1
|
Shi SD, Hsueh PR, Yang PC, Chou CC. Use of DosR Dormancy Antigens from Mycobacterium tuberculosis for Serodiagnosis of Active and Latent Tuberculosis. ACS Infect Dis 2020; 6:272-280. [PMID: 31815418 DOI: 10.1021/acsinfecdis.9b00329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As more than two billion people possibly have a latent tuberculosis (LTB) infection, early LTB diagnosis is crucial for the efficient control and elimination of tuberculosis (TB). The aim of this study is to detect the serum antibody responses to dormancy-related DosR regulon antigens of Mycobacterium tuberculosis for the diagnosis of active and latent TB infections. A membrane array with 25 latency antigens detected by silver-enhanced gold nanoparticles was used to determine the corresponding cognate antibody levels in clinical serum samples from healthy controls, TB patients, and individuals with LTB. The array is sized to fit into a 24-well ELISA plate and follows an ELISA-like experimental procedure without expensive instrumentation. Linear discriminant analysis (LDA) of the resulting antibody profiling data set identified a panel of nine DosR antigens with significant discriminatory capability among different subjects with ≥90% sensitivity, specificity, and overall accuracy. Furthermore, the high predictive performance validated by an independent test sample set reflects the robustness and reliability of the LDA classification model. Our current data demonstrate that the nine DosR antigen combination associated with the proposed membrane array platform is a clinically feasible approach for distinguishing different TB infection statuses. The proposed methodology in this study could be further developed for multiple disease serodiagnoses with high sensitivity and specificity.
Collapse
Affiliation(s)
- Sheng-Dong Shi
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, No. 168 University Road, Min-Hsiung, Chia-Yi, Taiwan 62102, ROC
- Division of Laboratory Medicine, Chia-Yi and Wanqiao Branch, Taichung Veterans General Hospital, No. 600 Shixian Rd., Chia-Yi City, Taiwan 60090, ROC
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University College of Medicine, No. 1 Jen Ai Road, Taipei, Taiwan 10051, ROC
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, No. 1 Jen Ai Road, Taipei, Taiwan 10051, ROC
| | - Cheng-Chung Chou
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, No. 168 University Road, Min-Hsiung, Chia-Yi, Taiwan 62102, ROC
| |
Collapse
|
2
|
Immune responses to Mycobacterium tuberculosis membrane-associated antigens including alpha crystallin can potentially discriminate between latent infection and active tuberculosis disease. PLoS One 2020; 15:e0228359. [PMID: 32004357 PMCID: PMC6994005 DOI: 10.1371/journal.pone.0228359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/13/2020] [Indexed: 11/19/2022] Open
Abstract
Changes in expression of membrane antigens may accompany the transition of Mycobacterium tuberculosis (Mtb) from ‘dormant’ to ‘active’ states. We have determined whether antibody and T cell responses to Mtb membrane (MtM)-associated antigens, especially the latency-induced protein alpha crystallin (Acr), can discriminate between latent tuberculosis infection (LTBI) and active TB (ATB) disease. Study subjects comprised a previously described cohort of healthcare workers (HCWs, n = 43) and smear-positive ATB patients (n = 10). HCWs were further categorized as occupational contacts (OC, n = 30), household contacts of TB (HC, n = 8) and cured TB (CTB, n = 5). Levels (ΔOD) of serum antibody isotypes (IgG, IgA and IgM) were determined by ELISA and blood T cell proliferative responses were determined by flow cytometry using Ki67 protein as marker for DNA synthesis. Antibodies to MtM and Acr were predominantly IgG and their levels in HCWs and ATB did not differ significantly. However, HCWs showed a significantly higher level of anti-MtM IgM and a significantly lower level of anti-Acr IgA antibodies than the ATB patients. Also, a larger proportion of HCWs showed a high (>1) ΔODAcr/ΔODMtM ratio for IgG. HCWs also showed a higher, though not significantly different from ATB, avidity of anti-MtM (IgG) antibodies. A higher proportion of HCWs (35% of OC, 62.5% of HC and 20% of CTB), compared with ATB (10%) showed a positive T cell response to Acr along with significant difference (P <0.05) between HC and ATB. A significant correlation (r = 0.60, P <0.0001) was noted between T cell responses of HCWs towards Acr and MtM (reported earlier by us) and both responses tended to decline with rising exposure to the infection. Even so, positive responses to Acr (38.5%) were significantly lower than to MtM (92%). Neither antibody nor T cell responses to either antigen appeared affected by BCG vaccination or reactivity to tuberculin. Results of the study suggest that the levels of IgM antibodies to MtM, IgA antibodies to Acr and proliferative T cell responses to both the antigens can potentially discriminate between LTBI and active TB disease. They also underscore the necessity of SOPs for antibody assays.
