1
|
Schwab TC, Perrig L, Göller PC, Guebely De la Hoz FF, Lahousse AP, Minder B, Günther G, Efthimiou O, Omar SV, Egger M, Fenner L. Targeted next-generation sequencing to diagnose drug-resistant tuberculosis: a systematic review and meta-analysis. THE LANCET. INFECTIOUS DISEASES 2024; 24:1162-1176. [PMID: 38795712 PMCID: PMC11881551 DOI: 10.1016/s1473-3099(24)00263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Targeted next-generation sequencing (NGS) can rapidly and simultaneously detect mutations associated with resistance to tuberculosis drugs across multiple gene targets. The use of targeted NGS to diagnose drug-resistant tuberculosis, as described in publicly available data, has not been comprehensively reviewed. We aimed to identify targeted NGS assays that diagnose drug-resistant tuberculosis, determine how widely this technology has been used, and assess the diagnostic accuracy of these assays. METHODS In this systematic review and meta-analysis, we searched MEDLINE, Embase, Cochrane Library, Web of Science Core Collection, Global Index Medicus, Google Scholar, ClinicalTrials.gov, and the WHO International Clinical Trials Registry Platform for published and unpublished reports on targeted NGS for drug-resistant tuberculosis from Jan 1, 2005, to Oct 14, 2022, with updates to our search in Embase and Google Scholar until Feb 13, 2024. Studies eligible for the systematic review described targeted NGS approaches to predict drug resistance in Mycobacterium tuberculosis infections using primary samples, reference strain collections, or cultured isolates from individuals with presumed or confirmed tuberculosis. Our search had no limitations on study type or language, although only reports in English, German, and French were screened for eligibility. For the meta-analysis, we included test accuracy studies that used any reference standard, and we assessed risk of bias using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The primary outcomes for the meta-analysis were sensitivity and specificity of targeted NGS to diagnose drug-resistant tuberculosis compared to phenotypic and genotypic drug susceptibility testing. We used a Bayesian bivariate model to generate summary receiver operating characteristic plots and diagnostic accuracy measures, overall and stratified by drug and sample type. This study is registered with PROSPERO, CRD42022368707. FINDINGS We identified and screened 2920 reports, of which 124 were eligible for our systematic review, including 37 review articles and 87 reports of studies collecting samples for targeted NGS. Sequencing was mainly done in the USA (14 [16%] of 87), western Europe (ten [11%]), India (ten [11%]), and China (nine [10%]). We included 24 test accuracy studies in the meta-analysis, in which 23 different tuberculosis drugs or drug groups were assessed, covering first-line drugs, injectable drugs, and fluoroquinolones and predominantly comparing targeted NGS with phenotypic drug susceptibility testing. The combined sensitivity of targeted NGS across all drugs was 94·1% (95% credible interval [CrI] 90·9-96·3) and specificity was 98·1% (97·0-98·9). Sensitivity for individual drugs ranged from 76·5% (52·5-92·3) for capreomycin to 99·1% (98·3-99·7) for rifampicin; specificity ranged from 93·1% (88·0-96·3) for ethambutol to 99·4% (98·3-99·8) for amikacin. Diagnostic accuracy was similar for primary clinical samples and culture isolates overall and for rifampicin, isoniazid, ethambutol, streptomycin, and fluoroquinolones, and similar after excluding studies at high risk of bias (overall sensitivity 95·2% [95% CrI 91·7-97·1] and specificity 98·6% [97·4-99·3]). INTERPRETATION Targeted NGS is highly sensitive and specific for detecting drug resistance across panels of tuberculosis drugs and can be performed directly on clinical samples. There is a paucity of data on performance for some currently recommended drugs. The barriers preventing the use of targeted NGS to diagnose drug-resistant tuberculosis in high-burden countries need to be addressed. FUNDING National Institutes of Allergy and Infectious Diseases and Swiss National Science Foundation.
