1
|
Wang Y, Sholeh M, Yang L, Shakourzadeh MZ, Beig M, Azizian K. Global trends of ceftazidime-avibactam resistance in gram-negative bacteria: systematic review and meta-analysis. Antimicrob Resist Infect Control 2025; 14:10. [PMID: 39934901 PMCID: PMC11818042 DOI: 10.1186/s13756-025-01518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The emergence of antimicrobial resistance in Gram-negative bacteria (GNB) is a major global concern. Ceftazidime-avibactam (CAZ-AVI) has been identified as a potential treatment option for complicated infections. OBJECTIVES This meta-analysis aimed to evaluate the global resistance proportions of GNB to CAZ-AVI comprehensively. METHODS Studies were searched in Scopus, PubMed, and EMBASE (until September 2024), and statistical analyses were conducted using STATA software (version 20.0). RESULTS CAZ-AVI resistance proportions were determined in 136 studies, with 25.8% (95% CI 22.2-29.7) for non-fermentative gram-negative bacilli and 6.1% (95% CI 4.9-7.4) for Enterobacterales. The CAZ-AVI resistance proportion significantly increased from 5.6% (95% CI 4.1-7.6) of 221,278 GNB isolates in 2015-2020 to 13.2% (95% CI 11.4-15.2) of 285,978 GNB isolates in 2021-2024. Regionally, CAZ-AVI resistance was highest in Asia 19.3% (95% CI 15.7-24.23.4), followed by Africa 13.6% (95% CI 5.6-29.2), Europe 11% (95% CI 7.8-15.2), South America 6.1% (95% CI 3.2-11.5) and North America 5.3% (95% CI 4.2-6.7). Among GNB resistance profiles, colistin-resistant isolates and XDR isolates exhibited the highest resistance proportions (37.1%, 95% CI 14-68 and 32.1%, 95% CI 18.5-49.6), respectively), followed by carbapenem-resistant isolates and MDR isolates [(25.8%, 95% CI 22.6-29.3) and (13%, 95% CI 9.6, 17.3)]. CONCLUSION A high proportion of GNB isolates from urinary tract infections remained susceptible to CAZ-AVI, indicating its potential as a suitable treatment option. However, the increasing resistance trends among GNB are concerning and warrant continuous monitoring to maintain CAZ-AVI's effectiveness against GNB infections.
Collapse
Affiliation(s)
- Yang Wang
- Nanchuan District Center for Disease Control and Prevention, Chongqing, 408400, China
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - LunDi Yang
- Nanchuan District Center for Disease Control and Prevention, Chongqing, 408400, China.
| | - Matin Zafar Shakourzadeh
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgān, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Zoonosis Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
2
|
Aslan AT, Akova M. Recent updates in treating carbapenem-resistant infections in patients with hematological malignancies. Expert Rev Anti Infect Ther 2024; 22:1055-1071. [PMID: 39313753 DOI: 10.1080/14787210.2024.2408746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Patients with hematological malignancies (PHMs) are at increased risk for infections caused by carbapenem-resistant organisms (CROs) due to frequent exposure to broad-spectrum antibiotics and prolonged hospital stays. These infections result in high mortality and morbidity rates along with delays in chemotherapy, longer hospitalizations, and increased health care costs. AREAS COVERED Treatment alternatives for CRO infections in PHMs. EXPERT OPINION The best available treatment option for KPC and OXA-48 producers is ceftazidime/avibactam. Imipenem/cilastatin/relebactam and meropenem/vaborbactam remain as the alternative options. They can also be used as salvage therapy in KPC-positive Enterobacterales infections resistant to ceftazidime/avibactam, if in vitro susceptibility is shown. Treatment of metallo-β-lactamase producers is an unmet need. Ceftazidime/avibactam plus aztreonam or aztreonam/avibactam seems to be the most reliable option for metallo-β-lactamase producers. As a first-line option for carbapenem-resistant Pseudomonas aeruginosa infections, ceftolozane/tazobactam is preferable and ceftazidime/avibactam and imipenem/cilastatin/relebactam constitute alternative regimens. Although sulbactam/durlobactam is the most reliable option against carbapenem-resistant Acinetobacter baumannii infections, its utility as monotherapy and in PHMs is not yet known. Cefiderocol can be selected as a 'last-resort' option for CRO infections. New risk score models supported by artificial intelligence algorithms can be used to predict the exact risk of infections in previously colonized patients.
Collapse
Affiliation(s)
- Abdullah Tarık Aslan
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Murat Akova
- Faculty of Medicine, Infectious Diseases and Clinical Microbiology, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
3
|
Ali F, Wu J, Kc D. A Sixty-Nine-Year-Old Female With Serratia marcescens Infection. Cureus 2023; 15:e49985. [PMID: 38179352 PMCID: PMC10766386 DOI: 10.7759/cureus.49985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Serratia marcescens is a bacterial pathogen that tends to cause opportunistic infections, mainly in immune-compromised patients. In this case, we present a 69-year-old female who presented to the emergency department (ED) at Mount Sinai Hospital in Chicago on February 11th, 2022, after a mechanical fall. She had a medical history of metastatic lung cancer treated with chemotherapy, hypertension, pulmonary embolism, polysubstance abuse, and chronic obstructive pulmonary disease (COPD). The patient was found to be positive for systemic inflammatory response syndrome (SIRS). The patient was then started on broad-spectrum antibiotics, including vancomycin and cefepime. Blood cultures were ordered and came back positive for Serratia marcescens. This patient had multiple factors for immune suppression, including metastatic lung cancer, chemotherapy, and polysubstance abuse. The infectious disease department was consulted for the blood culture results, and ceftriaxone was recommended. Later on, levofloxacin was recommended. Blood cultures were negative two days after being positive. Afterward, the patient was kept for monitoring until discharge. Serratia marcescens is found in several reservoirs in nature. Therefore, preventing contact with this pathogen in immune-compromised patients can be difficult. It is important to have a degree of clinical suspicion for opportunistic pathogens like Serratia marcescens whenever a patient with factors for immune compromise presents for any condition.
