1
|
Sumin AN, Bezdenezhnykh NA, Shukevich DL, Bezdenezhnykh AV, Barbarash OL. Continuous Intravenous Insulin Infusion in Patients with Diabetes Mellitus After Coronary Artery Bypass Grafting: Impact on Glycemic Control Parameters and Postoperative Complications. J Clin Med 2025; 14:3230. [PMID: 40364261 PMCID: PMC12073021 DOI: 10.3390/jcm14093230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Objectives: This study compared the efficacy of continuous insulin infusion therapy (CIT) versus standard bolus insulin therapy in maintaining optimal perioperative glycemic control in patients with type 2 diabetes mellitus (T2DM) undergoing coronary artery bypass grafting (CABG), focusing on postoperative outcomes. Methods: In this single-center, open comparative study, 214 T2DM patients were selected from 1372 CABG cases (2016-2018) and divided into CIT (n = 28) and bolus therapy (n = 186) groups. Both groups were matched for sex, age, smoking status, body mass index, functional class of angina or heart failure, surgical characteristics and preoperative HbA1c. The target glucose range was 7.8-10 mmol/L (140-180 mg/dL), consistent with current guidelines. Glycemic control was assessed through frequent postoperative measurements, with particular attention to glucose variability and hypoglycemic events. Results: The CIT group demonstrated superior glycemic control, with significantly lower median glucose levels at 7, 8, 10, 12, and 13 h post-CABG (p < 0.05). Glycemic variability was reduced by 32% in the CIT group (p = 0.012), and the incidence of hypoglycemia (<3.9 mmol/L) was 3.6% versus 8.1% in the bolus group. While overall complication rates were similar, the CIT group had 0 cases of stroke, myocardial infarction, or wound infections versus 2.7%, 3.2%, and 5.9%, respectively, in the bolus group. Logistic regression confirmed that each 1 mmol/L increase in first-day glucose levels independently predicted both significant (OR 1.20, 95% CI 1.06-1.36) and serious complications (OR 1.16, 95% CI 1.03-1.30). Conclusions: CIT provided more stable postoperative glycemic control with reduced variability and hypoglycemia risk in T2DM patients after CABG. Although underpowered to detect differences in rare complications, our findings suggest CIT may improve outcomes. These results warrant validation in larger randomized trials.
Collapse
Affiliation(s)
- Alexey N. Sumin
- Federal State Budgetary Scientific Institution, Research Institute for Complex Issues of Cardiovascular Diseases, Academician L.S. Barbarash Boulevard, 6, Kemerovo 650002, Russia; (D.L.S.); (O.L.B.)
| | - Natalia A. Bezdenezhnykh
- Federal State Budgetary Scientific Institution, Research Institute for Complex Issues of Cardiovascular Diseases, Academician L.S. Barbarash Boulevard, 6, Kemerovo 650002, Russia; (D.L.S.); (O.L.B.)
| | - Dmitry L. Shukevich
- Federal State Budgetary Scientific Institution, Research Institute for Complex Issues of Cardiovascular Diseases, Academician L.S. Barbarash Boulevard, 6, Kemerovo 650002, Russia; (D.L.S.); (O.L.B.)
| | - Andrey V. Bezdenezhnykh
- Limited Liability Company “Family Health and Reproduction Center Krasnaya Gorka”, Suvorova st., 3A, Kemerovo 650044, Russia;
| | - Olga L. Barbarash
- Federal State Budgetary Scientific Institution, Research Institute for Complex Issues of Cardiovascular Diseases, Academician L.S. Barbarash Boulevard, 6, Kemerovo 650002, Russia; (D.L.S.); (O.L.B.)