Collapse
Affiliation(s)
- Tiana Carina Schwab
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Lisa Perrig
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | | | | | - Beatrice Minder
- Public Health and Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Gunar Günther
- Department of Pulmonology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Medical Science, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia
| | - Orestis Efthimiou
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Shaheed Vally Omar
- Centre for Tuberculosis, National & WHO Supranational TB Reference Laboratory, National Institute for Communicable Diseases, a division of the National Health Laboratory Services, Johannesburg, South Africa
| | - Matthias Egger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Centre for Infectious Disease Epidemiology & Research, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lukas Fenner
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Getachew E, Adebeta T, Gebrie D, Charlie L, Said B, Assefa DG, Wanjiru CL, Zeleke ED, Tesfahunei HA, Abebe M, Joseph M, Manyazewal T. Pyrosequencing for diagnosis of multidrug and extensively drug-resistant tuberculosis: A systemic review and meta-analysis. J Clin Tuberc Other Mycobact Dis 2021; 24:100254. [PMID: 34278006 PMCID: PMC8267485 DOI: 10.1016/j.jctube.2021.100254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Multidrug and extensively drug-resistant tuberculosis (M/XDR-TB) pose major threats to global health. Diagnosis accuracy and delay have been the major drivers for the upsurge of M/XDR-TB. Pyrosequencing (PSQ) is a novel, real-time DNA sequencing for rapid detection of mutations associated with M/XDR-TB. We aimed to systematically synthesize the evidence on the diagnostic accuracy of PSQ for M/XDR-TB. Methods We conducted an electronic search of PubMed, Embase, Biosis, Web of Science, and Google Scholar up to March 2020. We used the QUADAS‐2 (Quality Assessment of Diagnostic Accuracy Studies) tool to assess the quality of studies, the BRMA (bivariate random‐effects meta-analysis) model to synthesize diagnostic accuracies, and the Rev-Man 5.4 software to perform the meta-analyses. We analyzed dichotomous data using the risk ratio (RR) with a 95% confidence interval. PROSPERO Registration ID: CRD42020200817. Results The analysis included seven studies, with a total sample of 3,165. At 95% confidence interval, the pooled sensitivity and specificity of PSQ were 89.7 (CI: 83.5–93.8) and 97.8 (CI: 94.9–99.1) for Isoniazid, 94.6 (CI: 90.9–96.8) and 98.5 (CI: 96.5–99.3) for Rifampicin, 87.9 (CI: 81.2–92.4) and 98.8 (CI: 97.2–99.5) for Fluoroquinolone, 83.5 (CI: 72.8–90.5) and 99.4 (CI: 98.3–99.8) for Amikacin, 79 (CI: 67–8-87) and 97.9 (CI: 95.5–99) for Capreomycin, and 69.6 (CI: 57–79.8) and 98.2 (CI: 95.9–99.2) for Kanamycin. The overall pooled sensitivity and specificity were 85.8 (CI: 76.7–91.7) and 98.5 (CI: 96.5–99.3), respectively. Conclusion According to the pooled data, PSQ is highly sensitive and specific for detecting M/XDR-TB, both from clinical specimens and culture isolates, and within a shorter turnaround time. We suggest a continued synthesis of the evidence on the cost-effectiveness and technical feasibilities of PSQ in low-income countries context, including sub-Saharan Africa.