Collapse
Affiliation(s)
- Furkhan Ali
- Internal Medicine, Mount Sinai Hospital, Chicago, USA
| | - JinJin Wu
- Internal Medicine, Mount Sinai Hospital, Chicago, USA
| | - Dilip Kc
- Internal Medicine, Mount Sinai Hospital, Chicago, USA
| |
Collapse
|
4
|
Aslan AT, Ezure Y, Horcajada JP, Harris PNA, Paterson DL. In vitro, in vivo and clinical studies comparing the efficacy of ceftazidime-avibactam monotherapy with ceftazidime-avibactam-containing combination regimens against carbapenem-resistant Enterobacterales and multidrug-resistant Pseudomonas aeruginosa isolates or infections: a scoping review. Front Med (Lausanne) 2023; 10:1249030. [PMID: 37727767 PMCID: PMC10506411 DOI: 10.3389/fmed.2023.1249030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Carbapenem-resistant Enterobacterales (CRE) and multidrug-resistant Pseudomonas aeruginosa (MDR-PA) infections are associated with a high risk of morbidity, mortality, and treatment costs. We aimed to evaluate in vitro, in vivo and clinical studies comparing the efficacy of ceftazidime-avibactam (CZA) combination regimens with CZA alone against CRE and/or MDR-PA isolates or infections. Methods We systematically reviewed the relevant literature in CINAHL/MEDLINE, Pubmed, Cochrane, Web of Science, Embase, and Scopus until December 1, 2022. Review articles, grey literature, abstracts, comments, editorials, non-peer reviewed articles, non-English articles, and in vitro synergy studies conducted on single isolates were excluded. Results 22 in vitro, 7 in vivo and 20 clinical studies were evaluated. In vitro studies showed reliable synergy between CZA and aztreonam against metallo-β-lactamase (MBL)-producing isolates. Some studies indicated good in vitro synergy between CZA and amikacin, meropenem, fosfomycin and polymyxins against CRE isolates. For MDR-PA isolates, there are comparatively fewer in vitro or in vivo studies. In observational clinical studies, mortality, clinical cure, adverse events, and development of CZA resistance after exposure were generally similar in monotherapy and combination therapy groups. However, antibiotic-related nephrotoxicity and infection relapses were higher in patients receiving CZA combination therapies. Discussion The benefit, if any, of CZA combination regimens in MDR-PA infections is elusive, as very few clinical studies have included these infections. There is no currently documented clinical benefit for the use of CZA combination regimens rather than CZA monotherapy. CZA combined with aztreonam for serious infections due to MBL producers should be evaluated by randomized controlled trials. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=278552, CRD42021278552.
Collapse
Affiliation(s)
- Abdullah Tarık Aslan
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Yukiko Ezure
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Juan Pablo Horcajada
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
- Infectious Diseases Department, Hospital del Mar, Institut Hospital Del Mar d’Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Patrick N. A. Harris
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - David L. Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Sasi S, Faraj H, Barazi R, Kolleri J, Chitrambika P, Rahman Al Maslamani MA, Ali M. Endogenous endophthalmitis due to Serratia marcescens secondary to late-onset empyema Post-Cardiac surgery in an End-Stage renal disease patient on peritoneal dialysis. Clin Case Rep 2023; 11:e6997. [PMID: 36852121 PMCID: PMC9957995 DOI: 10.1002/ccr3.6997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/18/2023] [Accepted: 02/12/2023] [Indexed: 02/27/2023] Open
Abstract
Endogenous bacterial endophthalmitis results from bacterial seeding of the eye during bacteremia. A diagnosis of endogenous bacterial endophthalmitis requires clinical findings such as vitritis or hypopyon along with positive blood cultures. Serratia marcescens is the second most common pathogen causing hospital-acquired ocular infections. This report describes a case of endogenous bacterial endophthalmitis caused by S. marcescens in an older adult with end-stage renal disease (ESRD) on peritoneal dialysis, who had late-onset pleural empyema secondary to coronary artery bypass grafting (CABG). A 61-year-old gentleman presented with a two-day history of cloudy vision, black floaters, pain, swelling, and gradual vision loss in his right eye. There was no history of trauma, ocular surgeries, or previous similar episodes. He had myocardial infarction treated with CABG 3 months back. Examination showed a 3 mm hypopyon in the anterior chamber. He had classic signs of endophthalmitis with positive blood cultures for S. marcescens. He was treated with high-dose intravenous meropenem and intravitreal ceftazidime without vitrectomy. Endophthalmitis progressed to complete vision loss in his right eye, requiring evisceration. Endophthalmitis caused by S. marcescens is rare, but long-term outcomes can be severe, causing complete vision loss in about 60% of the patients. It is usually hospital-acquired, and the source can be late-onset empyema several months after cardiac surgery, in an immunocompromised patient. Systemic antibiotics should be supplemented with intravitreal agents with or without pars plana vitrectomy.
Collapse
Affiliation(s)
- Sreethish Sasi
- Infectious Diseases Division, Department of Internal MedicineHamad Medical CorporationDohaQatar
| | - Hazem Faraj
- Department of Internal MedicineHamad Medical CorporationDohaQatar
| | - Raja Barazi
- Department of PharmacyHamad Medical CorporationDohaQatar
| | - Jouhar Kolleri
- Department of Clinical ImagingHamad Medical CorporationDohaQatar
| | - P. Chitrambika
- Department of AnesthesiologyHamad Medical CorporationDohaQatar
| | | | - Maisa Ali
- Infectious Diseases Division, Department of Internal MedicineHamad Medical CorporationDohaQatar
| |
Collapse
|
6
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis 2022; 75:187-212. [PMID: 35439291 PMCID: PMC9890506 DOI: 10.1093/cid/ciac268] [Citation(s) in RCA: 291] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. The initial guidance document on infections caused by extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa) was published on 17 September 2020. Over the past year, there have been a number of important publications furthering our understanding of the management of ESBL-E, CRE, and DTR-P. aeruginosa infections, prompting a rereview of the literature and this updated guidance document. METHODS A panel of 6 infectious diseases specialists with expertise in managing antimicrobial-resistant infections reviewed, updated, and expanded previously developed questions and recommendations about the treatment of ESBL-E, CRE, and DTR-P. aeruginosa infections. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment recommendations are provided with accompanying rationales, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Recommendations apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of 24 October 2021. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Correspondence: P. D. Tamma, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA ()
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service and Center for Antimicrobial Resistance and Epidemiology, Louis Stokes Cleveland Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
The Role of Colistin in the Era of New β-Lactam/β-Lactamase Inhibitor Combinations. Antibiotics (Basel) 2022; 11:antibiotics11020277. [PMID: 35203879 PMCID: PMC8868358 DOI: 10.3390/antibiotics11020277] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
With the current crisis related to the emergence of carbapenem-resistant Gram-negative bacteria (CR-GNB), classical treatment approaches with so-called “old-fashion antibiotics” are generally unsatisfactory. Newly approved β-lactam/β-lactamase inhibitors (BLBLIs) should be considered as the first-line treatment options for carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPA) infections. However, colistin can be prescribed for uncomplicated lower urinary tract infections caused by CR-GNB by relying on its pharmacokinetic and pharmacodynamic properties. Similarly, colistin can still be regarded as an alternative therapy for infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) until new and effective agents are approved. Using colistin in combination regimens (i.e., including at least two in vitro active agents) can be considered in CRAB infections, and CRE infections with high risk of mortality. In conclusion, new BLBLIs have largely replaced colistin for the treatment of CR-GNB infections. Nevertheless, colistin may be needed for the treatment of CRAB infections and in the setting where the new BLBLIs are currently unavailable. In addition, with the advent of rapid diagnostic methods and novel antimicrobials, the application of personalized medicine has gained significant importance in the treatment of CRE infections.
