1
|
Tran XD, Hoang VT, Dao TL, Marty P, Gautret P. High Prevalence of Non-typeable Haemophilus influenzae and Haemophilus haemolyticus Among Vaccinated Children with Community-Acquired Pneumonia in Vietnam. J Epidemiol Glob Health 2024; 14:498-501. [PMID: 38372891 PMCID: PMC11176107 DOI: 10.1007/s44197-024-00195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Among 467 children under five hospitalized with community-acquired pneumonia, the prevalence of Haemophilus influenzae or Haemophilus haemolyticus was 60.8%, all cases were non-typable H. influenzae (NTHi) or H. haemolyticus. NTHi/H. haemolyticus PCR detection was associated with about twice the risk for severe disease. The results highlight the need for increased awareness and research efforts to investigate the role of NTHi/H. haemolyticus in severe CAP among children.
Collapse
Affiliation(s)
- Xuan Duong Tran
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Van Thuan Hoang
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Thi Loi Dao
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Pierre Marty
- Université Côte d'Azur, Inserm, C3M, Nice Cedex 3, France
- Parasitologie-Mycologie, Centre Hospitalier Universitaire L'Archet, Nice Cedex 3, France
| | - Philippe Gautret
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam.
- IHU-Méditerranée Infection, Marseille, France.
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
| |
Collapse
|
2
|
Walsh L, Clark SA, Derrick JP, Borrow R. Beyond the usual suspects: Reviewing infections caused by typically-commensal Neisseria species. J Infect 2023; 87:479-489. [PMID: 37797844 DOI: 10.1016/j.jinf.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/27/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE Few data outside of individual case reports are available on non-meningococcal, non-gonococcal species of Neisseria as causative agents of invasive disease. This review collates disease, organism and patient information from case reports on the topic. METHODS A literature search was performed examining articles describing diseases caused by non-meningococcal and non-gonococcal Neisseria. FINDINGS Neisseria present as opportunistic pathogens causing a wide variety of diseases including serious presentations, endocarditis being the most common condition described and N. mucosa the most commonly presenting pathogen overall. Disease may occur in otherwise healthy patients, although risk factors for infection include recent surgery, an immunocompromised state, poor oral health, and intravenous drug use. CONCLUSIONS Commensal Neisseria infections are rare but can present serious invasive diseases. Further research is required to determine why some species cause disease more than others or why some are inclined towards particular manifestations.
Collapse
Affiliation(s)
- Lloyd Walsh
- Meningococcal Reference Unit, UK Health Security Agency, Manchester M13 9WL, United Kingdom.
| | - Stephen A Clark
- Meningococcal Reference Unit, UK Health Security Agency, Manchester M13 9WL, United Kingdom
| | - Jeremy P Derrick
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester M13 9WL, United Kingdom
| |
Collapse
|
3
|
Hachisu Y, Tamura K, Murakami K, Fujita J, Watanabe H, Tanabe Y, Kuronuma K, Kubota T, Oshima K, Maruyama T, Kasahara K, Nishi J, Abe S, Nakamura M, Kubota M, Hirai S, Ishioka T, Ikenoue C, Fukusumi M, Sunagawa T, Suzuki M, Akeda Y, Oishi K. Invasive Haemophilus influenzae disease among adults in Japan during 2014-2018. Infection 2022; 51:355-364. [PMID: 35902511 DOI: 10.1007/s15010-022-01885-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE We describe the epidemiology of invasive Haemophilus influenzae disease (IHD) among adults in Japan. METHODS Data for 200 adult IHD patients in 2014-2018 were analyzed. The capsular type of H. influenzae was determined by bacterial agglutination and polymerase chain reaction (PCR), and non-typeable Haemophilus influenzae (NTHi) was identified by PCR. RESULTS The annual incidence of IHD (cases per 100,000 population) was 0.12 for age 15-64 years and 0.88 for age ≥ 65 years in 2018. The median age was 77 years, and 73.5% were aged ≥ 65 years. About one-fourth of patients were associated with immunocompromising condition. The major presentations were pneumonia, followed by bacteremia, meningitis and other than pneumonia or meningitis (other diseases). The case fatality rate (CFR) was 21.2% for all cases, and was significantly higher in the ≥ 65-year group (26.1%) than in the 15-64-year group (7.5%) (p = 0.013). The percentage of cases with pneumonia was significantly higher in the ≥ 65-year group than in the 15-64-year group (p < 0.001). The percentage of cases with bacteremia was significantly higher in the 15-64-year group than in the ≥ 65-year group (p = 0.027). Of 200 isolates, 190 (95.0%) were NTHi strains, and the other strains were encapsulated strains. 71 (35.5%) were resistant to ampicillin, but all were susceptible to ceftriaxone. CONCLUSION The clinical presentations of adult IHD patients varied widely; about three-fourths of patients were age ≥ 65 years and their CFR was high. Our findings support preventing strategies for IHD among older adults, including the development of NTHi vaccine.
