1
|
Sah SN, Gupta S, Bhardwaj N, Gautam LK, Capalash N, Sharma P. In silico design and assessment of a multi-epitope peptide vaccine against multidrug-resistant Acinetobacter baumannii. In Silico Pharmacol 2024; 13:7. [PMID: 39726905 PMCID: PMC11668725 DOI: 10.1007/s40203-024-00292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Acinetobacter baumannii, an opportunistic and notorious nosocomial pathogen, is responsible for many infections affecting soft tissues, skin, lungs, bloodstream, and urinary tract, accounting for more than 722,000 cases annually. Despite the numerous advancements in therapeutic options, no approved vaccine is currently available for this particular bacterium. Consequently, this study focused on creating a rational vaccine design using bioinformatics tools. Three outer membrane proteins with immunogenic potential and properties of good vaccine candidates were used to select epitopes based on good antigenic properties, non-allergenicity, high binding scores, and a low IC50 value. A multi-epitope peptide (MEP) construct was created by sequentially linking the epitopes using suitable linkers. ClusPro 2.0 and C-ImmSim web servers were used for docking analysis with TLR2/TLR4 and immune response respectively. The Ramachandran plot showed an accurate model of the MEP with 100% residue in the most favored and allowed regions. The construct was highly antigenic, stable, non-allergenic, non-toxic, and soluble, and showed maximum population coverage. Additionally, molecular docking demonstrated strong binding between the designed MEP vaccine and TLR2/TLR4. In silico immunological simulations showed significant increases in T-cell and B-cell populations. Finally, codon optimization and in silico cloning were conducted using the pET-28a (+) plasmid vector to evaluate the efficiency of the expression of vaccine peptide in the host organism (Escherichia coli). This designed MEP vaccine would support and accelerate the laboratory work to develop a potent vaccine targeting MDR Acinetobacter baumannii. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00292-3.
Collapse
Affiliation(s)
- Shiv Nandan Sah
- Department of Microbiology, Panjab University, Chandigarh, 160014 India
- Department of Microbiology, Central Campus of Technology, Tribhuvan University, Dharan, Nepal
| | - Sumit Gupta
- School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, 110062 India
| | - Neha Bhardwaj
- Department of Microbiology, Panjab University, Chandigarh, 160014 India
| | - Lalit Kumar Gautam
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242 USA
- Department of Biotechnology, Panjab University, Chandigarh, 160014 India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, 160014 India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014 India
| |
Collapse
|
2
|
Riddles T, Judge D. Community-Acquired, Bacteraemic Acinetobacter Baumannii Pneumonia: A Retrospective Review of Cases in Tropical Queensland, Australia. Trop Med Infect Dis 2023; 8:419. [PMID: 37624357 PMCID: PMC10458713 DOI: 10.3390/tropicalmed8080419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Community-acquired Acinetobacter pneumonia (CAAP) typically presents with rapid progression to fulminant disease and is complicated by high mortality. Australian epidemiological studies are few. METHODS We conducted a retrospective study on bacteraemic cases of CAAP over twenty years (2000-2019) in North Queensland. Cases were selected on microbiologic, clinical, and radiographic parameters. Data on patient demographics were obtained, along with microbial, antibiotic, mortality and climatic data. RESULTS 28 cases of CAAP were included. Nineteen (67.9%) were male, twenty-three (82.1%) were Indigenous Australians, and the mean age was 45.9 years. Most presentations were of moderate to severe pneumonia (25/28 (89.3%)). Furthermore, 90% of cases had two or more risk factors. The strongest risk factors for CAAP were alcohol excess and tobacco use. No statistically significant difference in presenting severity, ICU admission or mortality was seen between dry- and wet-season disease. Dry-season disease accounted for 35.7% of cases. Overall mortality was 28.6%. Early use of meropenem or gentamicin reduced mortality irrespective of presenting severity (mortality 17.6%) Non-targeted antibiotic therapy was associated with a non-significant difference in mortality of 44.4%. CONCLUSIONS Early administration of targeted antibiotics can mitigate a high mortality rate. The choice of antibiotic therapy for community-acquired pneumonia should be based on severity, risk factors and clinical suspicion of CAAP rather than seasonality.
