1
|
Addis MF, Locatelli C, Penati M, Poli SF, Monistero V, Zingale L, Rota N, Gusmara C, Piccinini R, Moroni P, Bronzo V. Non-aureus staphylococci and mammaliicocci isolated from bovine milk in Italian dairy farms: a retrospective investigation. Vet Res Commun 2024; 48:547-554. [PMID: 37558858 PMCID: PMC10811067 DOI: 10.1007/s11259-023-10187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Non-aureus staphylococci and mammaliicocci (NASM) are associated with bovine mastitis and increased milk somatic cell count (SCC) but their relationships with mammary gland health at the species level are not clearly defined. Regional differences have also been reported in their specific prevalence. The implementation of MALDI-TOF MS in milk microbiology is generating large and dependable datasets with the potential of providing useful epidemiological information. We present the retrospective analysis of 17,213 milk samples sent to our laboratory in 2021-2022, including 13,146 quarter samples from cows with subclinical (SCM) or clinical mastitis (CM) from 104 farms, and 4,067 composite herd survey (HS) samples from 21 farms. NASM were isolated from 21.12% of SCM, 11.49% of CM, and 15.59% of HS milk samples. The three most frequently identified NASM in SCM milk were Staphylococcus chromogenes (33.33%), S. haemolyticus (26.07%), and S. epidermidis (10.65%); together with S. microti and S. hyicus, these species were significantly more prevalent in quarters with SCM (p < 0.05). The three most frequently identified NASM in CM milk were S. chromogenes (31.69%), S. haemolyticus (21.42%), and Mammaliicoccus sciuri (18.38%), although no significant associations were found between these NASM species and CM. The three most frequently identified NASM in HS milk were S. chromogenes (44.49%), S. epidermidis (17.84%), and S. haemolyticus (17.23%), with S. chromogenes being isolated in all the farms sending HS milk (100%). In conclusion, this retrospective study provides the first information on the NASM species isolated from cow milk in Italy, expanding our knowledge on the epidemiology of NASM at the species level and providing further insights into their relationships with mammary gland health in modern dairy farms.
Collapse
Affiliation(s)
- Maria Filippa Addis
- Department of Veterinary Medicine and Animal Science - DIVAS, University of Milan, Lodi, Italy.
- Laboratorio di Malattie Infettive degli Animali - MiLab, University of Milan, Lodi, Italy.
| | - Clara Locatelli
- Department of Veterinary Medicine and Animal Science - DIVAS, University of Milan, Lodi, Italy
| | - Martina Penati
- Department of Veterinary Medicine and Animal Science - DIVAS, University of Milan, Lodi, Italy
| | - Sara Fusar Poli
- Department of Veterinary Medicine and Animal Science - DIVAS, University of Milan, Lodi, Italy
| | - Valentina Monistero
- Department of Veterinary Medicine and Animal Science - DIVAS, University of Milan, Lodi, Italy
| | - Lucia Zingale
- Department of Veterinary Medicine and Animal Science - DIVAS, University of Milan, Lodi, Italy
| | | | - Claudia Gusmara
- Department of Veterinary Medicine and Animal Science - DIVAS, University of Milan, Lodi, Italy
| | - Renata Piccinini
- Department of Veterinary Medicine and Animal Science - DIVAS, University of Milan, Lodi, Italy
| | - Paolo Moroni
- Department of Veterinary Medicine and Animal Science - DIVAS, University of Milan, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali - MiLab, University of Milan, Lodi, Italy
- Quality Milk Production Services (QMPS), Cornell University, Ithaca, USA
| | - Valerio Bronzo
- Department of Veterinary Medicine and Animal Science - DIVAS, University of Milan, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali - MiLab, University of Milan, Lodi, Italy
| |
Collapse
|
2
|
