1
|
Dorman MJ, Domman D, Poklepovich T, Tolley C, Zolezzi G, Kane L, Viñas MR, Panagópulo M, Moroni M, Binsztein N, Caffer MI, Clare S, Dougan G, Salmond GPC, Parkhill J, Campos J, Thomson NR. Genomics of the Argentinian cholera epidemic elucidate the contrasting dynamics of epidemic and endemic Vibrio cholerae. Nat Commun 2020; 11:4918. [PMID: 33004800 PMCID: PMC7530988 DOI: 10.1038/s41467-020-18647-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
In order to control and eradicate epidemic cholera, we need to understand how epidemics begin, how they spread, and how they decline and eventually end. This requires extensive sampling of epidemic disease over time, alongside the background of endemic disease that may exist concurrently with the epidemic. The unique circumstances surrounding the Argentinian cholera epidemic of 1992-1998 presented an opportunity to do this. Here, we use 490 Argentinian V. cholerae genome sequences to characterise the variation within, and between, epidemic and endemic V. cholerae. We show that, during the 1992-1998 cholera epidemic, the invariant epidemic clone co-existed alongside highly diverse members of the Vibrio cholerae species in Argentina, and we contrast the clonality of epidemic V. cholerae with the background diversity of local endemic bacteria. Our findings refine and add nuance to our genomic definitions of epidemic and endemic cholera, and are of direct relevance to controlling current and future cholera epidemics.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Daryl Domman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tomás Poklepovich
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Charlotte Tolley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Gisella Zolezzi
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Leanne Kane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - María Rosa Viñas
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Marcela Panagópulo
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Miriam Moroni
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Norma Binsztein
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - María Inés Caffer
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Gordon Dougan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QW, UK
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Josefina Campos
- Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
2
|
Preeprem S, Singkhamanan K, Nishibuchi M, Vuddhakul V, Mittraparp-Arthorn P. Multiplex Multilocus Variable-Number Tandem-Repeat Analysis for Typing of Pandemic Vibrio parahaemolyticus O1:KUT Isolates. Foodborne Pathog Dis 2018; 16:104-113. [PMID: 30325660 DOI: 10.1089/fpd.2018.2505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pandemic O3:K6 Vibrio parahaemolyticus emerged in 1996. Since then, this strain of pathogen and its serovariants (predominantly O1:KUT [untypable], O1:K25 and O4:K68) have caused gastroenteritis worldwide. Owing to the limitation in established K antisera, tracking the sources of KUT for epidemiological investigation is difficult. Therefore, the effective molecular typing is required to discriminate the strains. The aim of this study was to develop a multiplex multilocus variable-number tandem-repeat analysis (MLVA) assay for typing pandemic V. parahaemolyticus, including various O1:KUT isolates. The assay was based on the analysis of four variable number tandem repeat loci. Forty-six pandemic isolates, including O1:KUT, O1:K25, and O3:K6, were investigated. MLVA generated 38 distinct MLVA profiles, whereas only 16 types were obtained from pulsed-field gel electrophoresis (PFGE). In this work, MLVA resolved the 12 isolates of O1:KUT obtained in 2001-2005 with identical PFGE patterns into unique profiles. Our data indicated that multiplex MLVA developed in this study has high discriminatory power (D = 0.99), and is superior to PFGE for distinct pandemic V. parahaemolyticus, including O1:KUT isolates.