Collapse
Affiliation(s)
- Yushi Hachisu
- Chiba Prefectural Institute of Public Health, Chiba, Japan
- Field Epidemiology Training Program, Infectious Diseases Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kosuke Tamura
- Toyama Institute of Health, 17-1, Nakataikouyama, Imizu, Toyama, 939-0363, Japan
| | - Koichi Murakami
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jiro Fujita
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroshi Watanabe
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, Japan
| | - Yoshinari Tanabe
- Department of Respiratory Medicine, Niigata Prefectural Shibata Hospital, Niigata, Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Tetsuya Kubota
- Department of Respiratory Medicine and Allergology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kengo Oshima
- Department of Infectious Diseases, Tohoku University Hospital, Miyagi, Japan
| | | | - Kei Kasahara
- Center for Infectious Diseases, Nara Medical University, Nara, Japan
| | - Junichiro Nishi
- Department of Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuichi Abe
- Department of Infectious Disease and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Masahiko Nakamura
- Toyama Institute of Health, 17-1, Nakataikouyama, Imizu, Toyama, 939-0363, Japan
| | - Mayumi Kubota
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinichiro Hirai
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Taisei Ishioka
- Department of Applied Biological Science, Faculty of Agriculture, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Chiaki Ikenoue
- Field Epidemiology Training Program, Infectious Diseases Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Field Epidemic Intelligence, Research and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Munehisa Fukusumi
- Field Epidemiology Training Program, Infectious Diseases Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Field Epidemic Intelligence, Research and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomimasa Sunagawa
- Center for Field Epidemic Intelligence, Research and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motoi Suzuki
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazunori Oishi
- Toyama Institute of Health, 17-1, Nakataikouyama, Imizu, Toyama, 939-0363, Japan.
| |
Collapse
|
4
|
Haemophilin-Producing Strains of Haemophilus haemolyticus Protect Respiratory Epithelia from NTHi Colonisation and Internalisation. Pathogens 2021; 10:pathogens10010029. [PMID: 33401487 PMCID: PMC7823694 DOI: 10.3390/pathogens10010029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a significant respiratory tract pathogen responsible for infections that collectively pose a substantial health and socioeconomic burden. The clinical course of these infections is largely dictated by NTHi interactions with host respiratory epithelia, and thus, approaches that disrupt colonisation and invasion may have significant therapeutic potential. Survival, successful host–cell interactions, and pathogenesis are reliant on NTHi’s ability to sequester host-derived haem. Previously, we demonstrated the therapeutic potential of exploiting this haem-dependence using a closely related competitor bacterium, Haemophilus haemolyticus (Hh). Hh strains capable of producing the novel haem-binding protein haemophilin (Hpl) possessed potent inhibitory activity by restricting NTHi access to haem in a broth co-culture environment. Here, we extend this work to cell culture models that more closely represent the human respiratory epithelium and show that Hh strains with high levels of hpl expression protect epithelial cell line monolayers against adhesion and invasion by NTHi. Inhibitory activity was dependent on the level of Hpl production, which was stimulated by NTHi challenge and nasopharyngeal cell exposure. Provided these protective benefits translate to in vivo applications, Hpl-producing Hh may have probiotic utility against NTHi infections by inhibiting requisite nasopharyngeal colonisation.