Collapse
|
8
|
Moreira NK, Caierão J. Ceftazidime-avibactam: are we safe from class A carbapenemase producers' infections? Folia Microbiol (Praha) 2021; 66:879-896. [PMID: 34505209 DOI: 10.1007/s12223-021-00918-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/29/2021] [Indexed: 01/14/2023]
Abstract
Recently, new combinations of β-lactams and β-lactamase inhibitors became available, including ceftazidime-avibactam, and increased the ability to treat infections caused by carbapenem-resistant Enterobacterales (CRE). Despite the reduced time of clinical use, isolates expressing resistance to ceftazidime-avibactam have been reported, even during treatment or in patients with no previous contact with this drug. Here, we detailed review data on global ceftazidime-avibactam susceptibility, the mechanisms involved in resistance, and the molecular epidemiology of resistant isolates. Ceftazidime-avibactam susceptibility remains high (≥ 98.4%) among Enterobacterales worldwide, being lower among extended-spectrum β-lactamase (ESBL) producers and CRE. Alterations in class A β-lactamases are the major mechanism involved in ceftazidime-avibactam resistance, and mutations are mainly, but not exclusively, located in the Ω loop of these enzymes. Modifications in Klebsiella pneumoniae carbapenemase (KPC) 3 and KPC-2 have been observed by many authors, generating variants with different mutations, insertions, and/or deletions. Among these, the most commonly described is Asp179Tyr, both in KPC-3 (KPC-31 variant) and in KPC-2 (KPC-33 variant). Changes in membrane permeability and overexpression of efflux systems may also be associated with ceftazidime-avibactam resistance. Although several clones have been reported, ST258 with Asp179Tyr deserves special attention. Surveillance studies and rationale use are essential to retaining the activity of this and other antimicrobials against class A CRE.
Collapse
Affiliation(s)
- Natália Kehl Moreira
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil.
| | - Juliana Caierão
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil
| |
Collapse
|
9
|
Yahav D, Giske CG, Grāmatniece A, Abodakpi H, Tam VH, Leibovici L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin Microbiol Rev 2020; 34:e00115-20. [PMID: 33177185 PMCID: PMC7667665 DOI: 10.1128/cmr.00115-20] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The limited armamentarium against drug-resistant Gram-negative bacilli has led to the development of several novel β-lactam-β-lactamase inhibitor combinations (BLBLIs). In this review, we summarize their spectrum of in vitro activities, mechanisms of resistance, and pharmacokinetic-pharmacodynamic (PK-PD) characteristics. A summary of available clinical data is provided per drug. Four approved BLBLIs are discussed in detail. All are options for treating multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa Ceftazidime-avibactam is a potential drug for treating Enterobacterales producing extended-spectrum β-lactamase (ESBL), Klebsiella pneumoniae carbapenemase (KPC), AmpC, and some class D β-lactamases (OXA-48) in addition to carbapenem-resistant Pseudomonas aeruginosa Ceftolozane-tazobactam is a treatment option mainly for carbapenem-resistant P. aeruginosa (non-carbapenemase producing), with some activity against ESBL-producing Enterobacterales Meropenem-vaborbactam has emerged as treatment option for Enterobacterales producing ESBL, KPC, or AmpC, with similar activity as meropenem against P. aeruginosa Imipenem-relebactam has documented activity against Enterobacterales producing ESBL, KPC, and AmpC, with the combination having some additional activity against P. aeruginosa relative to imipenem. None of these drugs present in vitro activity against Enterobacterales or P. aeruginosa producing metallo-β-lactamase (MBL) or against carbapenemase-producing Acinetobacter baumannii Clinical data regarding the use of these drugs to treat MDR bacteria are limited and rely mostly on nonrandomized studies. An overview on eight BLBLIs in development is also provided. These drugs provide various levels of in vitro coverage of carbapenem-resistant Enterobacterales, with several drugs presenting in vitro activity against MBLs (cefepime-zidebactam, aztreonam-avibactam, meropenem-nacubactam, and cefepime-taniborbactam). Among these drugs, some also present in vitro activity against carbapenem-resistant P. aeruginosa (cefepime-zidebactam and cefepime-taniborbactam) and A. baumannii (cefepime-zidebactam and sulbactam-durlobactam).
