1
|
Pandey D, Ghosh D. Proteomics-based host-specific biomarkers for tuberculosis: The future of TB diagnosis. J Proteomics 2024; 305:105245. [PMID: 38942234 DOI: 10.1016/j.jprot.2024.105245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Tuberculosis (TB) is an infectious disease that remains one of the major global public health concerns. Early detection of Active Pulmonary TB is therefore of utmost importance for controlling lethality and disease spreading. Currently available TB diagnostics can be broadly categorized into microscopy, culture-based, and molecular approaches, all of which come with compromised sensitivity, limited efficacy, and high expenses. Hence, rapid, sensitive, and affordable diagnostic methods for TB is the current prerequisite for disease management. This review summarizes the proteomics investigations for host-specific biomarkers from serum, sputum, saliva, and urine samples of TB patients, along with patients having comorbidity. Thorough data mining from available literature led us to conclude that the host-specific proteins involved in immunity and defense, metabolic regulation, cellular adhesion, and motility, inflammatory responses, and tissue remodelling have shown significant deregulation upon Mycobacterium tuberculosis (Mtb) infection. Notably, the immunoregulatory protein orosomucoid (ORM) was up-regulated in active TB compared to non-TB individuals, as observed in multiple studies from diverse sample types. Mannose receptor C type 2 (MRC2) was identified as an upregulated, treatment response biomarker in two independent serum proteomics investigations. Thorough mechanistic investigation on these candidate proteins would be fascinating to dig into potential drug targets and customized therapeutics for TB patients, along with their diagnostic potentials.
Collapse
Affiliation(s)
- Divya Pandey
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Dipanjana Ghosh
- School of Biomolecular Engineering & Biotechnology, Rajiv Gandhi Technological University, Airport Bypass Road, Bhopal 462033, India.
| |
Collapse
|
2
|
Rodríguez-Sánchez B, Cercenado E, Coste AT, Greub G. Review of the impact of MALDI-TOF MS in public health and hospital hygiene, 2018. ACTA ACUST UNITED AC 2020; 24. [PMID: 30696525 PMCID: PMC6351997 DOI: 10.2807/1560-7917.es.2019.24.4.1800193] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction MALDI-TOF MS represents a new technological era for microbiology laboratories. Improved sample processing and expanded databases have facilitated rapid and direct identification of microorganisms from some clinical samples. Automated analysis of protein spectra from different microbial populations is emerging as a potential tool for epidemiological studies and is expected to impact public health. Aim To demonstrate how implementation of MALDI-TOF MS has changed the way microorganisms are identified, how its applications keep increasing and its impact on public health and hospital hygiene. Methods A review of the available literature in PubMED, published between 2009 and 2018, was carried out. Results Of 9,709 articles retrieved, 108 were included in the review. They show that rapid identification of a growing number of microorganisms using MALDI-TOF MS has allowed for optimisation of patient management through prompt initiation of directed antimicrobial treatment. The diagnosis of Gram-negative bacteraemia directly from blood culture pellets has positively impacted antibiotic streamlining, length of hospital stay and costs per patient. The flexibility of MALDI-TOF MS has encouraged new forms of use, such as detecting antibiotic resistance mechanisms (e.g. carbapenemases), which provides valuable information in a reduced turnaround time. MALDI-TOF MS has also been successfully applied to bacterial typing. Conclusions MALDI-TOF MS is a powerful method for protein analysis. The increase in speed of pathogen detection enables improvement of antimicrobial therapy, infection prevention and control measures leading to positive impact on public health. For antibiotic susceptibility testing and bacterial typing, it represents a rapid alternative to time-consuming conventional techniques.
