1
|
Vilibic-Cavlek T, Barbic L, Stevanovic V, Savic V, Mrzljak A, Bogdanic M, Tabain I. Comparison of indirect immunofluorescence and western blot method in the diagnosis of hantavirus infections. World J Methodol 2021; 11:294-301. [PMID: 34888182 PMCID: PMC8613714 DOI: 10.5662/wjm.v11.i6.294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Serologic cross-reactivity between hantaviruses often complicates the interpretation of the results.
AIM To analyze the diagnostic value of indirect immunofluorescence assay (IFA) and western blot (WB) in the diagnosis of hantavirus infections.
METHODS One hundred eighty-eight serum samples from Puumala (PUUV) and Dobrava (DOBV) orthohantavirus infected patients were analyzed. Serology was performed using commercial tests (Euroimmun, Lübeck, Germany).
RESULTS Using IFA, 49.5% of acute-phase samples showed a monotypic response to PUUV, while 50.5% cross-reacted with other hantaviruses. The overall cross-reactivity was higher for immunoglobulin G (IgG) (50.0%) than for immunoglobulin M (IgM) (25.5%). PUUV IgM/IgG antibodies showed low/moderate reactivity with orthohantaviruses Hantaan (12.3%/31.5%), Seoul (7.5%/17.8%), DOBV (5.4%/ 28.1%), and Saaremaa (4.8%/15.7%). Both DOBV IgM and IgG antibodies were broadly reactive with Hantaan (76.2%/95.2%), Saaremaa (80.9%/83.3%), and Seoul (78.6%/85.7%) and moderate with PUUV (28.5%/38.1%). Using a WB, serotyping was successful in most cross-reactive samples (89.5%).
CONCLUSION The presented results indicate that WB is more specific than IFA in the diagnosis of hantavirus infections, confirming serotype in most IFA cross-reactive samples.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Vladimir Savic
- Poultry Centre, Croatian Veterinary Institute, Zagreb 10000, Croatia
| | - Anna Mrzljak
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
- Department of Gastroenterology and Hepatology, University Hospital Zagreb, Zagreb 10000, Croatia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
| |
Collapse
|
2
|
Madai M, Németh V, Oldal M, Horváth G, Herczeg R, Kelemen K, Kemenesi G, Jakab F. Temporal Dynamics of Two Pathogenic Hantaviruses Among Rodents in Hungary. Vector Borne Zoonotic Dis 2020; 20:212-221. [PMID: 31821117 DOI: 10.1089/vbz.2019.2438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hantaviruses are worldwide pathogens, which often cause serious or even fatal diseases in humans. Hosts are predominantly in the form of rodents and soricomorphs; however, bats are also described as an important reservoir. In Hungary, representatives of two human pathogenic species of the genus Orthohantavirus are present: the Dobrava-Belgrade orthohantavirus and Puumala orthohantavirus. In Hungarian forests, the dominant rodent species are Apodemus flavicollis, Apodemus agrarius, Apodemus sylvaticus, and Myodes glareolus, all of which are natural reservoirs comprising different hantaviruses. The aim of the study was to survey the prevalence of hantaviruses among rodent populations and examine the potential relationship regarding population densities, years, sex, and seroprevalence. Rodents were trapped at 13 sampling plots in a forest reserve located in the Mecsek Mountain range, Hungary, from March to October between 2011 and 2014. Rodent serum samples were tested for IgG antibodies against Dobrava-Belgrade virus and Puumala virus by enzyme-linked immunosorbent assay (ELISA) using a recombinant nucleocapsid protein. During the 4-year sampling period, 2491 specimens were tested and 254 (10.2%) proved seropositive for orthohantaviruses. In 2011, the seroprevalence among Apodemus spp. and M. glareolus was 17.2% (114/661) and 3.9% (3/77), respectively, although this rate had reversed itself in 2014. Seropositivity was substantiated in 18.4% (12/65) of Myodes voles, while only 3.6% (13/359) of the tested Apodemus rodents were found to be IgG positive. Seroconversion was observed in 58 cases, while seroreversion was only detected in 3 individual cases. A significant difference among the number of infected males and females was identified in the first 2 years of our study. Winter survival with respect to rodents was not negatively affected due to the hantavirus infection. Hantavirus seroprevalence was not directly influenced by host abundance. Consequently, we assume that high rodent density alone does not lead to an increased risk of hantavirus infection among the rodent host population.