Collapse
Affiliation(s)
- Dafna Yahav
- Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Christian G Giske
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Alise Grāmatniece
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Pauls Stradins University Hospital, University of Latvia, Riga, Latvia
| | - Henrietta Abodakpi
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Vincent H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Leonard Leibovici
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
- Medicine E, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
| |
Collapse
|
10
|
Yang X, Wang D, Zhou Q, Nie F, Du H, Pang X, Fan Y, Bai T, Xu Y. Antimicrobial susceptibility testing of Enterobacteriaceae: determination of disk content and Kirby-Bauer breakpoint for ceftazidime/avibactam. BMC Microbiol 2019; 19:240. [PMID: 31675928 PMCID: PMC6824082 DOI: 10.1186/s12866-019-1613-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/15/2019] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Detection of ceftazidime/avibactam (CAZ/AVI) antibacterial activity is absolutely vital with the rapid growth of carbapenem resistant Enterobacteriaceae (CRE). But now, there is no available automated antimicrobial susceptibility testing card for CAZ/AVI, so Kirby-Bauer has become an economical and practical method for detecting CAZ/AVI antibacterial activity against Enterobacteriaceae. RESULT In this study, antimicrobial susceptibility testing of CAZ/AVI against 386 Enterobacteriaceae (188 Klebsiella pneumoniae, 122 Escherichia coli, 76 Enterobacter cloacae) isolated from clinical patients was performed by broth microdilution. Of the 386 strains, 54 extended spectrum β lactamases negative (ESBL(-)), 104 extended spectrum β lactamases positive (ESBL(+)), 228 CRE. 287 isolates were susceptible to CAZ/AVI and 99 isolates were resistant to CAZ/AVI. At the same time, to obtain optimal content avibactam (AVI) disk containing ceftazidime (30 μg), inhibition zone diameter of four kinds of ceftazidime (30 μg) disk containing different AVI content (0 μg, 10 μg, 25 μg, 50 μg) were tested by Kirby-Bauer method. The microdilution broth method interpretation was used as the standard to estimate susceptible or resistance and then coherence analysis was carried out between Kirby-Bauer and broth microdilution. The result shows the inhibition zone diameter of 30 μg/50 μg disk, susceptible isolates: 20.5 mm-31.5 mm, resistance isolates: 8.25 mm-21.5 mm. The inhibition zone diameter of 30 μg/25 μg disk, susceptible isolates: 19.7 mm-31.3 mm, resistance isolates: 6.5 mm-19.2 mm. The inhibition zone diameter of 30 μg/10 μg disk, susceptible isolates: 19.5 mm-31 mm, resistance isolates: 6.5 mm-11 mm. The inhibition zone diameter of ceftazidime (30 μg), susceptible isolates: 6.5 mm-27.5 mm, resistance isolates 6.5 mm. CONCLUSION Our results show that 30 μg/50 μg, 30 μg/25 μg, 30 μg/10 μg CAZ/AVI disk have significant statistical differences to determinate CAZ/AVI antibacterial activity, but for 30 μg/50 μg disk, there has a cross section between susceptible isolates (minimum 20.5 mm) and resistance isolates (maximum 21.5 mm). For 30 μg/25 μg disk, it is hard to distinguish the difference between susceptible isolates (minimum 19.7 mm) and resistance isolates (maximum 19.2 mm), so 30 μg/10 μg CAZ/AVI disk is more conducive to determinate antibacterial activity.
Collapse
Affiliation(s)
- Xianggui Yang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Dan Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Qin Zhou
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Fang Nie
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Hongfei Du
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Xueli Pang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yingzi Fan
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Tingting Bai
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Ying Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China.
| |
Collapse
|
11
|
Tamma PD, Hsu AJ. Defining the Role of Novel β-Lactam Agents That Target Carbapenem-Resistant Gram-Negative Organisms. J Pediatric Infect Dis Soc 2019; 8:251-260. [PMID: 30793757 PMCID: PMC6601385 DOI: 10.1093/jpids/piz002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/27/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022]
Abstract
With the current carbapenem-resistant organism crisis, conventional approaches to optimizing pharmacokinetic-pharmacodynamic parameters are frequently inadequate, and traditional salvage agents (eg, colistin, tigecycline, etc) confer high toxicity and/or have low efficacy. However, several β-lactam agents with activity against carbapenem-resistant organisms were approved recently by the US Food and Drug Administration, and more are anticipated to be approved in the near future. The primary goal of this review is to assist infectious disease practitioners with preferentially selecting 1 agent over another when treating patients infected with a carbapenem-resistant organism. However, resistance to some of these antibiotics has already developed. Antibiotic stewardship programs can ensure that they are reserved for situations in which other options are lacking and are paramount for the survival of these agents.
Collapse
Affiliation(s)
- Pranita D Tamma
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alice J Hsu
- Departments of Pharmacy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Sanchez DA, Martinez LR. Underscoring interstrain variability and the impact of growth conditions on associated antimicrobial susceptibilities in preclinical testing of novel antimicrobial drugs. Crit Rev Microbiol 2019; 45:51-64. [PMID: 30522365 PMCID: PMC6905375 DOI: 10.1080/1040841x.2018.1538934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/22/2018] [Accepted: 10/12/2018] [Indexed: 01/12/2023]
Abstract
In the era of multidrug resistant (MDR) organisms, reliable efficacy testing of novel antimicrobials during developmental stages is of paramount concern prior to introduction in clinical trials. Unfortunately, interstrain variability is often underappreciated when appraising the efficacy of innovative antimicrobials as preclinical testing of a limited number of standardized strains in unvarying conditions does not account for the vastness and potential for hyperdiversity among and within microbial populations. In this review, the importance of accounting for interstrain variability's potential to impact breadth of novel drug efficacy evaluation in the early stages of drug development will be discussed. Additionally, testing under varying microenvironmental conditions that may influence drug efficacy will be discussed. Biofilm growth, the influence of polymicrobial growth, mechanisms of antimicrobial resistance, pH, anaerobic conditions, and other virulence factors are some of critical issues that require more attention and standardization during preclinical drug efficacy evaluation. Furthermore, potential solutions for addressing this issue in pre-clinical antimicrobial development are proposed via centralization of microbial characterization and drug target databases, testing of a large number of clinical strains, inclusion of mutator strains in testing and the use of growth parameter mathematical models for testing.