Collapse
|
3
|
McLean MR, Lu LL, Kent SJ, Chung AW. An Inflammatory Story: Antibodies in Tuberculosis Comorbidities. Front Immunol 2019; 10:2846. [PMID: 31921122 PMCID: PMC6913197 DOI: 10.3389/fimmu.2019.02846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) resides in a quarter of the world's population and is the causative agent for tuberculosis (TB), the most common infectious reason of death in humans today. Although cellular immunity has been firmly established in the control of Mtb, there is growing evidence that antibodies may also modulate the infection. More specifically, certain antibody features are associated with inflammation and are divergent in different states of human infection and disease. Importantly, TB impacts not just the healthy but also those with chronic conditions. While HIV represents the quintessential comorbid condition for TB, recent epidemiological evidence shows that additional chronic conditions such as diabetes and kidney disease are rising. In fact, the prevalence of diabetes as a comorbid TB condition is now higher than that of HIV. These chronic diseases are themselves independently associated with pro-inflammatory immune states that encompass antibody profiles. This review discusses isotypes, subclasses, post-translational modifications and Fc-mediated functions of antibodies in TB infection and in the comorbid chronic conditions of HIV, diabetes, and kidney diseases. We propose that inflammatory antibody profiles, which are a marker of active TB, may be an important biomarker for detection of TB disease progression within comorbid individuals. We highlight the need for future studies to determine which inflammatory antibody profiles are the consequences of comorbidities and which may potentially contribute to TB reactivation.
Collapse
Affiliation(s)
- Milla R McLean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Lenette L Lu
- Division of Infectious Disease and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Infectious Diseases Department, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Brisbane, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, SA, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Younis H, Kerschbaumer I, Moon JY, Kim RS, Blanc CJ, Chen T, Wood R, Lawn S, Achkar JM. Combining urine lipoarabinomannan with antibody detection as a simple non-sputum-based screening method for HIV-associated tuberculosis. PLoS One 2019; 14:e0218606. [PMID: 31237915 PMCID: PMC6592524 DOI: 10.1371/journal.pone.0218606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/05/2019] [Indexed: 11/28/2022] Open
Abstract
Background Simple methods for the accurate triaging and screening of HIV-associated tuberculosis (TB) are urgently needed. We hypothesized that combining serum antibody with urine lipoarabinomannan (U-LAM) detection can improve the detection of HIV-associated TB. Methods We performed a case-control study with sampling from a prospective study of South African HIV-infected subjects who were screened for TB prior to initiating antiretroviral therapy. Sera from all available TB cases (n = 74) and randomly selected non-TB controls (n = 30), all tested for U-LAM, sputum microscopy, GeneXpert, and cultures, were evaluated for antibodies to LAM and arabinomannan (AM). Diagnostic logistic regression models for TB were developed based on the primary test results and the additive effect of antibodies with leave-one-out cross-validation. Results Antibody responses to LAM and AM correlated strongly (p<0.0001), and IgG and IgM reactivities were significantly higher in TB than non-TB patients (p<0.0001). At 80% specificity, the target specificity for a non-sputum-based simple triage/screening test determined by major TB stakeholders, combining U-LAM with IgG detection significantly increased the sensitivity for HIV-associated TB to 92% compared to 30% for U-LAM alone (p<0.001). Sputum microscopy combined with IgG detection increased sensitivity to 88% compared to 31% for microscopy alone, and Xpert with IgG increased sensitivity to 96% and 99% compared to 57% for testing one, and 70% for testing two sputa with Xpert alone, respectively. Conclusion Combining U-LAM with serum antibody detection could provide a simple low-cost method that meets the requirements for a non-sputum-based test for the screening of HIV-associated TB.