Rosa NM, Penati M, Fusar-Poli S, Addis MF, Tola S. Species identification by MALDI-TOF MS and gap PCR-RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis. Vet Res 2022; 53:84. [PMID: 36243811 PMCID: PMC9569034 DOI: 10.1186/s13567-022-01102-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococci and streptococci are common causes of intramammary infection in small ruminants, and reliable species identification is crucial for understanding epidemiology and impact on animal health and welfare. We applied MALDI-TOF MS and gap PCR–RFLP to 204 non-aureus staphylococci (NAS) and mammaliicocci (NASM) and to 57 streptococci isolated from the milk of sheep and goats with mastitis. The top identified NAS was Staphylococcus epidermidis (28.9%) followed by Staph. chromogenes (27.9%), haemolyticus (15.7%), caprae, and simulans (6.4% each), according to both methods (agreement rate, AR, 100%). By MALDI-TOF MS, 13.2% were Staph. microti (2.9%), xylosus (2.0%), equorum, petrasii and warneri (1.5% each), Staph. sciuri (now Mammaliicoccus sciuri, 1.0%), arlettae, capitis, cohnii, lentus (now M. lentus), pseudintermedius, succinus (0.5% each), and 3 isolates (1.5%) were not identified. PCR–RFLP showed 100% AR for Staph. equorum, warneri, arlettae, capitis, and pseudintermedius, 50% for Staph. xylosus, and 0% for the remaining NASM. The top identified streptococcus was Streptococcus uberis (89.5%), followed by Strep. dysgalactiae and parauberis (3.5% each) and by Strep. gallolyticus (1.8%) according to both methods (AR 100%). Only one isolate was identified as a different species by MALDI-TOF MS and PCR–RFLP. In conclusion, MALDI-TOF MS and PCR–RFLP showed a high level of agreement in the identification of the most prevalent NAS and streptococci causing small ruminant mastitis. Therefore, gap PCR–RFLP can represent a good identification alternative when MALDI-TOF MS is not available. Nevertheless, some issues remain for Staph. haemolyticus, minor NAS species including Staph. microti, and species of the novel genus Mammaliicoccus.
Collapse
Affiliation(s)
- Nives Maria Rosa
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", Via Duca degli Abruzzi 8, 07100, Sassari, Italy
| | - Martina Penati
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,MILab, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Sara Fusar-Poli
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,MILab, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy. .,MILab, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| | - Sebastiana Tola
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", Via Duca degli Abruzzi 8, 07100, Sassari, Italy
| |
Collapse
|
3
|
Mouritzen MV, Petkovic M, Qvist K, Poulsen SS, Alarico S, Leal EC, Dalgaard LT, Empadinhas N, Carvalho E, Jenssen H. Improved diabetic wound healing by LFcinB is associated with relevant changes in the skin immune response and microbiota. Mol Ther Methods Clin Dev 2021; 20:726-739. [PMID: 33738327 PMCID: PMC7940703 DOI: 10.1016/j.omtm.2021.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
Bovine lactoferricin (LFcinB) has antimicrobial and immunomodulatory properties; however, the effects on diabetic wound healing remain poorly understood. The wound healing potential of LFcinB was investigated with in vitro, ex vivo, and in vivo models. Cell migration and proliferation were tested on keratinocytes and on porcine ears. A type 1 diabetic mouse model was also used to evaluate wound healing kinetics, bacterial diversity patterns, and the effect of LFcinB on oxidative stress, macrophage phenotype, angiogenesis, and collagen deposition. LFcinB increased keratinocyte migration in vitro (p < 0.05) and ex vivo (p < 0.001) and improved wound healing in diabetic mice (p < 0.05), though not in normoglycemic control mice. In diabetic mouse wounds, LFcinB treatment led to the eradication of Bacillus pumilus, a decrease in Staphylococcus aureus, and an increase in the Staphylococcus xylosus prevalence. LFcinB increased angiogenesis in diabetic mice (p < 0.01), but this was decreased in control mice (p < 0.05). LFcinB improved collagen deposition in both diabetic and control mice (p < 0.05). Both oxidative stress and the M1-to-M2 macrophage ratios were decreased in LFcinB-treated wounds of diabetic animals (p < 0.001 and p < 0.05, respectively) compared with saline, suggesting a downregulation of inflammation in diabetic wounds. In conclusion, LFcinB treatment demonstrated noticeable positive effects on diabetic wound healing.
