1
|
Yamura S, Kawada N, Yamakado S, Kyosei Y, Watabe S, Yoshimura T, Murase Y, Mitarai S, Ito E. Non-amplification nucleic acid detection with thio-NAD cycling. J Microbiol Methods 2023; 204:106647. [PMID: 36496031 DOI: 10.1016/j.mimet.2022.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The PCR technique is indispensable in biology and medicine, but some difficulties are associated with its use, including false positive or false negative amplifications. To avoid these issues, a non-amplification nucleic acid detection protocol is needed. In the present study, we propose a method in which nucleic-acid probe hybridization is combined with thio-NAD cycling to detect nucleic acids without amplification. We report our application of this method for the detection of the gene of MPT64 in Mycobacterium tuberculosis. Two different cDNA probes targeted the mpt64 gene: the first probe was used to immobilize the mpt64 gene, and the second probe, linked with alkaline phosphatase (ALP), was hybridized to a target sequence in the mpt64 gene. A substrate was then hydrolyzed by ALP, and a cycling reaction was conducted by a dehydrogenase with its co-factors (thio-NAD and NADH). The single-stranded DNA, double-stranded DNA, plasmid DNA for the mpt64 gene, and whole genome of M. tuberculosis var. BCG were detected at the level of 105-106 copies/assay, whereas the non-tuberculosis mycobacteria (e.g., M. avium, M. intracellulare, M. kansasii, and M. abscessus) were below the limits of detection. The present method enables us to avoid the errors inherent in nucleic acid amplification methods.
Collapse
Affiliation(s)
- Sou Yamura
- Department of Biology, Waseda University, Shinjuku, Tokyo, Japan
| | - Naoki Kawada
- Department of Biology, Waseda University, Shinjuku, Tokyo, Japan
| | | | - Yuta Kyosei
- Department of Biology, Waseda University, Shinjuku, Tokyo, Japan
| | - Satoshi Watabe
- Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Teruki Yoshimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu, Hokkaido, Japan
| | - Yoshiro Murase
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Satoshi Mitarai
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, Shinjuku, Tokyo, Japan; Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan; Graduate Institute of Medicine, Kaohsiung Medical University, Sanmin, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Maxson T, Mitchell DA. Targeted Treatment for Bacterial Infections: Prospects for Pathogen-Specific Antibiotics Coupled with Rapid Diagnostics. Tetrahedron 2016; 72:3609-3624. [PMID: 27429480 PMCID: PMC4941824 DOI: 10.1016/j.tet.2015.09.069] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antibiotics are a cornerstone of modern medicine and have significantly reduced the burden of infectious diseases. However, commonly used broad-spectrum antibiotics can cause major collateral damage to the human microbiome, causing complications ranging from antibiotic-associated colitis to the rapid spread of resistance. Employing narrower spectrum antibiotics targeting specific pathogens may alleviate this predicament as well as provide additional tools to expand an antibiotic repertoire threatened by the inevitability of resistance. Improvements in clinical diagnosis will be required to effectively utilize pathogen-specific antibiotics and new molecular diagnostics are poised to fulfill this need. Here we review recent trends and the future prospects of deploying narrower spectrum antibiotics coupled with rapid diagnostics. Further, we discuss the theoretical advantages and limitations of this emerging approach to controlling bacterial infectious diseases.
Collapse
Affiliation(s)
- Tucker Maxson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|