Collapse
Affiliation(s)
- Emnet Getachew
- Addis Ababa University, College of Health Sciences, Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa, Ethiopia.,Arsi University, College of Health Science, Department of Public Health, Asella, Ethiopia
| | | | - Desye Gebrie
- Addis Ababa University, College of Health Sciences, Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa, Ethiopia.,School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Loveness Charlie
- Addis Ababa University, College of Health Sciences, Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa, Ethiopia
| | - Bibie Said
- Addis Ababa University, College of Health Sciences, Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa, Ethiopia.,Kibong'oto National Tuberculosis Hospital, Kilimanjaro, Tanzania
| | - Dawit Getachew Assefa
- Addis Ababa University, College of Health Sciences, Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa, Ethiopia.,Dilla University, College of Health Science and Medicine, Department of Nursing, Dilla, Ethiopia
| | - Cathrine Lydiah Wanjiru
- Addis Ababa University, College of Health Sciences, Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa, Ethiopia
| | - Eden Dagnachew Zeleke
- Addis Ababa University, College of Health Sciences, Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa, Ethiopia.,Bule-Hora University, College of Health Science, Department of Midwifery, Bule-Hora, Ethiopia
| | - Hanna Amanuel Tesfahunei
- Addis Ababa University, College of Health Sciences, Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa, Ethiopia.,Hager Biomedical Research Institute, Asmara, Eritrea
| | - Mekdelawit Abebe
- Addis Ababa University, College of Health Sciences, Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa, Ethiopia.,Saint Peter Tuberculosis Specialized Hospital, Addis Ababa, Ethiopia
| | - Michele Joseph
- Addis Ababa University, College of Health Sciences, Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa, Ethiopia
| | - Tsegahun Manyazewal
- Addis Ababa University, College of Health Sciences, Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Li MC, Chen R, Lin SQ, Lu Y, Liu HC, Li GL, Liu ZG, Zhao XQ, Zhao LL, Wan KL. Detecting Ethambutol Resistance in Mycobacterium tuberculosis Isolates in China: A Comparison Between Phenotypic Drug Susceptibility Testing Methods and DNA Sequencing of embAB. Front Microbiol 2020; 11:781. [PMID: 32457711 PMCID: PMC7227436 DOI: 10.3389/fmicb.2020.00781] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/01/2020] [Indexed: 01/22/2023] Open
Abstract
With the increasing incidence of drug-resistant tuberculosis (DR-TB), determining a rapid and accurate drug susceptibility testing (DST) method to identify ethambutol (EMB) resistance in Mycobacterium tuberculosis has become essential for patient management in China. Herein, we evaluated the correlation between three phenotypic DST methods, namely, proportion method (PM), MGIT 960 system, and microplate alamar Blue assay (MABA), and DNA sequencing of embAB in 118 M. tuberculosis isolates from China. When the results of the phenotypic DST methods were compared with those of DNA sequencing, the overall agreement and kappa values of the PM, MGIT 960 system, and MABA were 81.4% and 0.61, 77.1% and 0.55, and 84.7% and 0.67, respectively. The agreement for EMB resistance between MABA and PM was significantly higher than that between the MGIT 960 system and PM (P = 0.02). Moreover, among the isolates with detectable embAB mutations, 97.2% (70/72 isolates) harbored mutations in embB. The analysis of embB mutations predicted EMB resistance with 81.3% sensitivity, 86.8% specificity, and 83.1% accuracy. Thus, MABA may be a better phenotypic DST method for detecting EMB resistance. DNA sequencing of embB may be useful for the early identification of EMB resistance and the consequent optimization of the treatment regimen.
Collapse
Affiliation(s)
- Ma-Chao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Rong Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Pathogenic Biology Institute, University of South China, Hengyang, China
| | - Shi-Qiang Lin
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yao Lu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hai-Can Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gui-Lian Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhi-Guang Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiu-Qin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li-Li Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang-Lin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
4
|
Lowenthal P, Lin SYG, Desmond E, Shah N, Flood J, Barry PM. Evaluation of the Impact of a Sequencing Assay for Detection of Drug Resistance on the Clinical Management of Tuberculosis. Clin Infect Dis 2018; 69:668-675. [DOI: 10.1093/cid/ciy937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022] Open
Abstract
AbstractBackgroundIn 2012, the California Department of Public Health began using pyrosequencing (PSQ) to detect mutations associated with resistance to isoniazid, rifampin, quinolones and injectable drugs in Mycobacterium tuberculosis complex. We evaluated the impact of the PSQ assay on the clinical management of tuberculosis (TB) in California.MethodsTB surveillance and laboratory data for specimens submitted 1 August 2012 through 31 December 2016 were analyzed to determine time to effective treatment initiation. A survey of clinicians was used to assess how PSQ results influenced clinical decision making.ResultsOf 1957 specimens tested with PSQ, 52% were sediments and 46% were culture isolates, submitted a median of 8 and 35 days, respectively, after collection. Among 36 patients with multidrug-resistant (MDR) TB who had a sediment specimen submitted for PSQ, median time from specimen collection to MDR-TB treatment initiation was 12 days vs 51 days when PSQ was not used. Completed surveys were returned for 303 patients, 177 of whom reported a treatment change; 75 (42%) of clinicians reported PSQ as a reason for change. Twenty-one patients either had an MDR-TB risk factor and a smear-positive sputum specimen, but had PSQ performed on a culture isolate (9/36 [25%]); or did not have PSQ used for MDR-TB diagnosis (12/38 [32%]) and thus had an opportunity for earlier MDR-TB diagnosis with PSQ on sediment.ConclusionsPatients with MDR-TB initiated effective treatment 5 weeks earlier when PSQ was used compared to those without PSQ. Survey data suggest clinicians use PSQ to devise effective TB drug regimens. To maximize the benefit of PSQ, earlier submission of specimens should be prioritized.