Collapse
|
3
|
Havenga B, Reyneke B, Ndlovu T, Khan W. Genotypic and phenotypic comparison of clinical and environmental Acinetobacter baumannii strains. Microb Pathog 2022; 172:105749. [PMID: 36087691 DOI: 10.1016/j.micpath.2022.105749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022]
Abstract
The genotypic and phenotypic characteristics and antibiotic resistance (antibiogram) profiles of clinical (n = 13) and environmental (n = 7) Acinetobacter baumannii isolates were compared. Based on the Repetitive Extragenic Palindromic Sequence-based PCR (REP-PCR) analysis, the clinical and environmental A. baumannii isolates shared low genetic relatedness (∼60%). Multilocus sequence typing (MLST, Oxford scheme) indicated that the clinical A. baumannii were assigned to three sequence types (ST231, ST945 and ST848), while the environmental A. baumannii (excluding AB 14) were categorised into the novel ST2520. The majority of the clinical (excluding AB 5, CAB 11, CAC 37) and environmental (excluding AB 14 and AB 16) A. baumannii strains were then capable of phase variation with both the translucent (71.4%; 15/21) and opaque (95.2%; 20/21) colony phenotypes detected. The clinical isolates however, exhibited significantly (p < 0.05) higher biofilm formation capabilities (OD570: 2.094 ± 0.497). Moreover, the clinical isolates exhibited significantly (p < 0.05) higher resistance to first line antibiotics, with 92.3% (12/13) characterised as extensively drug resistant (XDR), whereas environmental A. baumannii exhibited increased antibiotic susceptibility with only 57.1% (4/7) characterised as multidrug resistant (MDR). The environmental isolate AB 14 was however, characterised as XDR. In addition, only five clinical A. baumannii isolates exhibited colistin resistance (38.5%; 5/13). The current study highlighted the differences in the genotypic, phenotypic, and antibiotic resistance profiles of clinical and environmental A. baumannii. Moreover, the environmental strains were assigned to the novel ST2520, which substantiates the existence of this opportunistic pathogen in extra-hospital reservoirs.
Collapse
Affiliation(s)
- Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Thando Ndlovu
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag UB, 0022, Gaborone, Botswana
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
4
|
Ababneh Q, Abu Laila S, Jaradat Z. Prevalence, genetic diversity, antibiotic resistance and biofilm formation of Acinetobacter baumannii isolated from urban environments. J Appl Microbiol 2022; 133:3617-3633. [PMID: 36002793 DOI: 10.1111/jam.15795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Abstract
AIM Acinetobacter baumannii is a well-known nosocomial pathogen that has been isolated from different clinical sources. This pathogen also causes community-acquired infections, with mortality rates as high as 64%. The exact natural habitat of this bacterium is still unknown. In this study, we investigated the prevalence of A. baumannii in diverse soil and high-touch surface samples collected from a university campus, malls, parks, hypermarkets and produce markets, roundabout playground slides, and bank ATMs. METHODS AND RESULTS All obtained isolates were characterized for their antibiotic susceptibility, biofilm formation capacities, and were typed by multi-locus sequence analysis. A total of 63 A. baumannii isolates were recovered, along with 46 A. pittii and 8 A. nosocomialis isolates. Sequence typing revealed that 25 A. baumannii isolates are novel strains. Toilets and sink washing basins were the most contaminated surfaces, accounting for almost 50% of the recovered isolates. A number of A. baumannii (n=10), A. pittii (n=19) and A. nosocomialis (n=5) isolates were recovered from handles of shopping carts and baskets. The majority of isolates were strong biofilm formers and 4 exhibited a multi-drug resistant (MDR) phenotype. CONCLUSIONS Our study is the first to highlight community restrooms and shopping carts as potential reservoirs for pathogenic Acinetobacter species. Further studies are required to identify the reasons associated with the occurrence of A. baumannii inside restrooms. Proper disinfection of community environmental surfaces and spreading awareness about the importance of hand hygiene may prevent the dissemination of pathogenic bacteria within the community. SIGNIFICANCE AND IMPACT OF STUDY Serious gaps remain in our knowledge of how A. baumannii spreads to cause disease. This study will advance our understanding of how this pathogen spreads between healthcare and community environments. In addition, our findings will help healthcare decision makers implement better measures to control and limit further transmission of A. baumannii.