Collapse
|
5
|
Tchatchouang S, Nzouankeu A, Hong E, Terrade A, Denizon M, Deghmane AE, Ndiang SMT, Pefura-Yone EW, Penlap Beng V, Njouom R, Fonkoua MC, Taha MK. Analysis of Haemophilus species in patients with respiratory tract infections in Yaoundé, Cameroon. Int J Infect Dis 2020; 100:12-20. [PMID: 32827751 DOI: 10.1016/j.ijid.2020.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES To identifyHaemophilus species and characterize antimicrobial susceptibility of isolates from patients with respiratory tract infections (RTIs) in Cameroon. METHODS Isolates (n = 95) were from patients with RTIs obtained from two Hospitals in Yaoundé, Cameroon. Isolates were identified by biochemical assay, PCR-based method, MALDI-TOF and whole genome sequencing. Antibiotic minimum inhibitory concentrations were determined by E-test. RESULTS H. influenzae was the most prevalent species varying from 76.8% to 84.2% according to different methods. The isolates were mainly nontypable (n = 70, 96%). Three isolates of H. influenzae were capsulated (b, e and f). The isolates were genetically diverse and 40 unique sequence types were identified including 11 new ones. Resistance to ampicillin was observed among 55.3% (52/94) and 9% (14/52) produced TEM-1 β-lactamase. PBP3 mutations occurred in 57.7% of ampicillin resistant isolates (30/52). Eleven isolates were chloramphenicol resistant with 80% producing chloramphenicol acetyltransferase (8/10). Four Haemophilus isolates were rifampicin resistant with two mutations in rpoB gene. Five isolates were ciprofloxacin resistant and harbored mutations in the quinolone resistance determining regions of gyrA and parC genes. CONCLUSION H. influenzae isolates are highly diverse and show high levels of antibiotic resistance. H. influenzae serotype b is still circulating in the post-vaccination era.
Collapse
Affiliation(s)
- Serges Tchatchouang
- Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon; Department of Bacteriology, Centre Pasteur of Cameroon, Yaoundé, Cameroon; Department of Biochemistry, University of Yaoundé, Yaoundé, Cameroon; Invasive Bacterial Infections Unit, National Reference Centre for Meningococci and Haemophilus influenzae, Institut Pasteur, Paris, France
| | - Ariane Nzouankeu
- Department of Bacteriology, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | - Eva Hong
- Invasive Bacterial Infections Unit, National Reference Centre for Meningococci and Haemophilus influenzae, Institut Pasteur, Paris, France
| | - Aude Terrade
- Invasive Bacterial Infections Unit, National Reference Centre for Meningococci and Haemophilus influenzae, Institut Pasteur, Paris, France
| | - Mélanie Denizon
- Invasive Bacterial Infections Unit, National Reference Centre for Meningococci and Haemophilus influenzae, Institut Pasteur, Paris, France
| | - Ala-Eddine Deghmane
- Invasive Bacterial Infections Unit, National Reference Centre for Meningococci and Haemophilus influenzae, Institut Pasteur, Paris, France
| | | | | | | | - Richard Njouom
- Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | | | - Muhamed-Kheir Taha
- Invasive Bacterial Infections Unit, National Reference Centre for Meningococci and Haemophilus influenzae, Institut Pasteur, Paris, France.
| |
Collapse
|
6
|
In Vitro Anti-NTHi Activity of Haemophilin-Producing Strains of Haemophilus haemolyticus. Pathogens 2020; 9:pathogens9040243. [PMID: 32218184 PMCID: PMC7238096 DOI: 10.3390/pathogens9040243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 12/21/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a leading causative organism of opportunistic respiratory tract infections. However, there are currently no effective vaccination strategies, and existing treatments are compromised by antibiotic resistance. We previously characterized Haemophilus haemolyticus (Hh) strains capable of producing haemophilin (HPL), a heme-binding protein that restricts NTHi growth by limiting its access to an essential growth factor, heme. Thus, these strains may have utility as a probiotic therapy against NTHi infection by limiting colonization, migration and subsequent infection in susceptible individuals. Here, we assess the preliminary feasibility of this approach by direct in vitro competition assays between NTHi and Hh strains with varying capacity to produce HPL. Subsequent changes in NTHi growth rate and fitness, in conjunction with HPL expression analysis, were employed to assess the NTHi-inhibitory capacity of Hh strains. HPL-producing strains of Hh not only outcompeted NTHi during short-term and extended co-culture, but also demonstrated a growth advantage compared with Hh strains unable to produce the protein. Additionally, HPL expression levels during competition correlated with the NTHi-inhibitory phenotype. HPL-producing strains of Hh demonstrate significant probiotic potential against NTHi colonization in the upper respiratory tract, however, further investigations are warranted to demonstrate a range of other characteristics that would support the eventual development of a probiotic.