Collapse
Affiliation(s)
- David A. Sanchez
- Howard University College of Medicine, Washington, DC, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | - Luis R. Martinez
- Department of Biological Sciences, The Border Biomedical Research Center, University of Texas at El Paso, TX, USA
| |
Collapse
|
13
|
Sousa A, Pérez-Rodríguez MT, Soto A, Rodríguez L, Pérez-Landeiro A, Martínez-Lamas L, Nodar A, Crespo M. Effectiveness of ceftazidime/avibactam as salvage therapy for treatment of infections due to OXA-48 carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother 2018; 73:3170-3175. [DOI: 10.1093/jac/dky295] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/23/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Adrian Sousa
- Infectious Diseases Unit-Internal Medicine Department, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), Hospital Álvaro Cunqueiro Bloque técnico, Estrada Clara Campoamor 341, Vigo (Pontevedra), Spain
| | - María Teresa Pérez-Rodríguez
- Infectious Diseases Unit-Internal Medicine Department, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), Hospital Álvaro Cunqueiro Bloque técnico, Estrada Clara Campoamor 341, Vigo (Pontevedra), Spain
| | - Adriana Soto
- Infectious Diseases Unit-Internal Medicine Department, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Lorena Rodríguez
- Infectious Diseases Unit-Internal Medicine Department, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Antonio Pérez-Landeiro
- Pharmacy Department, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Lucia Martínez-Lamas
- Microbiology Department, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Andrés Nodar
- Infectious Diseases Unit-Internal Medicine Department, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), Hospital Álvaro Cunqueiro Bloque técnico, Estrada Clara Campoamor 341, Vigo (Pontevedra), Spain
| | - Manuel Crespo
- Infectious Diseases Unit-Internal Medicine Department, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), Hospital Álvaro Cunqueiro Bloque técnico, Estrada Clara Campoamor 341, Vigo (Pontevedra), Spain
| |
Collapse
|
14
|
Nguyen L, Garcia J, Gruenberg K, MacDougall C. Multidrug-Resistant Pseudomonas Infections: Hard to Treat, But Hope on the Horizon? Curr Infect Dis Rep 2018; 20:23. [PMID: 29876674 DOI: 10.1007/s11908-018-0629-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW As the sixth most common nosocomial pathogen in the USA, Pseudomonas aeruginosa poses a significant threat to patients within the healthcare system. Its intrinsic and acquired resistance mechanisms also significantly limit the choices for antimicrobial therapy, prompting an increase in the research and development of antibacterial agents with enhanced activity against multidrug-resistant (MDR) P. aeruginosa. While many approved and pipeline antibiotics have activity against wild-type P. aeruginosa, only four new antibiotics have promising activity against MDR P. aeruginosa: ceftazidime-avibactam (Avycaz®), ceftolozane-tazobactam (Zerbaxa®), cefiderocol, and imipenem-cilastatin/relebactam. The goal of this paper is to review the epidemiology and mechanisms of resistance in P. aeruginosa as well as explore the newly approved and pipeline agents that overcome these mechanisms of resistance. RECENT FINDINGS Ceftazidime-avibactam and ceftolozane-tazobactam are currently FDA-approved and available for use, while cefiderocol and imipenem-cilastatin/relebactam are in development. Current evidence suggests ceftazidime-avibactam and ceftolozane-tazobactam both may have a role in treatment of MDR P. aeruginosa infections. Ceftolozane-tazobactam appears to be modestly more potent against P. aeruginosa, but emergence of resistance has been noted in various reported cases. Trials are ongoing for cefiderocol and imipenem-cilastatin/relebactam and early results appear promising. The aforementioned agents fill important gaps in the antibiotic armamentarium, particularly for patients with MDR P. aeruginosa infections who otherwise have extremely limited and often toxic antibiotic options. However, resistance to all of these agents will likely emerge, and additional antibiotic development is warranted to provide sufficient options to successfully manage MDR P. aeruginosa infections.
Collapse
Affiliation(s)
- Lynn Nguyen
- Department of Clinical Pharmacy, University of California San Francisco School of Pharmacy, 533 Parnassus Ave, U-585, Box 0622, San Francisco, CA, 94143-0622, USA
| | - Joshua Garcia
- Department of Pharmacy Practice, Marshall B. Ketchum University College of Pharmacy, Fullerton, CA, USA
| | - Katherine Gruenberg
- Department of Clinical Pharmacy, University of California San Francisco School of Pharmacy, 533 Parnassus Ave, U-585, Box 0622, San Francisco, CA, 94143-0622, USA
| | - Conan MacDougall
- Department of Clinical Pharmacy, University of California San Francisco School of Pharmacy, 533 Parnassus Ave, U-585, Box 0622, San Francisco, CA, 94143-0622, USA.
| |
Collapse
|
15
|
Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018; 7:212527. [PMID: 29872449 PMCID: PMC5978525 DOI: 10.7573/dic.212527] [Citation(s) in RCA: 453] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023] Open
Abstract
Infections with Pseudomonas aeruginosa have become a real concern in hospital-acquired infections, especially in critically ill and immunocompromised patients. The major problem leading to high mortality lies in the appearance of drug-resistant strains. Therefore, a vast number of approaches to develop novel anti-infectives is currently pursued. Diverse strategies range from killing (new antibiotics) to disarming (antivirulence) the pathogen. In this review, selected aspects of P. aeruginosa antimicrobial resistance and infection management will be addressed. Many studies have been performed to evaluate the risk factors for resistance and the potential consequences on mortality and attributable mortality. The review also looks at the mechanisms associated with resistance – P. aeruginosa is a pathogen presenting a large genome, and it can develop a large number of factors associated with antibiotic resistance involving almost all classes of antibiotics. Clinical approaches to patients with bacteremia, ventilator-associated pneumonia, urinary tract infections and skin soft tissue infections are discussed. Antibiotic combinations are reviewed as well as an analysis of pharmacokinetic and pharmacodynamic parameters to optimize P. aeruginosa treatment. Limitations of current therapies, the potential for alternative drugs and new therapeutic options are also discussed.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Clinic, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Antonio Vena
- Infectious Diseases Clinic, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Antony Croxatto
- Institute of Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Elda Righi
- Infectious Diseases Clinic, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Benoit Guery
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Sherry N, Howden B. Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam – epidemiology, laboratory detection and treatment implications. Expert Rev Anti Infect Ther 2018. [DOI: 10.1080/14787210.2018.1453807] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Norelle Sherry
- Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, Australia
| | - Benjamin Howden
- Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, Australia
| |
Collapse
|
17
|
New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? Clin Microbiol Infect 2017; 23:704-712. [PMID: 28893690 DOI: 10.1016/j.cmi.2017.09.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/24/2017] [Accepted: 09/03/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Antibiotic resistance in Gram-negative resistance has developed without a commensurate response in the successful development of antibiotic agents, though recent progress has been made. AIMS This review aims to provide a summary of the existing evidence on efficacy, spectrum of activity and the development of resistance of new agents that have been licensed or have completed advanced clinical trials and that possess activity against resistant Gram-negative organisms. SOURCES A review of the published literature via MEDLINE database was performed. Relevant clinical trials were identified with the aid of the clinicaltrials.gov registry. Further data were ascertained from review of abstracts from recent international meetings and pharmaceutical companies. CONTENT Data on the mechanism of action, microbiological spectrum, clinical efficacy and development of resistance are reported for new agents that have activity against Gram-negative organisms. This includes the β-lactam/β-lactamase inhibitor combinations ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/cilastatin/relebactam, meropenem/vaborbactam and aztreonam/avibactam; cefiderocol, a siderophore cephalosporin; plazomicin and eravacycline. IMPLICATIONS The development of new agents with activity against multidrug-resistant Gram-negative pathogens has provided important therapeutic options for clinicians. Polymyxins appear to have been supplanted by new agents as first-line therapy for Klebsiella pneumoniae carbapenemase producers. Cefiderocol and ceftazidime/avibactam/aztreonam are promising options for metallo-β-lactamase producers, and cefiderocol and ceftolozane/tazobactam for multiply resistant Pseudomonas aeruginosa, but definitive data showing clinical efficacy is as yet lacking. Reports of the development of resistance early after the release and use of new agents is of concern. Orally administered options and agents active effective against Acinetobacter baumannii are under-represented in clinical development.