Collapse
Affiliation(s)
- Phil Lowenthal
- Tuberculosis Control Branch, Division of Communicable Disease, Center for Infectious Disease, California Department of Public Health, Richmond
| | - Shou-Yean Grace Lin
- Microbial Disease Laboratory, Division of Communicable Disease, Center for Infectious Disease, California Department of Public Health, Richmond
| | - Ed Desmond
- Microbial Disease Laboratory, Division of Communicable Disease, Center for Infectious Disease, California Department of Public Health, Richmond
| | - Neha Shah
- Tuberculosis Control Branch, Division of Communicable Disease, Center for Infectious Disease, California Department of Public Health, Richmond
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jennifer Flood
- Tuberculosis Control Branch, Division of Communicable Disease, Center for Infectious Disease, California Department of Public Health, Richmond
| | - Pennan M Barry
- Tuberculosis Control Branch, Division of Communicable Disease, Center for Infectious Disease, California Department of Public Health, Richmond
| |
Collapse
|
5
|
Molina-Moya B, Abdurrahman ST, Madukaji LI, Gomgnimbou MK, Spinasse L, Gomes-Fernandes M, Gomes HM, Kacimi S, Dacombe R, Bimba JS, Lawson L, Sola C, Cuevas LE, Dominguez J. Genetic characterization of Mycobacterium tuberculosis complex isolates circulating in Abuja, Nigeria. Infect Drug Resist 2018; 11:1617-1625. [PMID: 30319278 PMCID: PMC6171509 DOI: 10.2147/idr.s166986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective Nigeria ranks fourth among the high tuberculosis (TB) burden countries. This study describes the prevalence of drug resistance and the genetic diversity of Mycobacterium tuberculosis in Abuja’s Federal Capital Territory. Materials and methods Two hundred and seventy-eight consecutive sputum samples were collected from adults with presumptive TB during 2013–2014. DNA was extracted from Löwenstein–Jensen cultures and analyzed for the identification of nontuberculous mycobacteria species, detection of drug resistance with line probe assays, and high-throughput spacer oligonucleotide typing (spoligotyping) using microbead-based hybridization. Results Two hundred and two cultures were positive for M. tuberculosis complex, 24 negative, 38 contaminated, and 15 positive for nontuberculous mycobacteria. Five (2.5%) M. tuberculosis complex isolates were resistant to rifampicin (RIF) and isoniazid (multidrug resistant), nine (4.5%) to RIF alone, and 15 (7.4%) to isoniazid alone; two RIF-resistant isolates were also resistant to fluoroquinolones and ethambutol, and one multidrug resistant isolate was also resistant to ethambutol. Among the 180 isolates with spoligotyping results, 164 (91.1%) were classified as lineage 4 (Euro-American), 13 (7.2%) as lineage 5 (West African 1), two (1.1%) as lineage 2 (East Asia), and one (0.6%) as lineage 6 (West African 2). One hundred and fifty-six (86.7%) isolates were grouped in 17 clusters (2–108 isolates/cluster), of which 108 (60.0%) were grouped as L4.6.2/Cameroon (spoligotype international type 61). Conclusion The description of drug resistance prevalence and genetic diversity of M. tuberculosis in this study may be useful for improving TB control in Nigeria.
