1
|
Bică G, Rogoveanu OC, Gherghina FL, Pisoschi CG, Buteică SA, Biță CE, Paliu IA, Mîndrilă I. The Histological and Biochemical Assessment of Monoiodoacetate-Induced Knee Osteoarthritis in a Rat Model Treated with Salicylic Acid-Iron Oxide Nanoparticles. BIOLOGY 2024; 13:331. [PMID: 38785813 PMCID: PMC11117951 DOI: 10.3390/biology13050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Iron oxide nanoparticles (IONPs) represent an important advance in the field of medicine with application in both diagnostic and drug delivery domains, offering a therapeutic approach that effectively overcomes physical and biological barriers. The current study aimed to assess whether oral administration of salicylic acid-functionalized iron oxide nanoparticles (SaIONPs) may exhibit beneficial effects in alleviating histological lesions in a murine monoiodoacetate (MIA) induced knee osteoarthritis model. In order to conduct our study, 15 Wistar male rats were randomly distributed into 3 work groups: Sham (S), MIA, and NP. At the end of the experiments, all animals were sacrificed for blood, knee, and liver sampling. Our results have shown that SaIONPs reached the targeted sites and also had a chondroprotective effect represented by less severe histological lesions regarding cellularity, altered structure morphology, and proteoglycan depletion across different layers of the knee joint cartilage tissue. Moreover, SaIONPs induced a decrease in malondialdehyde (MDA) and circulating Tumor Necrosis Factor-α (TNF-α) levels. The findings of this study suggest the therapeutic potential of SaIONPs knee osteoarthritis treatment; further studies are needed to establish a correlation between the administrated dose of SaIONPs and the improvement of the morphological and biochemical parameters.
Collapse
Affiliation(s)
- George Bică
- Department of Physical Medicine and Rehabilitation, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania; (G.B.); (O.-C.R.); (F.-L.G.)
| | - Otilia-Constantina Rogoveanu
- Department of Physical Medicine and Rehabilitation, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania; (G.B.); (O.-C.R.); (F.-L.G.)
| | - Florin-Liviu Gherghina
- Department of Physical Medicine and Rehabilitation, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania; (G.B.); (O.-C.R.); (F.-L.G.)
| | - Cătălina-Gabriela Pisoschi
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Sandra-Alice Buteică
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Cristina-Elena Biță
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Iulia-Alexandra Paliu
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Ion Mîndrilă
- Department of Anatomy, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| |
Collapse
|
2
|
Roux-en-Y Esophagojejunostomy Ameliorates Renal Function Through Reduction of Renal Inflammatory and Fibrotic Markers in Diabetic Nephropathy. Obes Surg 2015; 26:1402-13. [DOI: 10.1007/s11695-015-1947-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Jiang Y, Thakran S, Bheemreddy R, Coppess W, Walker RJ, Steinle JJ. Sodium salicylate reduced insulin resistance in the retina of a type 2 diabetic rat model. PLoS One 2015; 10:e0125505. [PMID: 25874611 PMCID: PMC4397086 DOI: 10.1371/journal.pone.0125505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/22/2015] [Indexed: 01/04/2023] Open
Abstract
Sodium salicylate has been reported to reduce markers of diabetic retinopathy in a type 1 rat model. Because rates of type 2 diabetes are on the rise, we wanted to determine whether salicylate could improve insulin resistance in a type 2 rat model, as well as improve retinal function. We treated lean and obese BBZDR/Wor type 2 diabetic rats with salicylate in their chow for 2 months. Prior to salicylate treatment, rats underwent an electroretinogram to measure retinal function. After 2 months of treatment, rats underwent an additional electroretinogram prior to sacrifice. In addition to the animal model, we also treated retinal endothelial cells (REC) and rat Müller cells with salicylate and performed the same analyses as done for the rat retinal lysates. To investigate the role of salicylate in insulin signaling, we measured TNFα and caspase 3 levels by ELISA, as well as performed Western blotting for insulin receptor substrate 1, insulin receptor, SOCS3, and pro- and anti-apoptotic markers. Data demonstrated that salicylate significantly improved retinal function, as well as reduced TNFα and SOCS3-induced insulin resistance in all samples. Overall, results suggest that salicylate is effective in reducing insulin resistance in the retina of type 2 diabetic rat models.