Collapse
Affiliation(s)
- Mónika Madai
- Virological Research Group, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Viktória Németh
- Virological Research Group, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Dermatology, Venereology and Oncodermatology, University of Pécs, Pécs, Hungary
| | - Miklós Oldal
- Virological Research Group, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Győző Horváth
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Róbert Herczeg
- Bioinformatics Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Krisztina Kelemen
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Gábor Kemenesi
- Virological Research Group, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Ferenc Jakab
- Virological Research Group, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| |
Collapse
|
3
|
Nunes BTD, de Mendonça MHR, Simith DDB, Moraes AF, Cardoso CC, Prazeres ITE, de Aquino AA, Santos ADCM, Queiroz ALN, Rodrigues DSG, Andriolo RB, Travassos da Rosa ES, Martins LC, Vasconcelos PFDC, Medeiros DBDA. Development of RT-qPCR and semi-nested RT-PCR assays for molecular diagnosis of hantavirus pulmonary syndrome. PLoS Negl Trop Dis 2019; 13:e0007884. [PMID: 31877142 PMCID: PMC6932758 DOI: 10.1371/journal.pntd.0007884] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 10/26/2019] [Indexed: 12/02/2022] Open
Abstract
Hantavirus Pulmonary Syndrome is an, often fatal, emerging zoonotic disease in the Americas caused by hantaviruses (family: Hantaviridae). In Brazil, hantavirus routine diagnosis is based on serology (IgM-ELISA) while RT-PCR is often used to confirm acute infection. A Semi-nested RT-PCR and an internally controlled RT-qPCR assays were developed for detection and quantification of four hantaviruses strains circulating in the Brazilian Amazon: Anajatuba (ANAJV) and Castelo dos Sonhos (CASV) strains of Andes virus (ANDV) species; and Rio Mamoré (RIOMV) and Laguna Negra (LNV) strains of LNV species. A consensus region in the N gene of these hantaviruses was used to design the primer sets and a hydrolysis probe. In vitro transcribed RNA was diluted in standards with known concentration. MS2 bacteriophage RNA was detected together with hantavirus RNA as an exogenous control in a duplex reaction. RT-qPCR efficiency was around 100% and the limit of detection was 0.9 copies/μL of RNA for RT-qPCR and 10 copies/μL of RNA for Semi-nested RT-PCR. There was no amplification of either negative samples or samples positive to other pathogens. To assess the protocol for clinical sensitivity, specificity and general accuracy values, both assays were used to test two groups of samples: one comprising patients with disease (n = 50) and other containing samples from healthy individuals (n = 50), according to IgM-ELISA results. A third group of samples (n = 27) infected with other pathogens were tested for specificity analysis. RT-qPCR was more sensitive than semi-nested RT-PCR, being able to detect three samples undetected by conventional RT-PCR. RT-qPCR clinical sensitivity, specificity and general accuracy values were 92.5%, 100% and 97.63%, respectively. Thus, the assays developed in this study were able to detect the four Brazilian Amazon hantaviruses with good specificity and sensitivity, and may become powerful tools in diagnostic, surveillance and research applications of these and possibly other hantaviruses. Hantavirus Pulmonary Syndrome (HPS) is a serious and often fatal disease caused by viruses known as hantaviruses. These viruses are harbored by wild rodents and people can become infected through contact with infected-rodents droppings, urine or saliva. After an incubation time of 1–8 weeks, patients usually present flu-like symptoms such as fever, fatigue and muscle aches, although some patients may also present headaches, dizziness, chills, nausea, vomiting, diarrhea, and abdominal pain. It is only 4–10 days after initial symptoms, however, that the severe stage of disease takes place. Symptoms include coughing, shortness of breath and eventually the lungs fill with fluid which can lead to shock and death. As such, HPS should be diagnosed quickly as any delay may have great impact on patient recovery. However, given the unspecific nature of early symptoms, clinical diagnosis of HPS is difficult and laboratory assays are needed to confirm hantavirus infection as soon as possible, helping physicians to choose the most adequate treatment. In this study, we developed new laboratory assays that can help detect the virus in infected patients in early stages of disease. In addition, we showed these assays have a good performance in discriminating HPS from other similar diseases by testing not only several samples collected from both HPS patients and healthy individuals but also samples infected with other pathogens. Our results show that these assays may become important tools for rapid, sensitive and specific diagnosis of HPS.