Collapse
Affiliation(s)
- Hiba Younis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Isabell Kerschbaumer
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ryung S. Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Caroline J. Blanc
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Robin Wood
- Desmond Tutu HIV Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Steven Lawn
- Desmond Tutu HIV Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jacqueline M. Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Immunoscreening of the M. tuberculosis F15/LAM4/KZN secretome library against TB patients' sera identifies unique active- and latent-TB specific biomarkers. Tuberculosis (Edinb) 2019; 115:161-170. [PMID: 30948172 DOI: 10.1016/j.tube.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/01/2019] [Accepted: 03/12/2019] [Indexed: 02/03/2023]
Abstract
Tuberculosis (TB) protein biomarkers are urgently needed for the development of point-of-care diagnostics, new drugs and vaccines. Mycobacterium tuberculosis extracellular and secreted proteins play an important role in host-pathogen interactions. Antibodies produced against M. tuberculosis proteins before the onset of clinical symptoms can be used in proteomic studies to identify their target proteins. In this study, M. tuberculosis F15/LAM4/KZN strain phage secretome library was screened against immobilized polyclonal sera from active TB patients (n = 20), TST positive individuals (n = 15) and M. tuberculosis uninfected individuals (n = 20) to select and identify proteins recognized by patients' antibodies. DNA sequence analysis from randomly selected latent TB and active TB specific phage clones revealed 118 and 96 ORFs, respectively. Proteins essential for growth, virulence and metabolic pathways were identified using different TB databases. The identified active TB specific biomarkers included five proteins, namely, TrpG, Alr, TreY, BfrA and EspR, with no human homologs, whilst latent TB specific biomarkers included NarG, PonA1, PonA2 and HspR. Future studies will assess potential applications of identified protein biomarkers as TB drug or vaccine candidates/targets and diagnostic markers with the ability to discriminate LTBI from active TB.
Collapse
|
6
|
Nurwidya F, Handayani D, Burhan E, Yunus F. Molecular Diagnosis of Tuberculosis. Chonnam Med J 2018; 54:1-9. [PMID: 29399559 PMCID: PMC5794472 DOI: 10.4068/cmj.2018.54.1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of adult death in the Asia-Pacific Region, including Indonesia. As an infectious disease caused by Mycobacterium tuberculosis (MTB), TB remains a major public health issue especially in developing nations due to the lack of adequate diagnostic testing facilities. Diagnosis of TB has entered an era of molecular detection that provides faster and more cost-effective methods to diagnose and confirm drug resistance in TB cases, meanwhile, diagnosis by conventional culture systems requires several weeks. New advances in the molecular detection of TB, including the faster and simpler nucleic acid amplification test (NAAT) and whole-genome sequencing (WGS), have resulted in a shorter time for diagnosis and, therefore, faster TB treatments. In this review, we explored the current findings on molecular diagnosis of TB and drug-resistant TB to see how this advancement could be integrated into public health systems in order to control TB.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Diah Handayani
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Erlina Burhan
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Faisal Yunus
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| |
Collapse
|
7
|
Coppola M, Arroyo L, van Meijgaarden KE, Franken KL, Geluk A, Barrera LF, Ottenhoff THM. Differences in IgG responses against infection phase related Mycobacterium tuberculosis (Mtb) specific antigens in individuals exposed or not to Mtb correlate with control of TB infection and progression. Tuberculosis (Edinb) 2017; 106:25-32. [PMID: 28802401 DOI: 10.1016/j.tube.2017.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/02/2017] [Accepted: 06/04/2017] [Indexed: 11/26/2022]
Abstract
Tuberculosis (TB) occurs in only 3-10% of Mycobacterium tuberculosis (Mtb) infected individuals, suggesting that natural immunity can contain Mtb infection, although this remains poorly understood. Next to T-cells, a potentially protective role for B-cells and antibodies has emerged recently. However, the Mtb antigens involved remain ill-defined. Here, we investigated in a TB-endemic setting IgG levels against 15 Mtb antigens, representing various phases of Mtb infection and known to be potent human T-cell antigens. IgG levels against ESAT6/CFP10, Rv0440, Rv0867c, Rv1737c, Rv2029c, Rv2215, Rv2389c, Rv3616c and Mtb purified protein derivative (PPD) were higher in TB patients than in endemic and non-endemic controls. The only exception was Rv1733c that was preferentially recognized by antibodies from endemic controls compared to TB patients and non-endemic controls, suggesting a potential correlation with control of TB infection and progression. In patients, IgG levels against Ag85B and Rv2029c correlated with Mtb loads, while immunoglobulins against Rv0440 differed between genders. Our results support the potential role of certain Mtb antigen-(Rv1733c) specific antibodies in the control of TB infection and progression, while other Mtb antigen-specific antibodies correlate with TB disease activity and bacillary loads. The findings for Rv1733c agree with previous T-cell results and have implications for including antibody-mediated immunity in designing new strategies to control TB.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Dept. of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, The Netherlands.