Collapse
Affiliation(s)
- Youde Jiang
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States of America
- VA Medical Center, Memphis, Tennessee, United States of America
| | - Shalini Thakran
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Rajini Bheemreddy
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - William Coppess
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robert J. Walker
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Philder Smith College, Little Rock, Arkansas, United States of America
| | - Jena J. Steinle
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States of America
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States of America
- VA Medical Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
4
|
McCann CC, Viner ME, Donkin SS, White HM. Hepatic patatin-like phospholipase domain-containing protein 3 sequence, single nucleotide polymorphism presence, protein confirmation, and responsiveness to energy balance in dairy cows. J Dairy Sci 2014; 97:5167-75. [PMID: 24931521 DOI: 10.3168/jds.2014-7910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/02/2014] [Indexed: 12/24/2022]
Abstract
Patatin-like phospholipase domain-containing protein 3 (PNPLA3), commonly known as adiponutrin, is part of a novel subfamily of triglyceride lipase enzymes with potential effects on triglyceride metabolism in adipose and hepatic tissues. The predicted bovine PNPLA3 sequence has been identified, but expression of the gene had not been examined. The objectives of this study were to confirm the predicted bovine PNPLA3 gene sequence, determine expression of the bovine PNPLA3 gene in response to whole-animal energy balance, identify single nucleotide polymorphisms present in dairy cows, and verify the presence of the protein in the liver. Using liver biopsy samples collected from cows at +28d relative to calving (DRTC), RNA was isolated and used to generate a cDNA template for amplification of the entire predicted coding sequence of PNPLA3 via PCR. To determine if energy balance alters the expression of PNPLA3, RNA was isolated and mRNA expression quantified in liver samples from mid-lactation cows after a 5-d ad libitum period (n=5) and after a subsequent 5-d 50% feed restriction period (n=5), and in samples collected from cows at -14, +1, +14, and +28 DRTC (n=16). The presence of PNPLA3 protein was detected by Western blot in liver protein samples collected at +28 DRTC. Expression of hepatic PNPLA3 was decreased after a period of feed restriction (8.14 vs. 1.08±2.17 arbitrary units, ad libitum vs. fasted). Expression of PNPLA3 mRNA was decreased at +1 and +14 DRTC compared with -14 DRTC (23.35, 7.28, 10.17, and 14.5±4.9 arbitrary units, -14, +1, +14, and +28 DRTC, respectively). The presence of PNPLA3 protein was detected as a 55-kDa band in hepatic protein isolations from liver tissue collected at +28 DRTC. These data confirm the presence and sequence of the bovine hepatic PNPLA3 gene and single nucleotide polymorphisms. Furthermore, these data indicate responsiveness of bovine hepatic PNPLA3 to energy balance.
Collapse
Affiliation(s)
| | - Molly E Viner
- Department of Animal Science, University of Connecticut, Storrs 06269
| | - Shawn S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - H M White
- Department of Dairy Science, University of Wisconsin, Madison 53706.