Collapse
|
18
|
Maraki S, Vardakas KZ, Samonis G, Perdikis D, Mavromanolaki VE, Kofteridis DP, Falagas ME. In vitro susceptibility and resistance phenotypes in contemporary Enterobacter isolates in a university hospital in Crete, Greece. Future Microbiol 2017; 12:683-693. [DOI: 10.2217/fmb-2016-0216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: To study the evolution in the susceptibility of Enterobacter spp. in Crete, Greece from 2010 to 2015. Methods: Non-duplicate isolates were studied using automated systems. Phenotypic confirmatory tests were applied. Results: A total of 939 Enterobacter isolates were included. Colistin was the most active antibiotic (97.9%) followed by imipenem (96.1%), gentamicin (95.7%), tigecycline (91.8%), cefepime (89.4%), chloramphenicol (85.8%), fosfomycin (85.5%), trimethoprim/sulfamethoxazole (83.3%) and piperacillin/tazobactam (73.3%). Antibiotic resistance did not increase during the study period for most antibiotics. Lower susceptibility was observed among multidrug-resistant strains and carbapenem-nonsusceptible isolates. AmpC was the most common resistant mechanism (21%); carbapenemases (3.7%) and aminoglycoside-modifying enzymes (6.5%) were also detected. Conclusion: A significant proportion of Enterobacter spp. was resistant to several antibiotics, most notably β-lactams.
Collapse
Affiliation(s)
- Sofia Maraki
- Department of Clinical Microbiology, University Hospital of Heraklion, Heraklion, Greece
| | - Konstantinos Z Vardakas
- Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece
- Department of Medicine, Henry Dunant Hospital Center, Athens, Greece
| | - George Samonis
- Department of Internal Medicine, University of Crete School of Medicine, Heraklion, Greece
| | - Dimitrios Perdikis
- Department of Applied Mathematics & Physics, National Technical University of Athens, Athens, Greece
| | | | - Diamantis P Kofteridis
- Department of Internal Medicine, University of Crete School of Medicine, Heraklion, Greece
| | - Matthew E Falagas
- Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece
- Department of Medicine, Henry Dunant Hospital Center, Athens, Greece
- Department of Medicine, Tufts University School of Medicine, Boston, MA 02155, USA
| |
Collapse
|
19
|
Temkin E, Torre-Cisneros J, Beovic B, Benito N, Giannella M, Gilarranz R, Jeremiah C, Loeches B, Machuca I, Jiménez-Martín MJ, Martínez JA, Mora-Rillo M, Navas E, Osthoff M, Pozo JC, Ramos Ramos JC, Rodriguez M, Sánchez-García M, Viale P, Wolff M, Carmeli Y. Ceftazidime-Avibactam as Salvage Therapy for Infections Caused by Carbapenem-Resistant Organisms. Antimicrob Agents Chemother 2017; 61:e01964-16. [PMID: 27895014 PMCID: PMC5278727 DOI: 10.1128/aac.01964-16] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/08/2016] [Indexed: 02/08/2023] Open
Abstract
Ceftazidime-avibactam (CAZ-AVI) is a recently approved β-lactam-β-lactamase inhibitor combination with the potential to treat serious infections caused by carbapenem-resistant organisms. Few patients with such infections were included in the CAZ-AVI clinical trials, and clinical experience is lacking. We present a case series of patients with infections caused by carbapenem-resistant Enterobacteriaceae (CRE) or Pseudomonas aeruginosa (CRPa) who were treated with CAZ-AVI salvage therapy on a compassionate-use basis. Physicians who had prescribed CAZ-AVI completed a case report form. We used descriptive statistics to summarize patient characteristics and treatment outcomes. We used the Wilcoxon rank sum test and Fisher's exact test to compare patients by treatment outcome. The sample included 36 patients infected with CRE and two with CRPa. The most common infections were intra-abdominal. Physicians categorized 60.5% of patients as having life-threatening infections. All but two patients received other antibiotics before CAZ-AVI, for a median of 13 days. The median duration of CAZ-AVI treatment was 16 days. Twenty-five patients (65.8%) concurrently received other antibiotics to which their pathogen was nonresistant in vitro Twenty-eight patients (73.7%, 95% confidence interval [CI], 56.9 to 86.6%) experienced clinical and/or microbiological cure. Five patients (20.8%) with documented microbiological cure died, whereas 10 patients (71.4%) with no documented microbiological cure died (P = 0.01). In three-quarters of cases, CAZ-AVI (alone or combined with other antibiotics) cured infections caused by carbapenem-resistant organisms, 95% of which had failed previous therapy. Microbiological cure was associated with improved survival. CAZ-AVI shows promising clinical results for infections for which treatment options are limited.