| | - Leonar Arroyo
- Grupo de Inmunología Cellular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Krista E van Meijgaarden
- Dept. of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, The Netherlands
| | - Kees Lmc Franken
- Dept. of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, The Netherlands
| | - Annemieke Geluk
- Dept. of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, The Netherlands
| | - Luis F Barrera
- Grupo de Inmunología Cellular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Tom H M Ottenhoff
- Dept. of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, The Netherlands
| |
Collapse
|
8
|
Hattori T, Chagan-Yasutan H, Shiratori B, Egawa S, Izumi T, Kubo T, Nakajima C, Suzuki Y, Niki T, Alisjahbana B, Telan E. Development of Point-of-Care Testing for Disaster-Related Infectious Diseases. TOHOKU J EXP MED 2017; 238:287-93. [PMID: 27020774 DOI: 10.1620/tjem.238.287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
After disaster, the victims lose their safe lives and are even exposed to nature where they could suffer from animal bites and vectors followed by suffering from zoonosis or vector-born diseases. Because of the urgent need for rapid and cheap diagnosis for infectious diseases after disaster, anonymous questionnaire clarified that leptospirosis, dengue, diarrhea, and cholera were recognized as common disaster-related infections in the Philippines, while diarrhea and pneumonia were more common in Indonesia. It should also be noted that infectious disease itself such as tuberculosis associated with acquired immune deficiency syndrome in South Africa is a disaster. Thus, the possible occurrence of similar situation in Asia should be prevented. We have conducted an international collaborative research in the Philippines and Indonesia on dengue virus, leptospira and mycobacterium tuberculosis (MTB) infectious diseases. Development of point-of-care testing for molecular diagnosis and disease severity was the principal purpose of the research. Loop-mediated isothermal amplification assay, which does not require a source of electricity, was developed for leptospirosis, dengue and MTB and has been proved to be useful where resource is limited. The plasma levels of matricellular proteins, including galectin-9 and osteopontin, were found to reflect the disease severities in dengue virus and MTB infection, probably because matricellular proteins are one of the most functional extracellular proteins that are associated with inflammatory edema. The study on disaster-related infectious disease facilitates the international cooperation for development of point-of-care testing for tropical infectious diseases.
Collapse
Affiliation(s)
- Toshio Hattori
- Department of Disaster-related Infectious Disease, International Research Institute of Disaster Science, Tohoku University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Difference in Antibody Responses to Mycobacterium tuberculosis Antigens in Japanese Tuberculosis Patients Infected with the Beijing/Non-Beijing Genotype. J Immunol Res 2017; 2017:4797856. [PMID: 28182078 PMCID: PMC5274661 DOI: 10.1155/2017/4797856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/08/2016] [Indexed: 01/25/2023] Open
Abstract
The Beijing genotype Mycobacterium tuberculosis (MTB), notorious for its virulence and predisposition to relapse, could be identified by spoligotyping based on genetic heterogeneity. The plasma samples from 20 cases of Beijing and 16 cases of non-Beijing MTB infected individuals and 24 healthy controls (HCs) were collected, and antibodies against 11 antigens (Rv0679c142Asn, Rv0679c142Lys, Ag85B, Ag85A, ARC, TDM-M, TDM-K, HBHA, MDP-1, LAM, and TBGL) were measured by ELISA. Compared to the HCs, the MTB infected subjects showed higher titers of anti-Ag85B IgG (positivity 58.2%) and anti-ACR IgG (positivity 48.2%). Of note, anti-ACR IgG showed higher titer in Beijing MTB infected tuberculosis (TB) patients than in HC (Kruskal–Wallis test, p < 0.05), while the levels of anti-Ag85B, anti-TBGL, anti-TDM-K, and anti-TDM-M IgG were higher in non-Beijing TB patients than in HC. Moreover, anti-Ag85B IgG showed higher response in non-Beijing TB patients than in Beijing TB patients (p < 0.05; sensitivity, 76.9% versus 44.4%). The sensitivity and specificity analysis showed that 78.8% Beijing infected individuals were negative in anti-TBGL-IgG or/and anti-Ag85B-IgG, while 75.0% of those were positive in anti-TBGL-IgA or/and anti-ACR-IgG tests. These results indicate the possibility of developing antibody-based test to identify Beijing MTB.