| |
Collapse
|
5
|
Roux-en-Y Esophagojejunostomy Reduces Serum and Aortic Inflammatory Biomarkers in Type 2 Diabetic Rats. Obes Surg 2014; 24:916-26. [DOI: 10.1007/s11695-014-1195-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Salicylate Selectively Kills Cochlear Spiral Ganglion Neurons by Paradoxically Up-regulating Superoxide. Neurotox Res 2013; 24:307-19. [DOI: 10.1007/s12640-013-9384-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 12/12/2022]
|
7
|
Zhang W, Zhao S, Li Y, Peng G, Han P. Acute blood glucose fluctuation induces myocardial apoptosis through oxidative stress and nuclear factor-ĸB activation. Cardiology 2012; 124:11-7. [PMID: 23257889 DOI: 10.1159/000345436] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 10/25/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE It was the aim of this study to investigate whether acute blood glucose fluctuation induces myocardial apoptosis and to examine the potential mechanisms. METHODS Wistar rats were infused intermittently or continually with 50% glucose solution for 48 h. Serum and myocardium were taken to measure the levels of malondialdehyde and glutathione peroxidase. The expression of nuclear factor (NF)-ĸB and apoptosis in myocardial cells was determined with immunohistochemisty and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Expressions of B-cell lymphoma/leukemia-2-associated X protein and B-cell lymphoma/leukemia 2 in myocardium were tested with Western blot analysis. RESULTS The levels of malondialdehyde and B-cell lymphoma/leukemia-2-associated X protein in the acute blood glucose fluctuation group (AFG) were enhanced, but glutathione peroxidase and B-cell lymphoma/leukemia-2 were reduced compared with levels in the continually high blood glucose group (p < 0.05). The expression of NF-ĸB in the nuclei of myocardial cells in the AFG was significantly higher than that in the continually high blood glucose group (p < 0.05). Apoptotic myocytes were observed in myocardium of the AFG. CONCLUSION Acute blood glucose fluctuation induces myocardial apoptosis, apparently associated with enhanced oxidative stress and activation of NF-ĸB.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
8
|
Yanjun W, Yue X, Shixing L. WITHDRAWN: Effect of blood glucose fluctuation on the function of rat pancreatic islets in vivo. REGULATORY PEPTIDES 2011:S0167-0115(11)00174-1. [PMID: 21982784 DOI: 10.1016/j.regpep.2011.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 05/31/2023]
Abstract
This article has been withdrawn at the request of the authors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Wang Yanjun
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | | | | |
Collapse
|
9
|
McCarty MF. Full-spectrum antioxidant therapy featuring astaxanthin coupled with lipoprivic strategies and salsalate for management of non-alcoholic fatty liver disease. Med Hypotheses 2011; 77:550-6. [DOI: 10.1016/j.mehy.2011.06.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/09/2011] [Accepted: 06/12/2011] [Indexed: 12/13/2022]
|
10
|
Ching RHH, Yeung LOY, Tse IMY, Sit WH, Li ETS. Supplementation of bitter melon to rats fed a high-fructose diet during gestation and lactation ameliorates fructose-induced dyslipidemia and hepatic oxidative stress in male offspring. J Nutr 2011; 141:1664-72. [PMID: 21813810 DOI: 10.3945/jn.111.142299] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study examined the impact of maternal high-fructose intake and if metabolic control in the offspring could benefit from supplementing bioactive food components such as bitter melon (BM) to the maternal diet. In Expt. 1, virgin female rats received control (C), high-fructose (F; 60%), or BM-supplemented fructose (FBM; 1%) diet before conception until d 21 of lactation. Weaned male offspring were fed the C diet for 11 wk, forming C/C, F/C, and FBM/C groups. The F/C group had elevated serum insulin, TG, and FFA concentrations and hepatic lipid alterations compared with the C/C and FBM/C groups (P < 0.05). The 2 latter groups did not differ. Expt. 2 had similar dam treatment groups, but offspring were weaned to the C or F diet, forming C/C, C/F, F/F, and FBM/F groups, and the dietary treatment was extended to 20 wk. The hepatic levels of stearyl-CoA desaturase and microsomal TG transfer protein mRNA were lower, but that of PPARγ coactivator 1-α and fibroblast growth factor 21 mRNA and fatty acid binding protein 1 protein were higher in the FBM/F group compared with the C/F and F/F groups (P < 0.05), indicating that maternal BM supplementation may reduce lipogenesis and promote lipid oxidation in offspring. The FBM/F group had significantly higher activities of liver glutathione peroxidase, superoxide dismutase, and catalase than the F/F group. The results indicate that supplementing BM to dams could offset the adverse effects of maternal high-fructose intake on lipid metabolism and antioxidant status in adult offspring.