Collapse
Affiliation(s)
- Belén Rodríguez-Sánchez
- These authors contributed equally to this work.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Emilia Cercenado
- Department of Medicine, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alix T Coste
- Institute of Microbiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Infectious Diseases Service, University Hospital of Lausanne, Lausanne, Switzerland.,Institute of Microbiology, University Hospital of Lausanne, Lausanne, Switzerland.,These authors contributed equally to this work
| |
Collapse
|
3
|
Chen X, Jia X, Lei H, Wen X, Hao Y, Ma Y, Ye J, Wang C, Gao J. Screening and identification of serum biomarkers of osteoarticular tuberculosis based on mass spectrometry. J Clin Lab Anal 2020; 34:e23297. [PMID: 32162728 PMCID: PMC7370717 DOI: 10.1002/jcla.23297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In view of the current difficulty of clinically diagnosing osteoarticular tuberculosis, our aim was to use mass spectrometry to establish diagnostic models and to screen and identify serum proteins which could serve as potential diagnostic biomarkers for early detection of osteoarticular tuberculosis. METHODS Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to select an osteoarticular tuberculosis-specific serum peptide profile and establish diagnostic models. Further, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify potential serum biomarkers that could be used for auxiliary diagnosis of osteoarticular tuberculosis, and then clinical serum samples were used to verify these biomarkers by enzyme-linked immunosorbent assay (ELISA). RESULTS We established four diagnostic models that can distinguish osteoarticular tuberculosis from rheumatoid arthritis, ankylosing spondylitis, osteoarticular infections, and healthy adults. The models were osteoarticular tuberculosis-rheumatoid arthritis, osteoarticular tuberculosis-ankylosing spondylitis, osteoarticular tuberculosis-osteoarticular infections, and osteoarticular tuberculosis-healthy adult, and their accuracy was 76.78%, 79.02%, 83.77%, and 88.16%, respectively. Next, we selected and identified 18 proteins, including complement factor H-related protein 1 (CFHR1) and complement factor H-related protein 2 (CFHR2), which were upregulated in the tuberculosis group only. CONCLUSIONS We successfully established four diagnostic models involving osteoarticular tuberculosis, rheumatoid arthritis, ankylosing spondylitis, osteoarticular infections, and healthy adults. Furthermore, we found that CFHR1 and CFHR2 may be two valuable auxiliary diagnostic indicators for osteoarticular tuberculosis. These results provide reference values for rapid and accurate diagnosis of osteoarticular tuberculosis.
Collapse
Affiliation(s)
- Ximeng Chen
- Center of Clinical Laboratory Medicine, The 1st Medical Center of PLA General Hospital, Beijing, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Xingwang Jia
- Center of Clinical Laboratory Medicine, The 1st Medical Center of PLA General Hospital, Beijing, China
| | - Hong Lei
- Department of Clinical Laboratory Medicine, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xinyu Wen
- Center of Clinical Laboratory Medicine, The 1st Medical Center of PLA General Hospital, Beijing, China
| | - Yanfei Hao
- Department of Clinical Laboratory Medicine, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yating Ma
- School of Medicine, Nankai University, Tianjin, China
| | - Jingyun Ye
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Chengbin Wang
- Center of Clinical Laboratory Medicine, The 1st Medical Center of PLA General Hospital, Beijing, China
| | - Jimin Gao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
MacLean E, Broger T, Yerlikaya S, Fernandez-Carballo BL, Pai M, Denkinger CM. A systematic review of biomarkers to detect active tuberculosis. Nat Microbiol 2019; 4:748-758. [PMID: 30804546 DOI: 10.1038/s41564-019-0380-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
Millions of cases of tuberculosis (TB) go undiagnosed each year. Better diagnostic tools are urgently needed. Biomarker-based or multiple marker biosignature-based tests, ideally performed on blood or urine, for the detection of active TB might help to meet target product profiles proposed by the World Health Organization for point-of-care testing. We conducted a systematic review to summarize evidence on proposed biomarkers and biosignatures and evaluate their quality and level of evidence. We screened the titles and abstracts of 7,631 citations and included 443 publications that fulfilled the inclusion criteria and were published in 2010-2017. The types of biomarkers identified included antibodies, cytokines, metabolic activity markers, mycobacterial antigens and volatile organic compounds. Only 47% of studies reported a culture-based reference standard and diagnostic sensitivity and specificity. Forty-four biomarkers (4%) were identified in high-quality studies and met the target product profile minimum criteria, of which two have been incorporated into commercial assays. Of the 44 highest-quality biomarkers, 24 (55%) were multiple marker biosignatures. No meta-analyses were performed owing to between-study heterogeneity. In conclusion, TB biomarker discovery studies are often poorly designed and findings are rarely confirmed in independent studies. Few markers progress to a further developmental stage. More validation studies that consider the intended diagnostic use cases and apply rigorous design are needed. The extracted data from this review are currently being used by FIND as the foundation of a dynamic database in which biomarker data and developmental status will be presented.