- Department of Cardiology and Cardiovascular Surgery, Federal State Budgetary Educational Institution of Higher Education “Kemerovo State Medical University”, Voroshilova st., 22A, Kemerovo 650056, Russia
| |
Collapse
|
2
|
Li Z, Chen R, Zeng Z, Wang P, Yu C, Yuan S, Su X, Zhao Y, Zhang H, Zheng Z. Association of stress hyperglycemia ratio with short-term and long-term prognosis in patients undergoing coronary artery bypass grafting across different glucose metabolism states: a large-scale cohort study. Cardiovasc Diabetol 2025; 24:179. [PMID: 40275310 PMCID: PMC12023429 DOI: 10.1186/s12933-025-02682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/12/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Stress hyperglycemia ratio (SHR) is recognized as a reliable indicator of acute hyperglycemia during stress. Patients undergoing coronary artery bypass grafting (CABG) are at high risk of stress hyperglycemia, but little attention has been paid to this population. This study is the first to investigate the association between SHR and both short-term and long-term prognosis in CABG patients, with a further exploration of the impact of SHR across different glucose metabolic states. METHODS A total of 18,307 patients undergoing isolated CABG were consecutively enrolled and categorized into three groups based on SHR tertiles. The perioperative outcome was defined as a composite of in-hospital death, myocardial infarction, cerebrovascular accident, and reoperation during hospitalization. The long-term outcome was major adverse cardiovascular and cerebrovascular events (MACCEs). Restricted cubic spline and logistic regression linked SHR to perioperative risks. Kaplan-Meier and Cox regression analyses were used to determine the relationship with long-term prognosis. Subgroup analyses were further conducted based on different glucose metabolic states. RESULTS A U-shaped association was observed between SHR and perioperative outcome in the overall population (P for nonlinear < 0.001). As SHR increased, the risk of perioperative events initially decreased (OR per SD: 0.87, 95% CI 0.79-0.97, P = 0.013) and then elevated (OR per SD: 1.16, 95% CI 1.04-1.28, P = 0.004), with an inflection point at 0.79. A similar U-shaped pattern was identified in patients with normal glucose regulation. Among those with prediabetes, the association was J-shaped, while in patients with diabetes, the association became nonsignificant when SHR exceeded 0.76. Adding SHR to the existing risk model improved the predictive performance for perioperative outcomes in the overall population (AUC: 0.720 → 0.752, P < 0.001; NRI: 0.036, P = 0.003; IDI: 0.015, P < 0.001). For long-term outcomes, the risk of events was monotonically elevated with increasing SHR, regardless of glucose metabolic status. The third tertile showed a 10.7% greater risk of MACCEs (HR: 1.107, 95% CI 1.023-1.231, P = 0.024). CONCLUSIONS SHR was significantly associated with prognosis in CABG patients, demonstrating a non-linear U-shaped relationship with short-term outcomes and a linear positive association with long-term outcomes. The in-hospital risk associated with SHR was attenuated in patients with diabetes. RESEARCH INSIGHTS WHAT IS CURRENTLY KNOWN ABOUT THIS TOPIC?: Stress hyperglycemia is common during the perioperative period in CABG patients and is linked to adverse short- and long-term outcomes. The stress hyperglycemia ratio (SHR) is a novel metric that accounts for baseline glycemia to better reflect acute stress-induced hyperglycemia. However, SHR has not been studied in the CABG population. WHAT IS THE KEY RESEARCH QUESTION?: This study is the first to investigate the association between SHR and both short-term and long-term prognosis in patients undergoing CABG, while further exploring its impact across different glucose metabolic states, categorized as normal glucose regulation, prediabetes, and diabetes. WHAT IS NEW?: In CABG patients, SHR shows a U-shaped relationship with perioperative events and a linear positive association with long-term outcomes, both of which are modulated by glucose metabolic status. HOW MIGHT THIS STUDYINFLUENCE CLINICAL PRACTICE?: Findings support the incorporation of SHR for risk stratification and personalized glucose management in CABG patients, ultimately improving both in-hospital and long-term prognosis.
Collapse
Affiliation(s)
- Zhongchen Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Rd, Xicheng District, Beijing, 100037, People's Republic of China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runze Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Rd, Xicheng District, Beijing, 100037, People's Republic of China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Zeng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Rd, Xicheng District, Beijing, 100037, People's Republic of China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Rd, Xicheng District, Beijing, 100037, People's Republic of China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyu Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Rd, Xicheng District, Beijing, 100037, People's Republic of China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuo Yuan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Rd, Xicheng District, Beijing, 100037, People's Republic of China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoting Su
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Rd, Xicheng District, Beijing, 100037, People's Republic of China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Rd, Xicheng District, Beijing, 100037, People's Republic of China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Heng Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Rd, Xicheng District, Beijing, 100037, People's Republic of China.
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhe Zheng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Rd, Xicheng District, Beijing, 100037, People's Republic of China.