Collapse
Affiliation(s)
- Rachel H H Ching
- Food and Nutritional Science Division, School of Biological Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Li Y, Zhao S, Zhang W, Zhao P, He B, Wu N, Han P. Epigallocatechin-3-O-gallate (EGCG) attenuates FFAs-induced peripheral insulin resistance through AMPK pathway and insulin signaling pathway in vivo. Diabetes Res Clin Pract 2011; 93:205-214. [PMID: 21514684 DOI: 10.1016/j.diabres.2011.03.036] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 03/20/2011] [Accepted: 03/28/2011] [Indexed: 12/16/2022]
Abstract
We aimed to investigate the effects and possible mechanisms of Epigallocatechin-3-O-gallate (EGCG) on free fatty acids (FFAs)-induced peripheral insulin resistance in vivo. Overnight-fasted Wistar rats were subjected to 48-h intravenous infusion of either saline or Intralipid plus heparin (IH) with or without different doses of EGCG co-injection. Hyperinsulinemic-euglycemic clamp was performed in awake rats to assess peripheral insulin sensitivity. Co-injection with EGCG significantly prevented FFAs-induced peripheral insulin resistance, decreased plasma markers of oxidative stress: malondialdehyde (MDA) and 8-isoprostaglandin, and increased antioxidant enzymes: superoxide dismutases (SOD) and Glutathione peroxidase (GPx). Furthermore, EGCG treatment reversed IH-induced: (1) decrease in Thr172 phosphorylation of AMP activated protein kinase (AMPK); (2) increase in protein kinase Cθ(PKCθ) membrane translocation and Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1); (3) decrease in Ser473 phosphorylation of Akt and Glucose transporter 4 (GLUT4) translocation in skeletal muscle and adipose tissue. Our data suggest that EGCG treatment ameliorated FFAs-induced peripheral insulin resistance in vivo, and this might be through decreasing oxidative stress and PKCθ membrane translocation, activating the AMPK pathway and improving insulin signaling pathway in vivo. This study suggests the therapeutic value of EGCG in protecting from insulin resistance caused by elevated FFAs.
Collapse
Affiliation(s)
- Yan Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Sheng Zhao
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Wei Zhang
- Department of Endocrinology, Affiliated Fourth Hospital, China Medical University, Shenyang 110032, China.
| | - Peng Zhao
- Department of Medical Record, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Bing He
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ping Han
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
12
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2011; 18:231-3. [PMID: 21522003 DOI: 10.1097/med.0b013e3283457c7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Wu N, Lu Y, He B, Zhang Y, Lin J, Zhao S, Zhang W, Li Y, Han P. Taurine prevents free fatty acid-induced hepatic insulin resistance in association with inhibiting JNK1 activation and improving insulin signaling in vivo. Diabetes Res Clin Pract 2010; 90:288-96. [PMID: 20855122 DOI: 10.1016/j.diabres.2010.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/09/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
We infused the 48 h intralipid plus heparin (IH) to normal rats to elevate plasma free fatty acids (FFAs). Co-infusion of taurine was designed for the purpose of studying the effects of taurine on insulin sensitivity, oxidative stress, c-Jun NH-terminal kinase (JNK)1 activity and insulin signaling in livers of prolonged IH-infused rats. Cannulated rats were infused for 48 h intravenously with either saline or IH, with or without taurine. Hyperinsulinemic-euglycemic clamps with [6-3H] glucose infusion were performed to assess hepatic insulin sensitivity. IH infusion increased plasma 8-isoprostaglandin and hepatic malondialdehyde (MDA). IH also increased JNK1 activity and insulin receptor substrate 1/2 (IRS-1/2) serine phosphorylation, reduced insulin-stimulated IRS-1/2 tyrosine phosphorylation and Akt serine 473 phosphorylation, and induced hepatic insulin resistance. Taurine co-infusion with IH prevented the rise in 8-isoprostaglandin and MDA, inhibited the activation of JNK1, and improved insulin signaling and insulin resistance in liver. The present study has demonstrated that taurine, as an antioxidant, prevented hepatic oxidative stress and ameliorated hepatic insulin resistance. And this effect may be associated with the inhibition of JNK1 activation and the improvement of insulin signaling. This study suggests the therapeutic value of taurine in protecting from hepatic insulin resistance caused by elevated FFAs.
Collapse
Affiliation(s)
- Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | | | | | | | | | | | | | | | | |
Collapse
|