Collapse
Affiliation(s)
| | - Marija Petkovic
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Katrine Qvist
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Steen S. Poulsen
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Susana Alarico
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ermelindo C. Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Louise T. Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Nuno Empadinhas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Department of Geriatrics, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
4
|
Adesoji TO, Egyir B, Shittu AO. Antibiotic-resistant staphylococci from the wastewater treatment plant and grey-water samples in Obafemi Awolowo University, Ile-Ife, Nigeria. JOURNAL OF WATER AND HEALTH 2020; 18:890-898. [PMID: 33328361 DOI: 10.2166/wh.2020.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study examined the occurrence and molecular basis for antibiotic-resistant staphylococci from the wastewater treatment plant and grey-water samples in Obafemi Awolowo University, Nigeria. Standard microbiological techniques and molecular methods were utilized. The species identified (MALDI score >1.7) comprised S. saprophyticus (19), S. cohnii (8), S. sciuri (7), S. aureus (4), S. epidermidis (3), S. warneri (2), S. equorum (1), S. haemolyticus (1), S. nepalensis (1), S. condimenti (1), and S. pasteuri (1). Resistance to trimethoprim, tetracycline and cefoxitin were observed in 78.3% (47/60), 36.7% (22/60) and 25% (15/60) of the isolates, respectively. The rate of multidrug resistance was 53.3% (32/60) and observed in eight species from different sampling sites. Seven (S. sciuri; n = 5; S. aureus; n = 1; S. warneri; n = 1) of the 20 selected (representing the various staphylococcal species and antibiotypes) isolates were mecA-positive. Furthermore, the tetK gene was detected in nine isolates, six with dfrA, and four were positive for the dfrG gene. One S. aureus was mecA, tetK and dfrG gene positive. The study provides insights on antibiotic-resistant staphylococci from a non-clinical setting and highlights the need for active surveillance to understand the burden of antimicrobial resistance in Nigeria. This is key to improve synergy across the human, animal and environmental health sectors in Nigeria.
Collapse
Affiliation(s)
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute of Medical Research, University of Ghana, Accra, Ghana
| | - Adebayo Osagie Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria; †Current address: Institute of Medical Microbiology, University Hospital Münster, Domagkstrasse 10, 48149 Münster, Germany
| |
Collapse
|
5
|
Conesa A, Dieser S, Barberis C, Bonetto C, Lasagno M, Vay C, Odierno L, Porporatto C, Raspanti C. Differentiation of non-aureus staphylococci species isolated from bovine mastitis by PCR-RFLP of groEL and gap genes in comparison to MALDI-TOF mass spectrometry. Microb Pathog 2020; 149:104489. [PMID: 32910983 DOI: 10.1016/j.micpath.2020.104489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Intramammary infections (IMI) cause serious economic losses for farmers and the dairy industry. Cases of subclinical mastitis are commonly the result of infection by minor pathogens such as non-aureus staphylococci (NAS), so their correct identification is important for appropriate therapeutic intervention and management. The aim of this study was to assess the reliability of PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) of the groEL and gap genes to discriminate between bovine-associated NAS species, using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) as the reference method. MALDI-TOF MS was able to correctly identify 112 NAS isolates from bovine IMI at species level out of a total of 115 (97.4%). These results were considered definitive and thus compared with those from the PCR-RFLP analyses. Only 50% (56/112) of the samples classified through groEL PCR-RFLP matched the molecular identity determined by MALDI-TOF MS, whereas coincidence rose to 96.4% (108/112) when comparing results from gap PCR-RFLP and the spectral analysis. This study demonstrates that gap PCR-RFLP is a useful and reliable tool for the identification of NAS species isolated from bovine mastitis.