Collapse
Affiliation(s)
- Barbara Molina-Moya
- Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain, .,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain,
| | | | | | - Michel Kiréopori Gomgnimbou
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France.,Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Lizania Spinasse
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Meissiner Gomes-Fernandes
- Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain, .,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain, .,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Harrison Magdinier Gomes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Sarah Kacimi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | | | | | | | - Christophe Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Luis E Cuevas
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jose Dominguez
- Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain, .,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain,
| |
Collapse
|
6
|
Klotoe BJ, Molina-Moya B, Gomes HM, Gomgnimbou MK, Oliveira Suzarte L, Féres Saad MH, Ali S, Dominguez J, Pimkina E, Zholdybayeva E, Sola C, Refrégier G. TB-EFI, a novel 18-Plex microbead-based method for prediction of second-line drugs and ethambutol resistance in Mycobacterium tuberculosis complex. J Microbiol Methods 2018; 152:10-17. [PMID: 29913189 DOI: 10.1016/j.mimet.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
Several diagnostic tests are being developed to detect drug resistance in tuberculosis. In line with previous developments detecting rifampicin and isoniazid resistance using microbead-based systems (spoligoriftyping and TB-SPRINT), we present here an assay called TB-EFI detecting mutations involved in resistance to ethambutol, fluoroquinolones and the three classical injectable drugs (kanamycin, amikacin and capreomycin) in Mycobacterium tuberculosis. The proposed test includes both wild-type and mutant probes for each targeted locus. Basic analysis can be performed manually. An upgraded interpretation is made available in Excel 2016®. Using a reference set of 61 DNA extracts, we show that TB-EFI provides perfect concordance with pyrosequencing. Concordance between genotypic resistance and phenotypic DST was relatively good (72 to 98% concordance), with lower efficiency for fluoroquinolones and ethambutol due to some untargeted mutations. When compared to phenotypical resistance, performances were similar to those obtained with Hain MTBDRsl assay, possibly thanks to the use of automatized processing of data although some mutations involved in fluoroquinolone resistance could not be included. When applied on three uncharacterized sets, phenotype could be predicted for 51% to 98% depending on the setting and the drug investigated, detecting one extensively drug-resistant isolate in each of a Pakistan and a Brazilian set of 91 samples, and 9 XDR among 43 multi-resistant Kazakhstan samples. By allowing high-throughput detection of second-line drugs resistance and of resistance to ethambutol that is often combined to second-line treatments, TB-EFI is a cost-effective assay for large-scale worldwide surveillance of resistant tuberculosis and XDR-TB control.
Collapse
Affiliation(s)
- Bernice J Klotoe
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Barbara Molina-Moya
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Harrison Magdinier Gomes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France; Laboratório de Biologia Molecular Aplicada à Micobactérias, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Michel K Gomgnimbou
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France; Centre Muraz, Bobo-Dioulasso, Burkina Faso; Univ. Polytech, Bobo-Dioulasso, Burkina Faso
| | - Lorenna Oliveira Suzarte
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Maria H Féres Saad
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Av. Brasil, 4365 - 20245, Rio de Janeiro, Brazil
| | - Sajid Ali
- Microbiology Department, Quaid-i-Azam University, Islamabad, Pakistan
| | - José Dominguez
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Edita Pimkina
- Infectious Diseases and Tuberculosis Hospital, Affiliate of Vilnius University Hospital Santariskiu klinikos, Vilnius, Lithuania
| | - Elena Zholdybayeva
- National Center for Biotechnology, Astana, Kazakhstan; Universitat Autònoma de Barcelona. CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Christophe Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| | - Guislaine Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
7
|