Collapse
Affiliation(s)
- Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Sally Abu Laila
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Tao Y, Duma L, Rossez Y. Galleria mellonella as a Good Model to Study Acinetobacter baumannii Pathogenesis. Pathogens 2021; 10:1483. [PMID: 34832638 PMCID: PMC8623143 DOI: 10.3390/pathogens10111483] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022] Open
Abstract
The invertebrate model, Galleria mellonella, has been widely used to study host-pathogen interactions due to its cheapness, ease of handling, and similar mammalian innate immune system. G. mellonella larvae have been proven to be useful and a reliable model for analyzing pathogenesis mechanisms of multidrug resistant Acinetobacter baumannii, an opportunistic pathogen difficult to kill. This review describes the detailed experimental design of G. mellonella/A. baumannii models, and provides a comprehensive comparison of various virulence factors and therapy strategies using the G. mellonella host. These investigations highlight the importance of this host-pathogen model for in vivo pathogen virulence studies. On the long term, further development of the G. mellonella/A. baumannii model will offer promising insights for clinical treatments of A. baumannii infection.
Collapse
Affiliation(s)
- Ye Tao
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de Recherche Royallieu–CS 60 319 , 60203 Compiègne, France; (Y.T.); (L.D.)
| | - Luminita Duma
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de Recherche Royallieu–CS 60 319 , 60203 Compiègne, France; (Y.T.); (L.D.)
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
6
|
Effah CY, Drokow EK, Agboyibor C, Ding L, He S, Liu S, Akorli SY, Nuamah E, Sun T, Zhou X, Liu H, Xu Z, Feng F, Wu Y, Zhang X. Neutrophil-Dependent Immunity During Pulmonary Infections and Inflammations. Front Immunol 2021; 12:689866. [PMID: 34737734 PMCID: PMC8560714 DOI: 10.3389/fimmu.2021.689866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflammations. The pathophysiological roles of neutrophils in COVID-19 and thromboembolism have also been summarized. We finally summarized various neutrophil biomarkers that can be utilized as prognostic molecules in pulmonary inflammations and discussed various neutrophil-targeted therapies for neutrophil-driven pulmonary inflammatory diseases.
