the key to improving oocyte and embryo quality, which can lead to better in vitro fertilisation and embryo transfer. Furthermore, advances in diagnostic techniques, such as mitochondrial genome sequencing, offer a more precise understanding of the relationship between mitochondrial health and oocyte quality. However, fully understanding mitochondrial functions is only part of the challenge. Expanding knowledge of the interactions between mitochondria and other cellular structures is crucial for future advancements in reproductive medicine. Understanding these complex relationships will provide deeper insight into improving reproductive outcomes and embryo development.
Collapse
Affiliation(s)
- Elżbieta Gałęska
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (E.G.); (M.W.); (Z.D.)
| | - Alicja Kowalczyk
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (E.G.); (M.W.); (Z.D.)
| | - Marcjanna Wrzecińska
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (E.G.); (M.W.); (Z.D.)
| | - Mercedes Camiña García
- Department of Physiology, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain;
| | - Ewa Czerniawska-Piątkowska
- Department of Ruminant Science, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland;
| | - Szymon Gwoździewicz
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Center, Voivodeship Specialist Hospital in Wrocław, 51-124 Wrocław, Poland;
| | - Zbigniew Dobrzański
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (E.G.); (M.W.); (Z.D.)
| |
Collapse
|
6
|
Anikin M, Henry MF, Hodorova V, Houbaviy HB, Nosek J, Pestov DG, Markov DA. Mitochondrial mRNA and the small subunit rRNA in budding yeasts undergo 3'-end processing at conserved species-specific elements. RNA (NEW YORK, N.Y.) 2025; 31:208-223. [PMID: 39572231 PMCID: PMC11789488 DOI: 10.1261/rna.080254.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/09/2024] [Indexed: 01/24/2025]
Abstract
Respiration in eukaryotes depends on mitochondrial protein synthesis, which is performed by organelle-specific ribosomes translating organelle-encoded mRNAs. Although RNA maturation and stability are central events controlling mitochondrial gene expression, many of the molecular details in this pathway remain elusive. These include cis- and trans-regulatory factors that generate and protect the 3' ends. Here, we mapped the 3' ends of mitochondrial mRNAs of yeasts classified into multiple families of the subphylum Saccharomycotina. We found that the processing of mitochondrial 15S rRNA and mRNAs involves species-specific sequence elements, which we term 3'-end RNA processing elements (3'-RPEs). In Saccharomyces cerevisiae, the 3'-RPE has long been recognized as a conserved dodecamer sequence, which recent studies have shown specifically interacts with the nuclear genome-encoded pentatricopeptide repeat protein Rmd9. We also demonstrate that, analogous to Rmd9 in S. cerevisiae, two Rmd9 orthologs from the Debaryomycetaceae family interact with their respective 3'-RPEs found in mRNAs and 15S rRNA. Thus, Rmd9-dependent processing of mitochondrial RNA precursors may be a common mechanism among the families of the Saccharomycotina subphylum. Surprisingly, we observed that 3'-RPEs often occur upstream of stop codons in complex I subunit mRNAs from yeasts of the CUG-Ser1 clade. We examined two of these mature mRNAs and found that their stop codons are indeed removed. Thus, translation of these stop-codon-less transcripts would require a noncanonical termination mechanism. Our findings highlight Rmd9 as a key evolutionarily conserved factor in both mitochondrial mRNA metabolism and mitoribosome biogenesis in a variety of yeasts.
Collapse
Affiliation(s)
- Michael Anikin
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
| | - Michael F Henry
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
| | - Viktoria Hodorova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava 84215, Slovakia
| | - Hristo B Houbaviy
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava 84215, Slovakia
| | - Dimitri G Pestov
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
| | - Dmitriy A Markov
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
| |
Collapse
|