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Coronary Heart Disease Risk Prediction and Precision Therapy, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Guangxin Z, Liqun C, Lin L, Jiaji L, Xiaolong M, Yuxiao Z, Qiuyue H, Qingyu K. The efficacy of minimally invasive coronary artery bypass grafting (mics cabg) for patients with coronary artery diseases and diabetes: a single center retrospective study. J Cardiothorac Surg 2024; 19:244. [PMID: 38632609 PMCID: PMC11025144 DOI: 10.1186/s13019-024-02717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND conventional coronary artery bypass grafting (CCABG) tends to cause severe complications in patients with comorbid Coronary Artery Diseases (CAD) and diabetes. On the other hand, the Minimally Invasive Cardiac Surgery Coronary Artery Bypass Grafting (MICS CABG) via transthoracic incision is associated with rapid recovery and reduced complications. Adding to the limited literature, this study compares CCABG and MICS CABG in terms of efficacy and safety. METHODS Herein, 104 CCABG and MICS CABG cases (52 cases each) were included. The patients were recruited from the Minimally Invasive Cardiac Surgery Center, Anzhen Hospital, between January 2017 and December 2021 and were selected based on the Propensity Score Matching (PSM) model. The key outcomes included All-cause Death, Myocardial Infarction (MI), Cerebrovascular Events, revascularization, Adverse Wound Healing Events and one-year patency of the graft by coronary CTA. RESULTS Compared to CCABG, MICS CABG had longer surgical durations [4.25 (1.50) h vs.4.00 (1.13) h, P = 0.028], but showed a reduced intraoperative blood loss [600.00 (400.00) mL vs.700.00 (300.00) mL, P = 0.032] and a lower secondary incision debridement and suturing rate (5.8% vs.19.2%, P = 0.038). In follow up, no statistically significant differences were found between the two groups in the cumulative Major Adverse Cardiovascular and Cerebrovascular Events (MACCEs) incidence (7.7% vs. 5.9%), all-cause mortality (0 vs. 0), MI incidence (1.9% vs. 2.0%), cerebral apoplexy incidence (5.8% vs. 3.9%), and repeated revascularization incidence (0 vs. 0) (P > 0.05). Additionally, coronary CTA results revealed that the two groups' one-year graft patency (94.2% vs. 90.2%, P = 0.761) showed no statistically significant difference. CONCLUSION In patients with comorbid CAD and diabetes, MICS CABG and CCABG had comparable revascularization performances. Moreover, MICS CABG can effectively reduce, if not prevent, poor clinical outcomes/complications, including incision healing, sternal infection and prolonged length of stay in diabetes patients.
Collapse
Affiliation(s)
- Zhao Guangxin
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029, Beijing, P.R. China
| | - Chi Liqun
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029, Beijing, P.R. China
| | - Liang Lin
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029, Beijing, P.R. China
| | - Liu Jiaji
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029, Beijing, P.R. China
| | - Ma Xiaolong
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029, Beijing, P.R. China
| | - Zhang Yuxiao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029, Beijing, P.R. China
| | - Huang Qiuyue
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029, Beijing, P.R. China
| | - Kong Qingyu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029, Beijing, P.R. China.
| |
Collapse
|
4
|
You H, Hou X, Zhang H, Li X, Feng X, Qian X, Shi N, Guo R, Wang X, Sun H, Feng W, Li G, Zheng Z, Chen Y. Effect of glycemic control and glucose fluctuation on in-hospital adverse outcomes after on-pump coronary artery bypass grafting in patients with diabetes: a retrospective study. Diabetol Metab Syndr 2023; 15:20. [PMID: 36788548 PMCID: PMC9930270 DOI: 10.1186/s13098-023-00984-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND The optimal glycemic control level in diabetic patients undergoing coronary artery bypass grafting (CABG) with cardiopulmonary bypass (On-Pump) remains unclear. Therefore, this study aimed to investigate the effect of different blood glucose control levels and glucose fluctuations on in-hospital adverse outcomes in diabetic patients undergoing on-pump CABG. METHOD A total of 3918 patients with diabetes undergoing CABG were reviewed in this study. A total of 1638 patients were eligible for inclusion and were categorized into strict, moderate and liberal glucose control groups based on post-operative mean blood glucose control levels of < 7.8 mmol/L, from 7.8 to 9.9 mmol/L and ≥ 10.0 mmoL/L, respectively. The primary endpoint was defined as a composite endpoint including in-hospital all-cause mortality and major cardiovascular complications. The secondary endpoint was defined as major cardiovascular complications including acute myocardial infarction, strokes and acute kidney injuries. To determine the associations between blood glucose fluctuations and adverse outcomes, patients with different glycemic control levels were further divided