Collapse
Affiliation(s)
| | - Emmanuel Kwateng Drokow
- Department of Radiation Oncology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shaohua Liu
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senyo Yao Akorli
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Nuamah
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Tongwen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolei Zhou
- Department of Respiratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Xu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Karakonstantis S, Kritsotakis EI. Systematic review and meta-analysis of the proportion and associated mortality of polymicrobial (vs monomicrobial) pulmonary and bloodstream infections by Acinetobacter baumannii complex. Infection 2021; 49:1149-1161. [PMID: 34260054 DOI: 10.1007/s15010-021-01663-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Differentiating Acinetobacter baumannii complex (ABC) infection from colonization remains difficult and further complicated in polymicrobial infections. PURPOSE To assess the frequency of polymicrobial ABC infections and associated mortality. We hypothesized a lower mortality in polymicrobial infections if ABC isolation reflects colonization in some polymicrobial infections. METHODS A systematic review was conducted in PubMed, Scopus and CENTRAL for studies reporting ABC pulmonary and bloodstream infections. The proportion of infections that were polymicrobial and the magnitude of the association between polymicrobial (vs monomicrobial) infection and mortality were estimated with meta-analyses. RESULTS Based on 80 studies (9759 infections) from 23 countries, the pooled proportion of polymicrobial infection was 27% (95% CI 22-31%) and was similarly high for bloodstream and pulmonary infections. Polymicrobial infection was variably and insufficiently defined in most (95%) studies. Considerable heterogeneity (I2 = 95%) was observed that persisted in subgroup analyses and meta-regressions. Based on 17 studies (2675 infections), polymicrobial infection was associated with lower 28-day mortality (OR = 0.75, 95% CI 0.58-0.98, I2 = 36%). However, polymicrobial infection was not associated with in-hospital mortality (OR = 0.97, 95% CI 0.69-1.35, I2 = 0%) based on 14 studies (953 infections). The quality of evidence (GRADE) for the association of polymicrobial (vs monomicrobial) infection with mortality was low and at high risk of bias. CONCLUSION Polymicrobial ABC infections are common and may be associated with lower 28-day mortality. Considering the heterogeneity of polymicrobial infections and limitations of the available literature, more research is required to clarify the clinical impact of polymicrobial (vs monomicrobial) ABC infection.
Collapse
Affiliation(s)
- Stamatis Karakonstantis
- Department of Internal Medicine, Infectious Diseases, University Hospital of Heraklion, 71110, Heraklion, Crete, Greece.
| | - Evangelos I Kritsotakis
- Laboratory of Biostatistics, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
8
|
Alfei S, Caviglia D, Piatti G, Zuccari G, Schito AM. Bactericidal Activity of a Self-Biodegradable Lysine-Containing Dendrimer against Clinical Isolates of Acinetobacter Genus. Int J Mol Sci 2021; 22:7274. [PMID: 34298891 PMCID: PMC8306826 DOI: 10.3390/ijms22147274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
The genus Acinetobacter consists of Gram-negative obligate aerobic pathogens, including clinically relevant species, such as A. baumannii, which frequently cause hospital infections, affecting debilitated patients. The growing resistance to antimicrobial therapies shown by A. baumannii is reaching unacceptable levels in clinical practice, and there is growing concern that the serious conditions it causes may soon become incurable. New therapeutic possibilities are, therefore, urgently needed to circumvent this important problem. Synthetic cationic macromolecules, such as cationic antimicrobial peptides (AMPs), which act as membrane disrupters, could find application in these conditions. A lysine-modified cationic polyester-based dendrimer (G5-PDK), capable of electrostatically interacting with bacterial surfaces as AMPs do, has been synthesized and characterized here. Given its chemical structure, similar to that of a fifth-generation lysine containing dendrimer (G5K) with a different core, and previously found inactive against Gram-positive bacterial species and Enterobacteriaceae, the new G5-PDK was also ineffective on the species mentioned above. In contrast, it showed minimum inhibitory concentration values (MICs) lower than reported for several AMPs and other synthetic cationic compounds on Acinetobacter genus (3.2-12.7 µM). Time-kill experiments on A. baumannii, A. pittii, and A. ursingii ascertained the rapid bactericidal effects of G5-PDK, while subsequent bacterial regrowth supported its self-biodegradability.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy; (D.C.); (G.P.); (A.M.S.)
| | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy; (D.C.); (G.P.); (A.M.S.)
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy; (D.C.); (G.P.); (A.M.S.)
| |
Collapse
|
9
|
Polymicrobial community-acquired Acinetobacter baumannii and Burkholderia pseudomallei bacteremia: opportunistic infections with similar risk factors in northern Australia. IDCases 2020; 21:e00833. [PMID: 32509526 PMCID: PMC7264049 DOI: 10.1016/j.idcr.2020.e00833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 11/25/2022] Open
Abstract
We report the case of a 61-year-old man from northern Australia with concurrent community-onset Acinetobacter baumannii complex and Burkholderia pseudomallei bacteremia presenting as severe tropical pneumonia requiring intensive care unit support. The pneumonia was complicated by L3/4 discitis and vertebral osteomyelitis presumed to be due to melioidosis. His risk factors included chronic lung disease and immunosuppression with etanercept. This case of concurrent infection highlights the similar risk factors, presentation and epidemiology of both infections, emphasises the importance of accurate microbiologic identification and reinforces the current Australian empiric antimicrobial treatment recommendations for severe tropical pneumonia.