Collapse
|
10
|
Hasibuan FM, Shiratori B, Senoputra MA, Chagan-Yasutan H, Koesoemadinata RC, Apriani L, Takahashi Y, Niki T, Alisjahbana B, Hattori T. Evaluation of matricellular proteins in systemic and local immune response to Mycobacterium tuberculosis infection. Microbiol Immunol 2016; 59:623-32. [PMID: 26337438 DOI: 10.1111/1348-0421.12320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/19/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022]
Abstract
Matricellular proteins such as osteopontin (OPN), galectin-9 (Gal-9), and tenascin-C (TN-C) are expressed not only under normal physiological conditions, but also during infection, inflammation and tumorigenesis. Plasma concentrations of matricellular proteins were studied to determine their diagnostic value as potential markers of tuberculosis (TB) activity. It was found that concentrations of OPN and TN-C were higher in patients with active TB than in healthy controls and individuals with latent infection. Moreover, LTBI patients had higher concentrations of OPN than did healthy controls. Gal-9 concentrations did not differ significantly between groups. Concentrations of matricellular proteins were higher in pleural fluid than in the plasma of patients with TB. Expression of matricellular proteins was also investigated in TB granulomas and other granulomatous diseases. Positive OPN and Gal-9 staining was observed in TB and sarcoidosis granulomas, but not in Crohn disease granulomas. The fibrotic ring around granulomas stained positive for TN-C in TB and sarcoidosis, but not in Crohn disease. Of the three matricellular proteins studied, OPN and TN-C may serve as reliable plasma markers for monitoring TB activity, whereas Gal-9 seems to be expressed more at the site of infection than in the systemic circulation.
Collapse
Affiliation(s)
- Fakhrial Mirwan Hasibuan
- Division of Emerging Infectious Diseases, Graduate School of Medicine, Tohoku University.,Public Health Science Program
| | - Beata Shiratori
- Division of Emerging Infectious Diseases, Graduate School of Medicine, Tohoku University.,Division of Disaster-related Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1 Seiryo-machi
| | - Muhammad Andrian Senoputra
- Division of Emerging Infectious Diseases, Graduate School of Medicine, Tohoku University.,Public Health Science Program
| | - Haorile Chagan-Yasutan
- Division of Emerging Infectious Diseases, Graduate School of Medicine, Tohoku University.,Division of Disaster-related Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1 Seiryo-machi
| | | | - Lika Apriani
- TB-HIV Research Center, Faculty of Medicine, Padjadjaran University, Jl Eicjkman 38, Bandung, 40161, West Java, Indonesia
| | - Yayoi Takahashi
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi
| | - Toshiro Niki
- Research Division, GalPharma Company, NEXT-Kagawa 204, 2217-44 Hayashi-cho, Takamatsu-shi, Kagawa, 760-0301, Japan
| | - Bachti Alisjahbana
- TB-HIV Research Center, Faculty of Medicine, Padjadjaran University, Jl Eicjkman 38, Bandung, 40161, West Java, Indonesia
| | - Toshio Hattori
- Division of Emerging Infectious Diseases, Graduate School of Medicine, Tohoku University.,Public Health Science Program
| |
Collapse
|
11
|
Single Nucleotide Polymorphisms in P2X7 Gene Are Associated with Serum Immunoglobulin G Responses to Mycobacterium tuberculosis in Tuberculosis Patients. DISEASE MARKERS 2015; 2015:671272. [PMID: 26798189 PMCID: PMC4698936 DOI: 10.1155/2015/671272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 01/12/2023]
Abstract
Objective. Our study investigated the association between single nucleotide polymorphisms (SNPs) in P2X7 gene and serum immunoglobulin G (IgG) responses to mycobacterium tuberculosis (MTB) in TB patients. Methods. A total of 103 TB patients were enrolled as case group and 87 healthy individuals at same geographical region as control group. The SNP detection of 1513A>C and -762T>C was performed using PCR-RFLP, and the levels of serum IgG responses to MTB in all subjects were determined. Results. AC and CC of 1513A>C and TC and CC of -762T>C had higher frequencies in case group than in control group. TB patients carrying TC and CC of -762T>C had higher positive rate of IgG responses to MTB than those carrying TT. Additionally, patients carrying TC and CC of -762T>C had more MTB in sputum than those carrying TT. Conclusion. P2X7 SNPs, 1513A>C and -762T>C, may be associated with the susceptibility to tuberculosis, and -762T>C SNP may contribute to the development of MTB. The mutant genotype of -762T>C (TC and CC) may lower human capability of phagocytosis to MTB, leading to an increased morbidity of TB.
Collapse
|