Collapse
Affiliation(s)
- Agustín Conesa
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas (IAPCByA), Universidad Nacional de Villa María, Arturo Jauretche 1555, X5900KBJ, Villa María, Córdoba, Argentina
| | - Silvana Dieser
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta 36 km 601, X5806JRA, Río Cuarto, Córdoba, Argentina
| | - Claudia Barberis
- Instituto de Fisiopatología y Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAD, Caba, Argentina
| | - Cesar Bonetto
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas (IAPCByA), Universidad Nacional de Villa María, Arturo Jauretche 1555, X5900KBJ, Villa María, Córdoba, Argentina
| | - Mirta Lasagno
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta 36 km 601, X5806JRA, Río Cuarto, Córdoba, Argentina
| | - Carlos Vay
- Instituto de Fisiopatología y Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAD, Caba, Argentina
| | - Liliana Odierno
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta 36 km 601, X5806JRA, Río Cuarto, Córdoba, Argentina
| | - Carina Porporatto
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas (IAPCByA), Universidad Nacional de Villa María, Arturo Jauretche 1555, X5900KBJ, Villa María, Córdoba, Argentina
| | - Claudia Raspanti
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta 36 km 601, X5806JRA, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
6
|
Enhanced textile wastewater treatment by a novel biofilm carrier with adsorbed nutrients. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Kim J, Hong J, Lim JA, Heu S, Roh E. Improved multiplex PCR primers for rapid identification of coagulase-negative staphylococci. Arch Microbiol 2017; 200:73-83. [PMID: 28795230 PMCID: PMC5758691 DOI: 10.1007/s00203-017-1415-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/13/2017] [Accepted: 07/25/2017] [Indexed: 11/04/2022]
Abstract
Coagulase-negative staphylococci (CNS) are opportunistic pathogens that are currently emerging as causative agents of human disease. Though CNS are widespread in the clinic and food, their precise identification at species level is important. Here, using 16S rRNA sequencing, 55 staphylococcal isolates were identified as S. capitis, S. caprae, S. epidermidis, S. haemolyticus, S. pasteuri, S. saprophyticus, S. warneri, and S. xylosus. Although 16S rRNA sequencing is universally accepted as a standard for bacterial identification, the method did not effectively discriminate closely related species, and additional DNA sequencing was required. The divergence of the sodA gene sequence is higher than that of 16S rRNA. To devise a rapid and accurate identification method, sodA-specific primers were designed to demonstrate that species-specific multiplex polymerase chain reaction (PCR) can be used for the identification of CNS species. The accuracy of this method was higher than that of phenotypic identification; the method is simple and less time-consuming than 16S rRNA sequencing. Of the 55 CNS isolates, 92.72% were resistant to at least one antibiotic, and 60% were resistant to three or more antibiotics. CNS isolates produced diverse virulence-associated enzymes, including hemolysin (produced by 69.09% of the isolates), protease (65.45%), lipase (54.54%), lecithinase (36.36%), and DNase (29.09%); all isolates could form a biofilm. Because of the increasing pathogenic significance of CNS, the efficient multiplex PCR detection method developed in this study may contribute to studies for human health.
Collapse
Affiliation(s)
- Jonguk Kim
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jisoo Hong
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jeong-A Lim
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Sunggi Heu
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon, 16613, Republic of Korea
| | - Eunjung Roh
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea.
| |
Collapse
|
8
|
Lin JF, Ge MC, Liu TP, Chang SC, Lu JJ. A simple method for rapid microbial identification from positive monomicrobial blood culture bottles through matrix-assisted laser desorption ionization time-of-flight mass spectrometry. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:659-665. [PMID: 28711436 DOI: 10.1016/j.jmii.2017.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/04/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE Rapid identification of microbes in the bloodstream is crucial in managing septicemia because of its high disease severity, and direct identification from positive blood culture bottles through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can shorten the turnaround time. Therefore, we developed a simple method for rapid microbiological identification from positive blood cultures by using MALDI-TOF MS. METHODS We modified previously developed methods to propose a faster, simpler and more economical method, which includes centrifugation and hemolysis. Specifically, our method comprises two-stage centrifugation with gravitational acceleration (g) at 600g and 3000g, followed by the addition of a lysis buffer and another 3000g centrifugation. RESULTS In total, 324 monomicrobial bacterial cultures were identified. The success rate of species identification was 81.8%, which is comparable with other complex methods. The identification success rate was the highest for Gram-negative aerobes (85%), followed by Gram-positive aerobes (78.2%) and anaerobes (67%). The proposed method requires less than 10 min, costs less than US$0.2 per usage, and facilitates batch processing. CONCLUSION We conclude that this method is feasible for clinical use in microbiology laboratories, and can serve as a reference for treatments or further complementary diagnostic testing.