Collapse
Affiliation(s)
- Emily MacLean
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
| | | | | | | | - Madhukar Pai
- McGill International TB Centre, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | | |
Collapse
|
5
|
Deng CW, Wang L, Fei YY, Hu CJ, Yang YJ, Peng LY, Zeng XF, Zhang FC, Li YZ. Exploring pathogenesis of primary biliary cholangitis by proteomics: A pilot study. World J Gastroenterol 2017; 23:8489-8499. [PMID: 29358857 PMCID: PMC5752709 DOI: 10.3748/wjg.v23.i48.8489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the pathogenesis of primary biliary cholangitis (PBC) by identifying candidate autoantibodies in serum samples by proteomics and bioinformatics. METHODS Nine antimitochondrial antibody (AMA)-positive PBC patients and nine age- and sex-matched AMA-negative PBC patients were recruited. Antigen enrichment technology was applied to capture autoantigens of human intrahepatic biliary epithelial cells (HiBECs) that are recognized by autoantibodies from the sera of PBC patients. Candidate autoantigens were identified by label-free mass spectrometry. Bioinformatics analysis with MaxQuant software (version 1.5.2.8), DAVID platform, and Cytoscape v.3.0 allowed illustration of pathways potentially involved in the pathogenesis of PBC. RESULTS In total, 1081 candidate autoantigen proteins were identified from the PBC patient pool. Among them, 371 were determined to be significantly differentially expressed between AMA-positive and -negative PBC patients (P < 0.05). Fisher's exact test was performed for enrichment analysis of Gene Ontology protein annotations (biological processes, cellular components, and molecular functions) and the Kyoto Encyclopedia of Genes and Genomes pathways. Significantly different protein categories were revealed between AMA-positive and -negative PBC patients. As expected, autoantigens related to mitochondria were highly enriched in AMA-positive PBC patients. However, lower levels of AMA were also detected in AMA-negative PBC patients. In addition, autoantigens of AMA-negative PBC patients were mainly involved in B-cell activation, recognition of phagocytosis, and complement activation. CONCLUSION AMA-negative PBC individuals may not exist, but rather, those patients exhibit pathogenesis pathways different from those of AMA-positive PBC. Comprehensive research is needed to confirm these observations.
Collapse
Affiliation(s)
- Chui-Wen Deng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Yun-Yun Fei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Chao-Jun Hu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Yun-Jiao Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Lin-Yi Peng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Xiao-Feng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Feng-Chun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Yong-Zhe Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| |
Collapse
|
6
|
Radiology scheduling with consideration of patient characteristics to improve patient access to care and medical resource utilization. Health Syst (Basingstoke) 2017. [DOI: 10.1057/hs.2013.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
7
|
Haas CT, Roe JK, Pollara G, Mehta M, Noursadeghi M. Diagnostic 'omics' for active tuberculosis. BMC Med 2016; 14:37. [PMID: 27005907 PMCID: PMC4804573 DOI: 10.1186/s12916-016-0583-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/08/2016] [Indexed: 12/12/2022] Open
Abstract
The decision to treat active tuberculosis (TB) is dependent on microbiological tests for the organism or evidence of disease compatible with TB in people with a high demographic risk of exposure. The tuberculin skin test and peripheral blood interferon-γ release assays do not distinguish active TB from a cleared or latent infection. Microbiological culture of mycobacteria is slow. Moreover, the sensitivities of culture and microscopy for acid-fast bacilli and nucleic acid detection by PCR are often compromised by difficulty in obtaining samples from the site of disease. Consequently, we need sensitive and rapid tests for easily obtained clinical samples, which can be deployed to assess patients exposed to TB, discriminate TB from other infectious, inflammatory or autoimmune diseases, and to identify subclinical TB in HIV-1 infected patients prior to commencing antiretroviral therapy. We discuss the evaluation of peripheral blood transcriptomics, proteomics and metabolomics to develop the next generation of rapid diagnostics for active TB. We catalogue the studies published to date seeking to discriminate active TB from healthy volunteers, patients with latent infection and those with other diseases. We identify the limitations of these studies and the barriers to their adoption in clinical practice. In so doing, we aim to develop a framework to guide our approach to discovery and development of diagnostic biomarkers for active TB.
Collapse
Affiliation(s)
- Carolin T Haas
- Division of Infection and Immunity, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Jennifer K Roe
- Division of Infection and Immunity, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Gabriele Pollara
- Division of Infection and Immunity, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Meera Mehta
- Division of Infection and Immunity, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
8
|
Abstract
While much progress has been made in the fight against the scourge of tuberculosis (TB), we are still some way from reaching the ambitious targets of eliminating it as a global public health problem by the mid twenty-first century. A new and effective vaccine that protects against pulmonary TB disease will be an essential element of any control strategy. Over a dozen vaccines are currently in development, but recent efficacy trial data from one of the most advanced candidates have been disappointing. Limitations of current preclinical animal models exist, together with a lack of a complete understanding of host immunity to TB or robust correlates of disease risk and protection. Therefore, in the context of such obstacles, we discuss the lessons identified from recent efficacy trials, current concepts of biomarkers and correlates of protection, the potential of innovative clinical models such as human challenge and conducting trials in high-incidence settings to evaluate TB vaccines in humans, and the use of systems vaccinology and novel technologies including transcriptomics and metabolomics, that may facilitate their utility.