Collapse
Affiliation(s)
- Sutima Preeprem
- 1 Department of Microbiology, Faculty of Science, Prince of Songkla University , Songkhla, Thailand
| | - Kamonnut Singkhamanan
- 2 Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University , Songkhla, Thailand
| | | | - Varaporn Vuddhakul
- 1 Department of Microbiology, Faculty of Science, Prince of Songkla University , Songkhla, Thailand
| | | |
Collapse
|
3
|
Bhowmick TS, Das M, Sarkar BL. Genotypic characterization of Vibrio cholerae isolates using several DNA fingerprint techniques. Future Microbiol 2011; 6:29-42. [PMID: 21162634 DOI: 10.2217/fmb.10.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serious pandemics of cholera have occurred throughout the known history of mankind, especially in India, which is a motherland for cholera disease. For the last 20 years several DNA-based typing methods have been employed to study the clonal relatedness between Vibrio cholerae isolates irrespective of their geographical locations. Traditional typing methods, such as biochemical tests, phage typing, serotyping, biotyping and antimicrobial susceptibility tests, have produced reliable and informative data regarding V. cholerae for a long time. Gradually molecular typing techniques have taken the place of traditional typing methods because they produce the same results upon repeat testing of V. cholerae strain. In this article we focus on the discriminatory power of different DNA fingerprint techniques that are generally used to know the homogeneity and heterogeneity among different V. cholerae isolates.
Collapse
Affiliation(s)
- Tushar Suvra Bhowmick
- Vibrio Phage Reference Laboratory, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | | |
Collapse
|
4
|
Shuan Ju Teh C, Thong KL, Osawa R, Heng Chua K. Comparative PCR-based fingerprinting of Vibrio cholerae isolated in Malaysia. J GEN APPL MICROBIOL 2011; 57:19-26. [DOI: 10.2323/jgam.57.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Chowdhury N, Asakura M, Neogi S, Hinenoya A, Haldar S, Ramamurthy T, Sarkar B, Faruque S, Yamasaki S. Development of simple and rapid PCR‐fingerprinting methods for
Vibrio cholerae
on the basis of genetic diversity of the superintegron. J Appl Microbiol 2010; 109:304-12. [DOI: 10.1111/j.1365-2672.2009.04658.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N. Chowdhury
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - M. Asakura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Research and Development Centre, Fuso Pharmaceutical Industries Ltd., Osaka, Japan
| | - S.B. Neogi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - A. Hinenoya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - S. Haldar
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - T. Ramamurthy
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - B.L. Sarkar
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - S.M. Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - S. Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
6
|
Labbate M, Boucher Y, Joss MJ, Michael CA, Gillings MR, Stokes HW. Use of chromosomal integron arrays as a phylogenetic typing system for Vibrio cholerae pandemic strains. MICROBIOLOGY-SGM 2007; 153:1488-1498. [PMID: 17464063 DOI: 10.1099/mic.0.2006/001065-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Approximately 200 serogroups of Vibrio cholerae exist, with only two, O1 and O139, responsible for epidemic and pandemic cholera. Strains from these serogroups have evolved from a common progenitor, with lateral gene transfer largely driving their emergence. These strains are so closely related that separation using single- or multi-locus phylogeny has proven difficult. V. cholerae strains contain a genetic system called the integron that is located in the chromosome and that can integrate and excise DNA elements called mobile gene cassettes (MGCs) by site-specific recombination. Large arrays of MGCs are found in V. cholerae strains. For instance, the O1 El Tor strain N16961 contains 179 MGCs. Since integron arrays are dynamic through recombination and excision of MGCs, it was hypothesized that the MGC composition in a given V. cholerae pandemic strain would be useful as a phylogenetic typing system. To address this, a PCR-based method was used to rapidly characterize the MGC composition of V. cholerae arrays. The results showed that the MGC composition of pandemic V. cholerae cassette arrays is relatively conserved, providing further evidence that these strains have evolved from a common progenitor. Comparison of MGC composition between the V. cholerae pandemic strains was also able to resolve the evolution of O139 from a subgroup of O1 El Tor. This level of differentiation of closely related V. cholerae isolates was more sensitive than conventional single-gene phylogeny or multi-locus sequence analysis. Using this method, novel MGCs from an O1 classical strain and an Argentinian O139 isolate were also identified, and a major deletion in the MGC array in all pandemic O139 strains and a subset of O1 El Tor strains was identified. Analysis of sequenced V. cholerae integron arrays showed that their evolution can proceed by rearrangements and deletions/insertions of large portions of MGCs in addition to the insertion or excision of single MGCs.
Collapse
Affiliation(s)
- M Labbate
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Y Boucher
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - M J Joss
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - C A Michael
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - M R Gillings
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - H W Stokes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|