Collapse
Affiliation(s)
- Bruno Tardelli Diniz Nunes
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua, Brazil
- Post-Graduation Program in Virology, Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Darlene de Brito Simith
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua, Brazil
- Post-Graduation Program in Virology, Evandro Chagas Institute, Ananindeua, Brazil
| | - Adriana Freitas Moraes
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua, Brazil
| | - Carla Conceição Cardoso
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Ana Alice de Aquino
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua, Brazil
| | | | | | | | | | | | - Livia Carício Martins
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua, Brazil
- Post-Graduation Program in Virology, Evandro Chagas Institute, Ananindeua, Brazil
| | - Daniele Barbosa de Almeida Medeiros
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua, Brazil
- Post-Graduation Program in Virology, Evandro Chagas Institute, Ananindeua, Brazil
- * E-mail:
| |
Collapse
|
4
|
Shukla S, Cho H, Kwon OJ, Chung SH, Kim M. Prevalence and evaluation strategies for viral contamination in food products: Risk to human health-a review. Crit Rev Food Sci Nutr 2017; 58:405-419. [PMID: 27245816 DOI: 10.1080/10408398.2016.1182891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, viruses of foodborne origin such as norovirus and hepatitis A are considered major causes of foodborne gastrointestinal illness with widespread distribution worldwide. A number of foodborne outbreaks associated with food products of animal and non-animal origins, which often involve multiple cases of variety of food streams, have been reported. Although several viruses, including rotavirus, adenovirus, astrovirus, parvovirus, and other enteroviruses, significantly contribute to incidence of gastrointestinal diseases, systematic information on the role of food in transmitting such viruses is limited. Most of the outbreak cases caused by infected food handlers were the source of 53% of total outbreaks. Therefore, prevention and hygiene measures to reduce the frequency of foodborne virus outbreaks should focus on food workers and production site of food products. Pivotal strategies, such as proper investigation, surveillance, and reports on foodborne viral illnesses, are needed in order to develop more accurate measures to detect the presence and pathogenesis of viral infection with detailed descriptions. Moreover, molecular epidemiology and surveillance of food samples may help analysis of public health hazards associated with exposure to foodborne viruses. In this present review, we discuss different aspects of foodborne viral contamination and its impact on human health. This review also aims to improve understanding of foodborne viral infections as major causes of human illness as well as provide descriptions of their control and prevention strategies and rapid detection by advanced molecular techniques. Further, a brief description of methods available for the detection of viruses in food and related matrices is provided.
Collapse
Affiliation(s)
- Shruti Shukla
- a Department of Food Science and Technology , Yeungnam University , Gyeongsan-si , Gyeongsangbuk-do , Republic of Korea.,b Department of Energy and Materials Engineering , Dongguk University , Seoul , Republic of Korea
| | - Hyunjeong Cho
- c Experiment and Research Institute, National Agricultural Products Quality Management Service , Gimcheon-si , Gyeongsangbuk-do , Republic of Korea
| | - O Jun Kwon
- d Evaluation Team, Gyeongbuk Institute for Regional Program Evaluation , Gyeongsan-si , Gyeongsangbuk-do , Republic of Korea
| | - Soo Hyun Chung
- e Department of Integrated Biomedical and Life Science , Korea University , Seoul , Republic of Korea
| | - Myunghee Kim
- a Department of Food Science and Technology , Yeungnam University , Gyeongsan-si , Gyeongsangbuk-do , Republic of Korea
| |
Collapse
|
5
|
Serosurvey of pathogenic hantaviruses among forestry workers in Hungary. Int J Occup Med Environ Health 2014; 27:766-73. [DOI: 10.2478/s13382-014-0308-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/05/2014] [Indexed: 11/20/2022] Open
|