Collapse
Affiliation(s)
| | - Helen McShane
- a The Jenner Institute, University of Oxford , Oxford , UK
| |
Collapse
|
9
|
Yan Z, Chaojun H, Chuiwen D, Xiaomei L, Xin Z, Yongzhe L, Fengchun Z. Establishing serological classification tree model in rheumatoid arthritis using combination of MALDI-TOF-MS and magnetic beads. Clin Exp Med 2013; 15:19-23. [PMID: 24292670 DOI: 10.1007/s10238-013-0265-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 11/12/2013] [Indexed: 12/29/2022]
Abstract
To establish a serological classification tree model for rheumatoid arthritis (RA), protein/peptide profiles of serum were detected by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) combined with weak cationic exchange (WCX) from Cohort 1, including 65 patients with RA and 41 healthy controls (HC). The samples were randomly divided into a training set and a test set. Twenty-four differentially expressed peaks (P < 0.05) were identified in the training set and 4 of them, namely m/z 3,939, 5,906, 8,146, and 8,569 were chosen to set up our model. This model exhibited a sensitivity of 100.0% and a specificity of 96.0% for differentiating RA patients from HC. The test set reproduced these high levels of sensitivity and specificity, which were 100.0 and 81.2%, respectively. Cohort 2, which include 228 RA patients, was used to further verify the classification efficiency of this model. It came out that 97.4% of them were classified as RA by this model. In conclusion, MALDI-TOF-MS combined with WCX magnetic beads was a powerful method for constructing a classification tree model for RA, and the model we established was useful in recognizing RA.
Collapse
Affiliation(s)
- Zhang Yan
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Whitworth HS, Aranday-Cortes E, Lalvani A. Biomarkers of tuberculosis: a research roadmap. Biomark Med 2013; 7:349-62. [PMID: 23734796 DOI: 10.2217/bmm.13.53] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) continues to represent a major public health problem worldwide. Prompt and accurate diagnosis and effective treatment are fundamental to reducing morbidity and mortality and curtailing spread of infection. Furthermore, tackling the large reservoir of latent infection is the cornerstone to TB control in many high income low TB incidence countries. However, our existing toolkit for prevention, diagnosis and treatment remains outdated and inadequate. Here, we discuss the key targets for biomarker research and discovery in TB and recent developments in the field. We focus on host biomarkers, in particular: correlates of vaccine efficacy and sterilizing immunity; biomarkers of latent TB infection, including diagnosis, risk of progression to active TB and response to treatment; and markers of active TB, including diagnosis, response to treatment and risk of relapse. Recent scientific and technological advances have contributed to significant recent progression in biomarker discovery. Although there are clear remaining paucities, continued efforts within scientific, translational and clinical studies are likely to yield a number of clinically useful biomarkers of TB in the foreseeable future.
Collapse
Affiliation(s)
- Hilary S Whitworth
- Tuberculosis Research Unit, Department of Respiratory Medicine, National Heart & Lung Institute, Imperial College London, London W2 1PG, UK
| | | | | |
Collapse
|
11
|
Lau SKP, Tang BSF, Teng JLL, Chan TM, Curreem SOT, Fan RYY, Ng RHY, Chan JFW, Yuen KY, Woo PCY. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry for identification of clinically significant bacteria that are difficult to identify in clinical laboratories. J Clin Pathol 2013; 67:361-6. [PMID: 24143023 DOI: 10.1136/jclinpath-2013-201818] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS Although the revolutionary matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) has been evaluated for identification of various groups of bacteria, its application in bacteria that are 'difficult-to-identify' by phenotypic tests has been less well studied. We aim to evaluate the usefulness of MALDI-TOF MS for identification of 'difficult-to-identify' bacterial isolates. METHODS We evaluated the performance of the Bruker MALDI-TOF MS system for a collection of 67 diverse clinically important bacterial isolates that were less commonly encountered, possessed ambiguous biochemical profiles or belonged to newly discovered species. The results were compared with 16S rRNA gene sequencing as a reference method for species identification. RESULTS Using 16S rRNA gene sequencing as the reference method, 30 (45%) isolates were identified correctly to species level (score ≥2.0), 20 (30%) were only identified to genus level (score ≥1.7), four (6%) were misidentified (incorrect species with score ≥2.0 or incorrect genus with score ≥1.7) and 13 (19%) showed 'no identification' (score <1.7). Aerobic Gram-positive bacteria showed the highest percentage of correct species identification, followed by aerobic Gram-negative, anaerobic Gram-positive and anaerobic Gram-negative bacteria. Sixteen isolates identified to genus level actually showed the correct species but with scores below the threshold for species identification. Most isolates which showed 'no identification' were due to the absence of the corresponding species in the Bruker database. CONCLUSIONS Expansion of commercial databases to include reference spectra of less commonly encountered and newly discovered species and to increase available spectra for each species is required to improve the accuracy of MALDI-TOF MS for identifying 'difficult-to-identify' bacteria.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, , Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|