Collapse
|
10
|
Abstract
Antimicrobial resistance is a global concern, and prudent use of antibiotics is essential to preserve the current armamentarium of effective drugs. Acute respiratory tract infection is the most common reason for antibiotic prescription in adults. In particular, community-acquired pneumonia poses a significant health challenge and economic burden globally, especially in the current landscape of a dense and aging population. By updating the knowledge on the common antimicrobial-resistant pathogens in community-acquired respiratory tract infections, their prevalence, and resistance may pave the way to enhancing appropriate antibiotic use in the ambulatory and health care setting.
Collapse
|
11
|
Asai N, Sakanashi D, Suematsu H, Kato H, Watanabe H, Shiota A, Hagihara M, Koizumi Y, Yamagishi Y, Mikamo H. Clinical manifestations and risk factors of community-onset Acinetobacter species pneumonia in Japan; case control study in a single institute in Japan. J Infect Chemother 2019; 25:639-642. [DOI: 10.1016/j.jiac.2019.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 10/26/2022]
|
12
|
Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. The Mechanisms of Disease Caused by Acinetobacter baumannii. Front Microbiol 2019; 10:1601. [PMID: 31379771 PMCID: PMC6650576 DOI: 10.3389/fmicb.2019.01601] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/26/2019] [Indexed: 01/29/2023] Open
Abstract
Acinetobacter baumannii is a Gram negative opportunistic pathogen that has demonstrated a significant insurgence in the prevalence of infections over recent decades. With only a limited number of “traditional” virulence factors, the mechanisms underlying the success of this pathogen remain of great interest. Major advances have been made in the tools, reagents, and models to study A. baumannii pathogenesis, and this has resulted in a substantial increase in knowledge. This article provides a comprehensive review of the bacterial virulence factors, the host immune responses, and animal models applicable for the study of this important human pathogen. Collating the most recent evidence characterizing bacterial virulence factors, their cellular targets and genetic regulation, we have encompassed numerous aspects important to the success of this pathogen, including membrane proteins and cell surface adaptations promoting immune evasion, mechanisms for nutrient acquisition and community interactions. The role of innate and adaptive immune responses is reviewed and areas of paucity in our understanding are highlighted. Finally, with the vast expansion of available animal models over recent years, we have evaluated those suitable for use in the study of Acinetobacter disease, discussing their advantages and limitations.
Collapse
Affiliation(s)
- Faye C Morris
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Carina Dexter
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Xenia Kostoulias
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Muhammad Ikhtear Uddin
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Chusri S, Chongsuvivatwong V, Silpapojakul K, Singkhamanan K, Hortiwakul T, Charernmak B, Doi Y. Clinical characteristics and outcomes of community and hospital-acquired Acinetobacter baumannii bacteremia. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:796-806. [PMID: 31031096 DOI: 10.1016/j.jmii.2019.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 02/06/2019] [Accepted: 03/18/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE We aimed to characterize clinical manifestations of the patients with bacteremia due to community-acquired Acinetobacter baumannii and evaluate the outcomes of these patients. METHODS We conducted a retrospective study to include adult patients with A. baumannii bacteremia and then classified them into two groups: community-acquired A. baumannii bacteremia and hospital-acquired A. baumannii bacteremia. Characteristics and outcomes between 2 groups were compared. The Galleria mellonella infection survival model was used to determine the virulence of A. baumannii in these 2 groups. RESULTS There were 63 patients with A. baumannii bacteremia: 21 patients with community-acquired (CA) bacteremia and 42 patients with hospital-acquired (HA) bacteremia. Three patients with CA bacteremia were excluded due to healthcare-associated risks of infection. The remaining 18 patients with CA bacteremia had carbapenem-susceptible A. baumannii (CA-CSAB). Among the 42 patients with HA bacteremia, 11 patients had carbapenem-susceptible A. baumannii (HA-CSAB) and 31 patients had carbapenem-resistant A. baumannii (HA-CRAB). The 30-day mortality rates of those with CA-CSAB did not differ from those with HA-CSAB bacteremia but were significantly lower than those with HA-CRAB (p = 0.003). The factors influencing 30-day mortality were infection with CRAB (p = 0.004), appropriate empirical antimicrobial therapy (p = 0.002), and higher Acute Physiology and Chronic Health Evaluation II score (p < 0.001). The G. mellonella assay showed no differences in survival rates among CA-CSAB, HA-CSAB, and HA-CRAB. CONCLUSIONS Patients with bacteremia due to CA-CSAB and HA-CSAB had similar outcomes. Similar virulences of CA-CSAB and HA-CSAB were confirmed with the G. mellonella infection model.