into subgroups according to whether the largest amplitude of glycemic excursion (LAGE) was ≥ 4.4 mmol/L or not. RESULTS A total of 126 (7.7%) patients had a composite endpoint. Compared with moderate control, strict glucose control was associated with an increased risk of the primary endpoint (adjusted OR = 2.22, 95% CI 1.18-4.15, p = 0.01) and the secondary endpoint (adjusted OR = 1.95, 95% CI 1.01-3.77, p = 0.049). Furthermore, LAGE ≥ 4.4 mmol/L was significantly associated with the primary endpoint (adjusted OR = 1.67, 95% CI 1.12-2.50, p = 0.01) and the secondary endpoint (adjusted OR = 1.75, 95% CI 1.17-2.62, p = 0.01),respectively. Patients with LAGE ≥ 4.4 mmol/L had significantly higher rates of the composite endpoint and major vascular complications in both the strict-control (the primary endpoint, 66.7% vs 12.4%, p = 0.034, the secondary endpoint, 66.7% vs 10.3%, p = 0.03) and moderate-control groups (the primary endpoint, 10.2% vs 6.0%, p = 0.03, the secondary endpoint, 10.2% vs 5.8%, p = 0.02). CONCLUSIONS After On-Pump CABG patients with diabetes, strict glucose control (< 7.8 mmol/L) and relatively large glucose fluctuations (LAGE ≥ 4.4 mmol/L) were independently associated with in-hospital adverse outcomes.
Collapse
Affiliation(s)
- Hongzhao You
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Xiaopei Hou
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Heng Zhang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaojue Li
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Xinxing Feng
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Xin Qian
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Na Shi
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Rong Guo
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Xuan Wang
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Hansong Sun
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Feng
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangwei Li
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Zhe Zheng
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yanyan Chen
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
5
|
Li X, Hou X, Zhang H, Qian X, Feng X, Shi N, Guo R, Sun H, Feng W, Zhao W, Li G, Zheng Z, Chen Y. Association between stress hyperglycaemia and in-hospital cardiac events after coronary artery bypass grafting in patients without diabetes: A retrospective observational study of 5450 patients. Diabetes Obes Metab 2023; 25 Suppl 1:34-42. [PMID: 36775931 DOI: 10.1111/dom.15013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
AIMS To investigate the impact of stress hyperglycaemia (SH) on in-hospital adverse cardiac events after coronary artery bypass grafting (CABG) in patients without diabetes. MATERIALS AND METHODS In total, 5450 patients without diabetes who underwent CABG were analysed. SH was defined as any two instances in which the random blood glucose level was >7.8 mmol/L after CABG in the intensive care unit (ICU). The primary outcome was major adverse cardiac events (MACEs), including in-hospital mortality, acute myocardial infarction, stroke and acute renal failure. Secondary outcomes included surgical site infection (SSI) and length of ICU stay. RESULTS Patients with SH had higher rates of MACEs (5.7% vs. 2.3%, p < .0001) and higher SSI (3.3% vs. 1.4%, p = .0003) and longer ICU stays (2.6 ± 2.0 vs. 1.3 ± 1.3 days, p < .0001) than those without SH. Furthermore, SH was associated with a higher risk of MACEs [odds ratio (OR): 2.32, 95% confidence interval (CI): 1.38-3.90], SSI (OR: 2.21, 95% CI: 1.20-3.95) and longer ICU stay (OR: 12.27, 95% CI: 9.41-16.92) after adjusting for confounders. Subgroup analysis showed that patients with SH >10 mmol/L or SH that occurred in the ICU and lasted more than 48 h had increased risks of postoperative complications (p < .05). CONCLUSIONS SH was significantly associated with an increased risk of MACEs, SSI and longer ICU stay after CABG in patients without diabetes. In addition, SH >10 mmol/L or that occurred in the ICU and lasted more than 48 h increased the risk of adverse outcomes.
Collapse
Affiliation(s)
- Xiaojue Li
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaopei Hou
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heng Zhang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Qian
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxing Feng
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Shi
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong Guo
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hansong Sun
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Feng
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zhao
- Information Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Guangwei Li
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Zheng
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanyan Chen
- Endocrinology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Endocrinology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| |
Collapse
|