Nurwidya F, Handayani D, Burhan E, Yunus F. Molecular Diagnosis of Tuberculosis. Chonnam Med J 2018; 54:1-9. [PMID: 29399559 PMCID: PMC5794472 DOI: 10.4068/cmj.2018.54.1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of adult death in the Asia-Pacific Region, including Indonesia. As an infectious disease caused by Mycobacterium tuberculosis (MTB), TB remains a major public health issue especially in developing nations due to the lack of adequate diagnostic testing facilities. Diagnosis of TB has entered an era of molecular detection that provides faster and more cost-effective methods to diagnose and confirm drug resistance in TB cases, meanwhile, diagnosis by conventional culture systems requires several weeks. New advances in the molecular detection of TB, including the faster and simpler nucleic acid amplification test (NAAT) and whole-genome sequencing (WGS), have resulted in a shorter time for diagnosis and, therefore, faster TB treatments. In this review, we explored the current findings on molecular diagnosis of TB and drug-resistant TB to see how this advancement could be integrated into public health systems in order to control TB.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Diah Handayani
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Erlina Burhan
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Faisal Yunus
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| |
Collapse
|
8
|
Performance of the MTBDR sl Line probe assay for rapid detection of resistance to second-line anti-tuberculosis drugs and ethambutol in China. Diagn Microbiol Infect Dis 2017; 89:112-117. [DOI: 10.1016/j.diagmicrobio.2016.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/06/2016] [Accepted: 06/11/2016] [Indexed: 11/23/2022]
|
9
|
Molina-Moya B, Lacoma A, García-Sierra N, Blanco S, Haba L, Samper S, Ruiz-Manzano J, Prat C, Arnold C, Domínguez J. PyroTyping, a novel pyrosequencing-based assay for Mycobacterium tuberculosis genotyping. Sci Rep 2017; 7:6777. [PMID: 28754991 PMCID: PMC5533701 DOI: 10.1038/s41598-017-06760-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/19/2017] [Indexed: 11/09/2022] Open
Abstract
We developed a novel method, PyroTyping, for discrimination of Mycobacterium tuberculosis isolates combining pyrosequencing and IS6110 polymorphism. A total of 100 isolates were analysed with IS6110-restriction fragment length polymorphism (RFLP), spoligotyping, mycobacterial interspersed repetitive units - variable number tandem repeats (MIRU-VNTR), and PyroTyping. PyroTyping results regarding clustering or discrimination of the isolates were highly concordant with the other typing methods performed. PyroTyping is more rapid than RFLP and presents the same discriminatory power, thus, it may be useful for taking timely decisions for tuberculosis control.
Collapse
Affiliation(s)
- B Molina-Moya
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - A Lacoma
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - N García-Sierra
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain
| | - S Blanco
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - L Haba
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain
| | - S Samper
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain.,Instituto Aragonés de Ciencias de la Salud, Zaragoza, 50009, Spain.,Fundación Instituto de Investigación Sanitaria de Aragón, Zaragoza, 50009, Spain
| | - J Ruiz-Manzano
- Servei de Pneumologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - C Prat
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - C Arnold
- Genomic Services and Development Unit, Public Health England, 61 Colindale Avenue, London, United Kingdom
| | - J Domínguez
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain. .,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
10
|
Theron G, Peter J, Richardson M, Warren R, Dheda K, Steingart KR, Cochrane Infectious Diseases Group. GenoType ® MTBDRsl assay for resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst Rev 2016; 9:CD010705. [PMID: 27605387 PMCID: PMC5034505 DOI: 10.1002/14651858.cd010705.pub3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Genotype® MTBDRsl (MTBDRsl) is a rapid DNA-based test for detecting specific mutations associated with resistance to fluoroquinolones and second-line injectable drugs (SLIDs) in Mycobacterium tuberculosis complex. MTBDRsl version 2.0 (released in 2015) identifies the mutations detected by version 1.0, as well as additional mutations. The test may be performed on a culture isolate or a patient specimen, which eliminates delays associated with culture. Version 1.0 requires a smear-positive specimen, while version 2.0 may use a smear-positive or -negative specimen. We performed this updated review as part of a World Health Organization process to develop updated guidelines for using MTBDRsl. OBJECTIVES To assess and compare the diagnostic accuracy of MTBDRsl for: 1. fluoroquinolone resistance, 2. SLID resistance, and 3. extensively drug-resistant tuberculosis, indirectly on a M. tuberculosis isolate grown from culture or directly on a patient specimen. Participants were people with rifampicin-resistant or multidrug-resistant tuberculosis. The role of MTBDRsl would be as the initial test, replacing culture-based drug susceptibility testing (DST), for detecting second-line drug resistance. SEARCH METHODS We searched the following databases without language restrictions up to 21 September 2015: the Cochrane Infectious Diseases Group Specialized Register; MEDLINE; Embase OVID; Science Citation Index Expanded, Conference Proceedings Citation Index-Science, and