Collapse
Affiliation(s)
- Jung-Fu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Mao-Cheng Ge
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsui-Ping Liu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Cheng Chang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Cameron M, Barkema H, De Buck J, De Vliegher S, Chaffer M, Lewis J, Keefe G. Identification of bovine-associated coagulase-negative staphylococci by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a direct transfer protocol. J Dairy Sci 2017; 100:2137-2147. [DOI: 10.3168/jds.2016-12020] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/25/2016] [Indexed: 11/19/2022]
|
10
|
Siller-Ruiz M, Hernández-Egido S, Sánchez-Juanes F, González-Buitrago JM, Muñoz-Bellido JL. Fast methods of fungal and bacterial identification. MALDI-TOF mass spectrometry, chromogenic media. Enferm Infecc Microbiol Clin 2017; 35:303-313. [PMID: 28108122 DOI: 10.1016/j.eimc.2016.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 11/16/2022]
Abstract
MALDI-TOF mass spectrometry is now a routine resource in Clinical Microbiology, because of its speed and reliability in the identification of microorganisms. Its performance in the identification of bacteria and yeasts is perfectly contrasted. The identification of mycobacteria and moulds is more complex, due to the heterogeneity of spectra within each species. The methodology is somewhat more complex, and expanding the size of species libraries, and the number of spectra of each species, will be crucial to achieve greater efficiency. Direct identification from blood cultures has been implemented, since its contribution to the management of severe patients is evident, but its application to other samples is more complex. Chromogenic media have also contributed to the rapid diagnosis in both bacteria and yeast, since they accelerate the diagnosis, facilitate the detection of mixed cultures and allow rapid diagnosis of resistant species.
Collapse
Affiliation(s)
- María Siller-Ruiz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, España
| | - Sara Hernández-Egido
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, España
| | - Fernando Sánchez-Juanes
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, España
| | - José Manuel González-Buitrago
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, España; Servicio de Bioquímica Clínica, Complejo Asistencial Universitario de Salamanca, Salamanca, España; Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, España
| | - Juan Luis Muñoz-Bellido
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, España; Servicio de Microbiología, Complejo Asistencial Universitario de Salamanca, Salamanca, España; Departamento de Ciencias Biomédicas y del Diagnóstico, Universidad de Salamanca, Salamanca, España.
| |
Collapse
|
11
|
Han HW, Chang HC, Chang TC. Identification of Staphylococcus spp. and detection of mecA by an oligonucleotide array. Diagn Microbiol Infect Dis 2016; 86:23-9. [PMID: 27342780 DOI: 10.1016/j.diagmicrobio.2016.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023]
Abstract
Phenotypic identification of coagulase-negative staphylococci (CoNS) is difficult and many staphylococcal species carry mecA. This study developed an array that was able to detect mecA and identify 30 staphylococcal species by targeting the internal transcribed spacer regions. A total of 129 target reference strains (30 species) and 434 clinical isolates of staphylococci were analyzed. Gene sequencing of 16S rRNA, gap or tuf genes was the reference method for species identification. All reference strains (100%) were correctly identified, while the identification rates of clinical isolates of S. aureus and CoNS were 98.9% and 98%, respectively. The sensitivity and specificity for mecA detection were 99% and 100%, respectively, in S. aureus isolates, and both values were 100% in isolates of CoNS. The assay takes 6 h from a purified culture isolate, and so far it has not been performed directly on patient samples.
Collapse
Affiliation(s)
- Huan Wen Han
- Institute of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hsien Chang Chang
- Institute of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| | - Tsung Chain Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|