Collapse
|
7
|
Latham RD, Torrado M, Atto B, Walshe JL, Wilson R, Guss JM, Mackay JP, Tristram S, Gell DA. A heme-binding protein produced by Haemophilus haemolyticus inhibits non-typeable Haemophilus influenzae. Mol Microbiol 2019; 113:381-398. [PMID: 31742788 DOI: 10.1111/mmi.14426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/02/2023]
Abstract
Commensal bacteria serve as an important line of defense against colonisation by opportunisitic pathogens, but the underlying molecular mechanisms remain poorly explored. Here, we show that strains of a commensal bacterium, Haemophilus haemolyticus, make hemophilin, a heme-binding protein that inhibits growth of the opportunistic pathogen, non-typeable Haemophilus influenzae (NTHi) in culture. We purified the NTHi-inhibitory protein from H. haemolyticus and identified the hemophilin gene using proteomics and a gene knockout. An x-ray crystal structure of recombinant hemophilin shows that the protein does not belong to any of the known heme-binding protein folds, suggesting that it evolved independently. Biochemical characterisation shows that heme can be captured in the ferrous or ferric state, and with a variety of small heme-ligands bound, suggesting that hemophilin could function under a range of physiological conditions. Hemophilin knockout bacteria show a limited capacity to utilise free heme for growth. Our data suggest that hemophilin is a hemophore and that inhibition of NTHi occurs by heme starvation, raising the possibility that competition from hemophilin-producing H. haemolyticus could antagonise NTHi colonisation in the respiratory tract.
Collapse
Affiliation(s)
- Roger D Latham
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Mario Torrado
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - James L Walshe
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - J Mitchell Guss
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Stephen Tristram
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - David A Gell
- School of Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
8
|
Osman KL, Jefferies JMC, Woelk CH, Devos N, Pascal TG, Mortier MC, Devaster JM, Wilkinson TMA, Cleary DW, Clarke SC. Patients with Chronic Obstructive Pulmonary Disease harbour a variation of Haemophilus species. Sci Rep 2018; 8:14734. [PMID: 30282975 PMCID: PMC6170463 DOI: 10.1038/s41598-018-32973-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/19/2018] [Indexed: 02/04/2023] Open
Abstract
H. haemolyticus is often misidentified as NTHi due to their close phylogenetic relationship. Differentiating between the two is important for correct identification and appropriate treatment of infective organism and to ensure any role of H. haemolyticus in disease is not being overlooked. Speciation however is not completely reliable by culture and PCR methods due to the loss of haemolysis by H. haemolyticus and the heterogeneity of NTHi. Haemophilus isolates from COPD as part of the AERIS study (ClinicalTrials - NCT01360398) were speciated by analysing sequence data for the presence of molecular markers. Further investigation into the genomic relationship was carried out using average nucleotide identity and phylogeny of allelic and genome alignments. Only 6.3% were identified as H. haemolyticus. Multiple in silico methods were able to distinguish H. haemolyticus from NTHi. However, no single gene target was found to be 100% accurate. A group of omp2 negative NTHi were observed to be phylogenetically divergent from H. haemolyticus and remaining NTHi. The presence of an atypical group from a geographically and disease limited set of isolates supports the theory that the heterogeneity of NTHi may provide a genetic continuum between NTHi and H. haemolyticus.
Collapse
Affiliation(s)
- Karen L Osman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK
| | - Johanna M C Jefferies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK
| | - Christopher H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK.,Merck Exploratory Science Center, Merck Research Laboratories, Cambridge, MA, USA
| | | | | | | | | | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK.,NIHR Southampton Respiratory Biomedical Research Unit, Southampton, United Kingdom.,Wessex Investigational Sciences Hub, University of Southampton, Southampton, United Kingdom
| | - David W Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK.,NIHR Southampton Respiratory Biomedical Research Unit, Southampton, United Kingdom
| | - Stuart C Clarke
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK. .,NIHR Biomedical Research Centre, University of Southampton, Southampton, United Kingdom. .,Wessex Investigational Sciences Hub, University of Southampton, Southampton, United Kingdom. .,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom. .,Global Health Research Institute, University of Southampton, Southampton, United Kingdom.
| | | |
Collapse
|
9
|
Beissbarth J, Binks MJ, Marsh RL, Chang AB, Leach AJ, Smith-Vaughan HC. Recommendations for application of Haemophilus influenzae PCR diagnostics to respiratory specimens for children living in northern Australia: a retrospective re-analysis. BMC Res Notes 2018; 11:323. [PMID: 29784027 PMCID: PMC5963172 DOI: 10.1186/s13104-018-3429-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/10/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Haemophilus haemolyticus can be misidentified as nontypeable Haemophilus influenzae (NTHi) due to their phenotypic similarities in microbiological culture. This study aimed to determine the prevalence of misidentified NTHi in respiratory specimens from children living in northern Australia. RESULTS Among respiratory specimens collected in studies between 2010 and 2013, retrospective PCR analysis found that routine culture misidentified H. haemolyticus as NTHi in 0.3% (3/879) of nasal specimens, 25% (14/55) of bronchoalveolar lavage and 40% (12/30) of throat specimens. Therefore, in this population, PCR-based NTHi diagnostics are indicated for throat and bronchoalveolar specimens, but not for nasal specimens.