BIOSIS Previews (all three from Web of Science); LILACS; and SCOPUS; registers for ongoing trials; and ProQuest Dissertations & Theses A&I. We reviewed references from included studies and contacted specialists in the field. SELECTION CRITERIA We included cross-sectional and case-control studies that determined MTBDRsl accuracy against a defined reference standard (culture-based DST, genetic sequencing, or both). DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed quality using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. We synthesized data for versions 1.0 and 2.0 separately. We estimated MTBDRsl sensitivity and specificity for fluoroquinolone resistance, SLID resistance, and extensively drug-resistant tuberculosis when the test was performed indirectly or directly (smear-positive specimen for version 1.0, smear-positive or -negative specimen for version 2.0). We explored the influence on accuracy estimates of individual drugs within a drug class and of different reference standards. We performed most analyses using a bivariate random-effects model with culture-based DST as reference standard. MAIN RESULTS We included 27 studies. Twenty-six studies evaluated version 1.0, and one study version 2.0. Of 26 studies stating specimen country origin, 15 studies (58%) evaluated patients from low- or middle-income countries. Overall, we considered the studies to be of high methodological quality. However, only three studies (11%) had low risk of bias for the reference standard; these studies used World Health Organization (WHO)-recommended critical concentrations for all drugs in the culture-based DST reference standard. MTBDRsl version 1.0 Fluoroquinolone resistance: indirect testing, MTBDRsl pooled sensitivity and specificity (95% confidence interval (CI)) were 85.6% (79.2% to 90.4%) and 98.5% (95.7% to 99.5%), (19 studies, 2223 participants); direct testing (smear-positive specimen), pooled sensitivity and specificity were 86.2% (74.6% to 93.0%) and 98.6% (96.9% to 99.4%), (nine studies, 1771 participants, moderate quality evidence). SLID resistance: indirect testing, MTBDRsl pooled sensitivity and specificity were 76.5% (63.3% to 86.0%) and 99.1% (97.3% to 99.7%), (16 studies, 1921 participants); direct testing (smear-positive specimen), pooled sensitivity and specificity were 87.0% (38.1% to 98.6%) and 99.5% (93.6% to 100.0%), (eight studies, 1639 participants, low quality evidence). Extensively drug-resistant tuberculosis: indirect testing, MTBDRsl pooled sensitivity and specificity were 70.9% (42.9% to 88.8%) and 98.8% (96.1% to 99.6%), (eight studies, 880 participants); direct testing (smear-positive specimen), pooled sensitivity and specificity were 69.4% (38.8% to 89.0%) and 99.4% (95.0% to 99.3%), (six studies, 1420 participants, low quality evidence).Similar to the original Cochrane review, we found no evidence of a significant difference in MTBDRsl version 1.0 accuracy between indirect and direct testing for fluoroquinolone resistance, SLID resistance, and extensively drug-resistant tuberculosis. MTBDRsl version 2.0 Fluoroquinolone resistance: direct testing, MTBDRsl sensitivity and specificity were 97% (83% to 100%) and 98% (93% to 100%), smear-positive specimen; 80% (28% to 99%) and 100% (40% to 100%), smear-negative specimen. SLID resistance: direct testing, MTBDRsl sensitivity and specificity were 89% (72% to 98%) and 90% (84% to 95%), smear-positive specimen; 80% (28% to 99%) and 100% (40% to 100%), smear-negative specimen. Extensively drug-resistant tuberculosis: direct testing, MTBDRsl sensitivity and specificity were 79% (49% to 95%) and 97% (93% to 99%), smear-positive specimen; 50% (1% to 99%) and 100% (59% to 100%), smear-negative specimen.We had insufficient data to estimate summary sensitivity and specificity of version 2.0 (smear-positive and -negative specimens) or to compare accuracy of the two versions.A limitation was that most included studies did not consistently use the World Health Organization (WHO)-recommended concentrations for drugs in the culture-based DST reference standard. AUTHORS' CONCLUSIONS In people with rifampicin-resistant or multidrug-resistant tuberculosis, MTBDRsl performed on a culture isolate or smear-positive specimen may be useful in detecting second-line drug resistance. MTBDRsl (smear-positive specimen) correctly classified around six in seven people as having fluoroquinolone or SLID resistance, although the sensitivity estimates for SLID resistance varied. The test rarely gave a positive result for people without drug resistance. However, when second-line drug resistance is not detected (MTBDRsl result is negative), conventional DST can still be used to evaluate patients for resistance to the fluoroquinolones or SLIDs.We recommend that future work evaluate MTBDRsl version 2.0, in particular on smear-negative specimens and in different settings to account for different resistance-causing mutations that may vary by strain. Researchers should also consider incorporating WHO-recommended critical concentrations into their culture-based reference standards.