Collapse
Affiliation(s)
- Elizabeth Temkin
- Department of Epidemiology and Preventive Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Julian Torre-Cisneros
- Department of Infectious Diseases, Hospital Universitario Reina Sofía, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica, Universidad de Córdoba, Córdoba, Spain
| | - Bojana Beovic
- Department of Infectious Disease, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Natividad Benito
- Infectious Diseases Unit, Department of Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maddalena Giannella
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Raúl Gilarranz
- Department of Clinical Microbiology, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | - Cameron Jeremiah
- Department of Infectious Diseases, St Vincent's Hospital, Melbourne, Australia
| | - Belén Loeches
- Infectious Diseases Unit, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Isabel Machuca
- Department of Infectious Diseases, Hospital Universitario Reina Sofía, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica, Universidad de Córdoba, Córdoba, Spain
| | | | - José Antonio Martínez
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS, Barcelona University, Barcelona, Spain
| | - Marta Mora-Rillo
- Infectious Diseases Unit, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Enrique Navas
- Infectious Diseases Department, Hospital Ramón y Cajal, Madrid, Spain
| | - Michael Osthoff
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Juan Carlos Pozo
- Department of Critical Care Medicine, Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Marina Rodriguez
- Department of Critical Care Medicine, Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Pierluigi Viale
- Department of Medical Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Michel Wolff
- Centre Hospitalier Universitaire Bichat-Claude Bernard, AP-HP, Paris, France
- Université Paris Diderot, Paris, France
| | - Yehuda Carmeli
- Department of Epidemiology and Preventive Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Gardiner BJ, Golan Y. Ceftazidime-avibactam (CTZ-AVI) as a treatment for hospitalized adult patients with complicated intra-abdominal infections. Expert Rev Anti Infect Ther 2016; 14:451-63. [PMID: 27042762 DOI: 10.1586/14787210.2016.1173542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Avibactam, a novel β-lactamase inhibitor, has recently been co-formulated with ceftazidime and approved for use in patients with complicated intra-abdominal and urinary tract infections, where no better treatment alternative exists. The basis for its FDA approval has been the extensive clinical experience with ceftazidime and the demonstration in vitro and in animal models that the addition of avibactam reverses resistance to ceftazidime in extended-spectrum β-lactamase and some carbapenemase-producing Enterobacteriaceae. Early clinical data are promising, with efficacy demonstrated in patients with complicated intra-abdominal and urinary tract infections. This review will summarize the in vitro, animal and clinical data available on this agent to date.
Collapse
Affiliation(s)
- Bradley J Gardiner
- a Division of Geographic Medicine and Infectious Diseases , Tufts Medical Center and Tufts University School of Medicine , Boston , MA , USA
| | - Yoav Golan
- a Division of Geographic Medicine and Infectious Diseases , Tufts Medical Center and Tufts University School of Medicine , Boston , MA , USA
| |
Collapse
|
21
|
Arizpe A, Reveles KR, Patel SD, Aitken SL. Updates in the Management of Cephalosporin-Resistant Gram-Negative Bacteria. Curr Infect Dis Rep 2016; 18:39. [PMID: 27743202 PMCID: PMC11801173 DOI: 10.1007/s11908-016-0552-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Resistance to cephalosporins is now common among Gram-negative bacterial infections, including those caused by the Enterobacteriaceae and Pseudomonas aeruginosa, posing a major threat to public health. As resistance to the traditional drugs of choice for these infections, carbapenems, has also become increasingly common, interest in cefepime and piperacillin-tazobactam as carbapenem-sparing alternatives has increased. Additionally, the availability of the novel β-lactam-β-lactamase inhibitor combinations ceftolozane-tazobactam and ceftazidime-avibactam has added to the antimicrobial armamentarium available to treat these multidrug-resistant infections. Here, we review the recent literature on the use of carbapenem-sparing alternatives and highlight the potential utility of novel antimicrobials.
Collapse
Affiliation(s)
- Andre Arizpe
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Kelly R Reveles
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Pharmacotherapy Education and Research Center, The University of Texas, Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shrina D Patel
- Division of Pharmacy, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0090, Houston, TX, 77030, USA
| | - Samuel L Aitken
- Division of Pharmacy, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0090, Houston, TX, 77030, USA.
- Center for Antimicrobial Resistance and Microbial Genomics, UTHealth McGovern School of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Goodlet KJ, Nicolau DP, Nailor MD. Ceftolozane/tazobactam and ceftazidime/avibactam for the treatment of complicated intra-abdominal infections. Ther Clin Risk Manag 2016; 12:1811-1826. [PMID: 27942218 PMCID: PMC5140030 DOI: 10.2147/tcrm.s120811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Complicated intra-abdominal infections (cIAI) represent a large proportion of all hospital admissions and are a major cause of morbidity and mortality in the intensive care unit. Rising rates of multidrug resistant organisms (MDRO), including extended-spectrum β-lactamase producing Enterobacteriaceae and carbapenem-nonsusceptible Pseudomonas spp., for which there are few remaining active antimicrobial agents, pose an increased challenge to clinicians. Patients with frequent exposures to the health care system or multiple recurrent IAIs are at increased risk for MDRO; however, treatment options have traditionally been limited, in some cases necessitating the utilization of last-line agents with unfavorable side-effect profiles. Ceftolozane/tazobactam and ceftazidime/avibactam are two new cephalosporin and β-lactamase inhibitor combinations with recent US Food and Drug Administration approvals for the treatment of cIAI in combination with metronidazole. Ceftolozane/tazobactam has demonstrated excellent in vitro activity against MDR and extensively drug-resistant Pseudomonas spp., including carbapenem-nonsusceptible strains, while ceftazidime/avibactam effectively inhibits a broad range of β-lactamases, making it an excellent option for the treatment of carbapenem-resistant Enterobacteriaceae. Both agents were shown to be noninferior to meropenem for treatment of cIAI in Phase III trials; however, reduced responses in patients with renal impairment at baseline highlight the importance of routine serum creatinine monitoring and ongoing dose adjustments. This review highlights in vitro and in vivo data of these two agents and suggests their proper place in cIAI treatment to ensure adequate therapy in our most at-risk patients while sparing unnecessary use in patients without MDRO risk factors.