Collapse
Affiliation(s)
- Sarunyou Chusri
- Division of Infectious Disease, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| | | | - Kachornsakdi Silpapojakul
- Division of Infectious Disease, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Thanaporn Hortiwakul
- Division of Infectious Disease, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Boonsri Charernmak
- Division of Infectious Disease, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Liang R, Zou X, Wu Y, Ma Z, Deng M, Deng C. WITHDRAWN: Pneumonia: A Case Report on Largely Emerging and Severe Infectious Disease from Southeast China and Literature Review. Respir Med Case Rep 2019. [DOI: 10.1016/j.rmcr.2019.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Serota DP, Sexton ME, Kraft CS, Palacio F. Severe Community-Acquired Pneumonia due to Acinetobacter baumannii in North America: Case Report and Review of the Literature. Open Forum Infect Dis 2018; 5:ofy044. [PMID: 29564365 PMCID: PMC5846288 DOI: 10.1093/ofid/ofy044] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/04/2018] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter baumannii is a rare but emerging cause of fulminant community-acquired pneumonia (CAP-AB). We describe a patient from a rural area who developed acute respiratory distress syndrome and septic shock. We describe risk factors and characteristics of this syndrome and review published cases of CAP-AB from North America.
Collapse
Affiliation(s)
- David P Serota
- Division of Infectious Diseases, Department of Medicine, Atlanta, Georgia
| | | | - Colleen S Kraft
- Division of Infectious Diseases, Department of Medicine, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Federico Palacio
- Division of Infectious Diseases, Department of Medicine, Atlanta, Georgia
| |
Collapse
|
16
|
Advanced Role of Neutrophils in Common Respiratory Diseases. J Immunol Res 2017; 2017:6710278. [PMID: 28589151 PMCID: PMC5447318 DOI: 10.1155/2017/6710278] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/22/2017] [Accepted: 04/16/2017] [Indexed: 12/18/2022] Open
Abstract
Respiratory diseases, always being a threat towards the health of people all over the world, are most tightly associated with immune system. Neutrophils serve as an important component of immune defense barrier linking innate and adaptive immunity. They participate in the clearance of exogenous pathogens and endogenous cell debris and play an essential role in the pathogenesis of many respiratory diseases. However, the pathological mechanism of neutrophils remains complex and obscure. The traditional roles of neutrophils in severe asthma, chronic obstructive pulmonary diseases (COPD), pneumonia, lung cancer, pulmonary fibrosis, bronchitis, and bronchiolitis had already been reviewed. With the development of scientific research, the involvement of neutrophils in respiratory diseases is being brought to light with emerging data on neutrophil subsets, trafficking, and cell death mechanism (e.g., NETosis, apoptosis) in diseases. We reviewed all these recent studies here to provide you with the latest advances about the role of neutrophils in respiratory diseases.
Collapse
|