Collapse
Affiliation(s)
- Grant Theron
- Stellenbosch UniversityDST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesTygerbergSouth Africa
| | - Jonny Peter
- University of Cape TownDivision of Clinical Immunology and Allergology, Department of MedicineCape TownSouth Africa
| | - Marty Richardson
- Liverpool School of Tropical MedicineCochrane Infectious Diseases GroupPembroke PlaceLiverpoolUKL3 5QA
| | - Rob Warren
- Stellenbosch UniversityDST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesMatielandSouth Africa
| | - Keertan Dheda
- University of Cape TownLung Infection and Immunity Unit, Department of MedicineCape TownSouth Africa
| | - Karen R Steingart
- Liverpool School of Tropical MedicineCochrane Infectious Diseases GroupPembroke PlaceLiverpoolUKL3 5QA
| | | |
Collapse
|
11
|
Georghiou SB, Seifert M, Lin SY, Catanzaro D, Garfein RS, Jackson RL, Crudu V, Rodrigues C, Victor TC, Catanzaro A, Rodwell TC. Shedding light on the performance of a pyrosequencing assay for drug-resistant tuberculosis diagnosis. BMC Infect Dis 2016; 16:458. [PMID: 27576542 PMCID: PMC5006534 DOI: 10.1186/s12879-016-1781-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/15/2016] [Indexed: 12/29/2022] Open
Abstract
Background Rapid molecular diagnostics, with their ability to quickly identify genetic mutations associated with drug resistance in Mycobacterium tuberculosis clinical specimens, have great potential as tools to control multi- and extensively drug-resistant tuberculosis (M/XDR-TB). The Qiagen PyroMark Q96 ID system is a commercially available pyrosequencing (PSQ) platform that has been validated for rapid M/XDR-TB diagnosis. However, the details of the assay’s diagnostic and technical performance have yet to be thoroughly investigated in diverse clinical environments. Methods This study evaluates the diagnostic performance of the PSQ assay for 1128 clinical specimens from patients from three areas of high TB burden. We report on the diagnostic performance of the PSQ assay between the three sites and identify variables associated with poor PSQ technical performance. Results In India, the sensitivity of the PSQ assay ranged from 89 to 98 % for the detection of phenotypic resistance to isoniazid, rifampicin, fluoroquinolones, and the injectables. In Moldova, assay sensitivity ranged from 7 to 94 %, and in South Africa, assay sensitivity ranged from 71 to 92 %. Specificity was high (94–100 %) across all sites. The addition of eis promoter sequencing information greatly improved the sensitivity of kanamycin resistance detection in Moldova (7 % to 79 %). Nearly all (89.4 %) sequencing reactions conducted on smear-positive, culture-positive specimens and most (70.8 %) reactions conducted on smear-negative, culture-positive specimens yielded valid PSQ reads. An investigation into the variables influencing sequencing failures indicated smear negativity, culture negativity, site (Moldova), and sequencing of the rpoB, gyrA, and rrs genes were highly associated with poor PSQ technical performance (adj. OR > 2.0). Conclusions This study has important implications for the global implementation of PSQ as a molecular TB diagnostic, as it demonstrates how regional factors may impact PSQ diagnostic performance, while underscoring potential gene targets for optimization to improve overall PSQ assay technical performance. Trial registration ClinicalTrials.gov (#NCT02170441). Registered 12 June 2014. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1781-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophia B Georghiou
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Marva Seifert
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Shou-Yean Lin
- California Department of Public Health, Richmond, CA, USA
| | | | - Richard S Garfein
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Roberta L Jackson
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Valeriu Crudu
- Microbiology and Morphology Laboratory, Institute of Phthisiopneumology, Chisinau, Moldova
| | - Camilla Rodrigues
- Department of Microbiology, P.D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Thomas C Victor
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Antonino Catanzaro
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Timothy C Rodwell
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|