Collapse
Affiliation(s)
- Kellie J Goodlet
- Department of Pharmacy Services, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center of Anti-Infective Research, Hartford Hospital, Hartford, CT, USA
| | - Michael D Nailor
- Department of Pharmacy Services, Hartford Hospital, Hartford, CT, USA; Department of Pharmacy Practice, School of Pharmacy, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
23
|
In Vitro Susceptibility of Global Surveillance Isolates of Pseudomonas aeruginosa to Ceftazidime-Avibactam (INFORM 2012 to 2014). Antimicrob Agents Chemother 2016; 60:4743-9. [PMID: 27216074 DOI: 10.1128/aac.00220-16] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023] Open
Abstract
Broth microdilution antimicrobial susceptibility testing was performed for ceftazidime-avibactam and comparator agents against 7,062 clinical isolates of Pseudomonas aeruginosa collected from 2012 to 2014 in four geographic regions (Europe, Asia/South Pacific, Latin America, Middle East/Africa) as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance program. The majority of isolates were susceptible to ceftazidime-avibactam, with the proportions susceptible differing marginally across the four regions (MIC90, 8 to 16 μg/ml; 88.7 to 93.2% susceptible), in contrast to lower susceptibilities to the following comparator β-lactam agents: ceftazidime (MIC90, 32 to 64 μg/ml; 71.5 to 80.8% susceptible), meropenem (MIC90, >8 μg/ml; 64.9 to 77.4% susceptible), and piperacillin-tazobactam (MIC90, >128 μg/ml; 62.3 to 71.3% susceptible). Compared to the overall population, susceptibility to ceftazidime-avibactam of isolates that were nonsusceptible to ceftazidime (n = 1,627) was reduced to between 56.8% (Middle East/Africa; MIC90, 64 μg/ml) and 68.9% (Asia/South Pacific; MIC90, 128 μg/ml), but these percentages were higher than susceptibilities to other β-lactam agents (0 to 44% susceptible, depending on region and agent; meropenem MIC90, >8 μg/ml; 26.5 to 43.9% susceptible). For this subset of isolates, susceptibilities to amikacin (MIC90, >32 μg/ml; 53.2 to 80.0% susceptible) and colistin (MIC90, 1 μg/ml; 98.5 to 99.5% susceptible) were comparable to or higher than that of ceftazidime-avibactam. A similar observation was made with isolates that were nonsusceptible to meropenem (n = 1,926), with susceptibility to ceftazidime-avibactam between 67.8% (Middle East/Africa; MIC90, 64 μg/ml) and 74.2% (Europe; MIC90, 32 μg/ml) but again with reduced susceptibility to comparators except for amikacin (MIC90, >32 μg/ml; 56.8 to 78.7% susceptible) and colistin (MIC90, 1 μg/ml; 98.9 to 99.3% susceptible). Of the 8% of isolates not susceptible to ceftazidime-avibactam, the nonsusceptibility of half could be explained by their possession of genes encoding metallo-β-lactamases. The data reported here are consistent with results from other country-specific and regional surveillance studies and show that ceftazidime-avibactam demonstrates in vitro activity against globally collected clinical isolates of P. aeruginosa, including isolates that are resistant to ceftazidime and meropenem.
Collapse
|
24
|
Falcone M, Paterson D. Spotlight on ceftazidime/avibactam: a new option for MDR Gram-negative infections. J Antimicrob Chemother 2016; 71:2713-22. [PMID: 27432599 DOI: 10.1093/jac/dkw239] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the last decade infections caused by MDR Gram-negative bacteria (GNB) have become increasingly prevalent. Because of their high morbidity and mortality rates, these infections constitute a serious threat to public health worldwide. Ceftazidime/avibactam is a new approved agent combining ceftazidime and a novel β-lactamase inhibitor with activity against various β-lactamases produced by MDR GNB. Avibactam has a spectrum of inhibition of class A and C β-lactamases, including ESBLs, AmpC and Klebsiella pneumoniae carbapenemase (KPC) enzymes. Thus, combination with this inhibitor expands ceftazidime's spectrum of activity to MDR Enterobacteriaceae and Pseudomonas aeruginosa strains. In Phase II clinical trials of patients with complicated intra-abdominal infections and complicated urinary tract infections ceftazidime/avibactam exhibited clinical efficacy comparable to those of meropenem and imipenem/cilastatin, respectively. A Phase III clinical trial confirmed the efficacy of ceftazidime/avibactam in patients with MDR Enterobacteriaceae and P. aeruginosa infections. Microbiological surveillance studies, in vivo animal models of infection and pharmacokinetic/pharmacodynamic target attainment analyses are also discussed, to assess the potential role of this new drug in the treatment of infections caused by MDR GNB.
Collapse
Affiliation(s)
- Marco Falcone
- Department of Public Health and Infectious Diseases, 'Sapienza' University, Rome, Italy
| | - David Paterson
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia
| |
Collapse
|
25
|
van Duin D, Bonomo RA. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-Lactamase Inhibitor Combinations. Clin Infect Dis 2016; 63:234-41. [PMID: 27098166 PMCID: PMC4928383 DOI: 10.1093/cid/ciw243] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/06/2016] [Indexed: 02/02/2023] Open
Abstract
Ceftolozane/tazobactam and ceftazidime/avibactam are 2 novel β-lactam/β-lactamase combination antibiotics. The antimicrobial spectrum of activity of these antibiotics includes multidrug-resistant (MDR) gram-negative bacteria (GNB), including Pseudomonas aeruginosa. Ceftazidime/avibactam is also active against carbapenem-resistant Enterobacteriaceae that produce Klebsiella pneumoniae carbapenemases. However, avibactam does not inactivate metallo-β-lactamases such as New Delhi metallo-β-lactamases. Both ceftolozane/tazobactam and ceftazidime/avibactam are only available as intravenous formulations and are dosed 3 times daily in patients with normal renal function. Clinical trials showed noninferiority to comparators of both agents when used in the treatment of complicated urinary tract infections and complicated intra-abdominal infections (when used with metronidazole). Results from pneumonia studies have not yet been reported. In summary, ceftolozane/tazobactam and ceftazidime/avibactam are 2 new second-generation cephalosporin/β-lactamase inhibitor combinations. After appropriate trials are conducted, they may prove useful in the treatment of MDR GNB infections. Antimicrobial stewardship will be essential to preserve the activity of these agents.
Collapse
Affiliation(s)
- David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Division of Infectious Diseases and HIV Medicine, Department of Medicine Department of Molecular Biology and Microbiology Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
26
|
In Vitro Activity of Ceftazidime-Avibactam against Contemporary Pseudomonas aeruginosa Isolates from U.S. Medical Centers by Census Region, 2014. Antimicrob Agents Chemother 2016; 60:2537-41. [PMID: 26810650 DOI: 10.1128/aac.03056-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/16/2016] [Indexed: 12/13/2022] Open
Abstract
Thein vitroantibacterial activities of ceftazidime-avibactam and comparator agents were evaluated using reference broth microdilution methods against 1,743Pseudomonas aeruginosaisolates collected in 2014 from 69 U.S. medical centers, representing each of the nine census regions. Ceftazidime-avibactam demonstrated potent activity againstP. aeruginosa, including many isolates not susceptible to ceftazidime, meropenem, and piperacillin-tazobactam. In each of the nine census regions, ceftazidime-avibactam demonstrated the highest percentage of susceptible isolates.
Collapse
|