Collapse
Affiliation(s)
- Jemima Beissbarth
- Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Australia.
| | - Michael J Binks
- Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Australia
| | - Robyn L Marsh
- Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Australia
| | - Anne B Chang
- Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Australia.,Department of Respiratory Medicine, Lady Cilento Children's Hospital, PO Box 3474, South Brisbane, QLD, 4101, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, QLD, 4001, Australia
| | - Amanda J Leach
- Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Australia
| | - Heidi C Smith-Vaughan
- Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Australia
| |
Collapse
|
10
|
Gadsby NJ, McHugh MP, Russell CD, Mark H, Conway Morris A, Laurenson IF, Hill AT, Templeton KE. Development of two real-time multiplex PCR assays for the detection and quantification of eight key bacterial pathogens in lower respiratory tract infections. Clin Microbiol Infect 2015; 21:788.e1-788.e13. [PMID: 25980353 PMCID: PMC4509705 DOI: 10.1016/j.cmi.2015.05.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/23/2015] [Accepted: 05/03/2015] [Indexed: 11/30/2022]
Abstract
The frequent lack of a positive and timely microbiological diagnosis in patients with lower respiratory tract infection (LRTI) is an important obstacle to antimicrobial stewardship. Patients are typically prescribed broad-spectrum empirical antibiotics while microbiology results are awaited, but, because these are often slow, negative, or inconclusive, de-escalation to narrow-spectrum agents rarely occurs in clinical practice. The aim of this study was to develop and evaluate two multiplex real-time PCR assays for the sensitive detection and accurate quantification of Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Moraxella catarrhalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. We found that all eight bacterial targets could be reliably quantified from sputum specimens down to a concentration of 100 CFUs/reaction (8333 CFUs/mL). Furthermore, all 249 positive control isolates were correctly detected with our assay, demonstrating effectiveness on both reference strains and local clinical isolates. The specificity was 98% on a panel of nearly 100 negative control isolates. Bacterial load was quantified accurately when three bacterial targets were present in mixtures of varying concentrations, mimicking likely clinical scenarios in LRTI. Concordance with culture was 100% for culture-positive sputum specimens, and 90% for bronchoalveolar lavage fluid specimens, and additional culture-negative bacterial infections were detected and quantified. In conclusion, a quantitative molecular test for eight key bacterial causes of LRTI has the potential to provide a more sensitive decision-making tool, closer to the time-point of patient admission than current standard methods. This should facilitate de-escalation from broad-spectrum to narrow-spectrum antibiotics, substantially improving patient management and supporting efforts to curtail inappropriate antibiotic use.
Collapse
Affiliation(s)
- N J Gadsby
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| | - M P McHugh
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - C D Russell
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - H Mark
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - A Conway Morris
- Department of Anaesthesia, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - I F Laurenson
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - A T Hill
- Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - K E Templeton
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
11
|
Hinz R, Zautner AE, Hagen RM, Frickmann H. Difficult identification of Haemophilus influenzae, a typical cause of upper respiratory tract infections, in the microbiological diagnostic routine. Eur J Microbiol Immunol (Bp) 2015; 5:62-7. [PMID: 25883794 PMCID: PMC4397848 DOI: 10.1556/eujmi-d-14-00033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022] Open
Abstract
Haemophilus influenzae is a key pathogen of upper respiratory tract infections. Its reliable discrimination from nonpathogenic Haemophilus spp. is necessary because merely colonizing bacteria are frequent at primarily unsterile sites. Due to close phylogenetic relationship, it is not easy to discriminate H. influenzae from the colonizer Haemophilus haemolyticus. The frequency of H. haemolyticus isolations depends on factors like sampling site, patient condition, and geographic region. Biochemical discrimination has been shown to be nonreliable. Multiplex PCR including marker genes like sodC, fucK, and hpd or sequencing of the 16S rRNA gene, the P6 gene, or multilocus-sequence-typing is more promising. For the diagnostic routine, such techniques are too expensive and laborious. If available, matrix-assisted laser-desorption-ionization time-of-flight mass spectrometry is a routine-compatible option and should be used in the first line. However, the used database should contain well-defined reference spectra, and the spectral difference between H. influenzae and H. haemolyticus is small. Fluorescence in-situ hybridization is an option for less well-equipped laboratories, but the available protocol will not lead to conclusive results in all instances. It can be used as a second line approach. Occasional ambiguous results have to be resolved by alternative molecular methods like 16S rRNA gene sequencing.
Collapse
|